Preparation of Some Sterically Hindered Organosilicon Compounds

Abdulrahman I. Al-Mansour

Dept. of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia

ABSTRACT. Under the conditions where $(PhMe_2Si)_3CSiMe_2Cl$ is inert towards a range of organolithium reagents, the secondary organosilicon chloride $(PhMe_2Si)_3CSiMeHCl$ reacts with MeLi, EtLi or LiBuⁿ to give $(PhMe_2Si)_3CSiMe_2H$, $(PhMe_2Si)_3CSiMeEtH$ or $(PhMeSi)_3CSiMeBuⁿH$, respectively, but not with LiBu^t. Similar results are obtained from reaction of $(Me_3Si)_3CSiMeHCl$ with organolithium reagents.

Much chemistry has emerged from studies of highly sterically hindered compounds having tris(trimethylsilyl)methyl ligand (Eaborn *et al.* 1978, Eaborn 1979 and Eaborn and Hopper 1979). Such compounds have been prepared by treating (Me₃Si)₃CLi with appropriate silicon halides (Cook *et al.* 1970 and Dua *et al.* 1979). In contrast, the organolithium reagent (PhMe₂Si)₃CLi has been reported to react with only Me₂SiHCl and MeSiHCl₂ to give (PhMe₂Si)₃CSiMe₂H and (PhMe₂Si)₃CSiMeHCl, respectively, but not with a wide range of silicon halides (Eaborn and Mansour 1985). The failure of (PhMe₂Si)₃CLi to couple with silicon halides prompted us to investigate the reaction of (PhMe₂Si)₃CSiMeHCl with organolithium reagents as possible alternative synthetic route for some sterically hindered organosilicon compounds of the type (PhMe₂Si)₃CSiPRR'H.

Results and Discussion

The sterically hindered organosilicon chloride $(PhMe_2Si)_3CSiMe_2Cl$ was recovered unchanged when treated with an excess of MeLi, LiBuⁿ or LiBu^t in Et₂O at room temperature (25°C) for 24 h. This illustrates the very large steric hindrance towards nucleophilic substitution at a silicon centre caused by the $(PhMe_2Si)_3C$ ligand. In contrast, treatment of the secondary chloride $(PhMe_2Si)_3CSiMeHCl$ with an excess of MeLi under similar conditions and subsequent hydrolytic work-up gave a solid, which was shown (¹H nmr spectroscopy and g.l.c.) to contain $(PhMe_2Si)_3CSiMe_2H$ together with less than 10% impurity of $(PhMe_2Si)_3CH$ by comparison with an authentic samples (Eaborn and Mansour 1985 and Liu and Ma 1970). We believe that the compound $(PhMe_2Si)_3CH$ is formed from direct cleavage of the $\geq C-SiMeHCl$ bond.

$$(PhMe_2Si)_3CSiMeHCl \frac{excess MeLi}{Et_2O, 25^{\circ}C} (PhMe_2Si)_3CSiMe_2H + (PhMe_2Si)_3CH$$

Although it might seem possible that under the reaction conditions the initially formed hydride (PhMe₂Si)₃CSiMe₂H would react with the excess of MeLi to give $(PhMe_2Si)_3CH$, we have independently observed no reaction between MeLi and (PhMe₂Si)₃CSiMe₂H. However, subsequent recrystallization of the crude product from methanol gave a pure crystalline solid of (PhMe₂Si)₃CSiMe₂H. Successful replacement of chloride by methyl group suggested a useful synthetic route for some sterically hindered organosilicon compounds which could not be made from the reactions between (PhMe₂Si)₃CLi and silicon halides. Indeed, treatment of (PhMe₂Si)CSiMeHCl with an excess of EtLi or LiBuⁿ under the conditions used for MeLi followed by hydrolytic work-up and subsequent recrystallization from methanol gave exclusively (PhMe₂Si)₃CSiMeEtH and (PhMe₂Si)₃CSiMeBuⁿH, respectively, in satisfactory yields. The relative ease of the reaction of (PhMe₂Si)₃CSiMeHCl with organolithium reagents can be attributed to the presence of the sterically undemanding hydrogen atom at the functional centre which seemingly allows the usual direct nucleophilic attack on the substrate. However, (PhMe₂Si)₃CSiMeHCl does not react with LiBu^t, possibly because of the large bulk of the nucleophile Bu^t which hinders it from closely approaching the substrate. Correspondingly, the closely related chloride (Me₃Si)₃CSiMeHCl reacts with an excess of MeLi, EtLi or LiBuⁿ to give (Me₃Si)₃CSiMe₂H, (Me₃Si)₃CSiMeEtH or (Me₃Si)₃CSiMeBuⁿH, respectively, in good yield. However, no reaction occurs with LiBut. Moreover, no reaction was observed when the tertiary chloride (Me₃Si)₃CSiMe₂Cl was treated with concerned organolithium reagents.

Experimental

Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. The¹H nmr spectra were recorded at 60 or 100 MMHz. g.l.c. analysis was carried out on Varian 1800 instrument. Unless otherwise stated, organolithium reagents were supplied by Fluka.

Attempted Reactions of (PhMe₂Si)₃CSiMe₂Cl with Various Organolithium Reagents

A 1.6M solution of MeLi (1.96 mmol) in Et_2O (1.2 cm³) was added to a solution of (PhMe₂Si)₃CSiMe₂Cl (0.5 g, 0.98 mmol) in Et_2O (50 cm³). The mixture was stirred at room temperature under nitrogen for 24 h. Water was then added. The organic layer was separated, washed, dried (MgSO₄), and evaporated to give a solid, which was shown by its ¹H nmr spectrum to be exclusively unchanged starting material.

The same result was obtained when the following organolithium reagents were used:

- a) A 1.2M solution of EtLi (1.96 mmol) in pentane (1.6 cm³)
- b) A 1.4M solution of LiBuⁿ (1.26 mmol) in hexane (1.4 cm³)
- c) A 1.6M solution of LiBu^t (1.96 mmol) in pentane (1.2 cm³)

Preparation of (PhMe₂Si)₃CSiMe₂H

A 1.6M solution of MeLi (4.0 mmol) in Et₂O (2.5 cm³) was added to a solution of (PhMe₂Si)₃CSiMeHCl (1 g, 2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24h (a white precipitate of LiCl was observed after 1 h. of reaction time). Water was then added. The organic layer was separated, washed, dried (MgSO₄), and evaporated to give a solid which was shown by g.l.c. analysis and its ¹H nmr spectrum to contain mainly (PhMe₂Si)₃CSiMe₂H together with less than 10% of (PhMe₂Si)₃CH (authentic samples of the products were available for comparison). The crude product was then recrystallized from methanol to give exclusively dimethyl[tris(Phenyldimethylsilyl)methyl]silane (0.73 g 76%), showing to be identical with an authentic sample by means of its ¹H nmr spectrum, $\delta^{1}H_{(CCl_4)}$ 0.58(s, 18H, SiMe₂), 0.30 (d, J=2H, 6H, SiMe₂), 4.48 (m, 1H, SiH), 7-7.8 ppm (m, 5H, SiPh).

Preparation of (PhMe₂Si)₃CSiMeEtH

A 1.2M solution of EtLi (freshly prepared, Bryce-Smith and Turener 1953) (4.0 mmol) in heptane (3.36 cm³) was added to a solution of (PhMe₂Si)₃CSiMeHCl (1.0 g, 2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24 h (a precipitate of LiCl was observed after 2 h). Water was then added. The organic layer was separated, washed, dried (MgSO₄), and evaporated to give a solid which was shown by its ¹H nmr spectrum to contain mainly (PhMe₂Si)₃CSiMeEtH together with less than 10% of (PhMe₂Si)₃CH. Recrystallization of the crude product from methanol gave exclusively ethylmethyl-[tris(phenyldimethylsilyl)methyl]silane (0.81 g 82%) mp 87°C, $\delta^{1}H_{(CDCl_3)}$ 0.24 (3H, d 3.6 Hz, SiMeEtH), 0.51 (18H, d, SiMe₂Ph), 0.89 (5H, m, SiMeEtH), 4.33 (1H, m, SiH) and 7.17 ppm (15H, m, Ph) (Found: C,68.6: H,8.6, C₂₈H₄₂Si₄ requires C,68.6; H,8.6%).

Preparation of (PhMe₂Si)₃CSiMe(Buⁿ)H

A 1.4M solution of LiBuⁿ (4.0 mmol) in hexane (2.9 cm³) was added to a solution of (PhMe₂Si)₃CSiMeHCl (1.0 g, 2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24 h (a precipitate of LiCl was observed after 5 h). Subsequent work-up and removal of the solvent by rotary evaporation gave a solid which was shown by g.l.c. analysis and its ¹H nmr spectrum to contain mainly (PhMe₂Si)₃CSiMeBuⁿH together with less than 10% of (PhMe₂Si)₃CH. Recrystallization of the crude product from methanol gave exclusively n-butylmethyl[tris(phenyldimethylsilyl)methyl]silane (0.85, 80%) mp 96°C, $\delta^{1}H_{(CDCl_3)}$ 0.24(3H, d, 3.6Hz, SiMeBuH), 0.51(18H, d,SiMe₂Ph), 0.65-1.5(9H,m, SiMe(<u>Bu</u>ⁿ)H, 4.37(1H, m, SiH) and 7.18 ppm (15H, m,Ph) (Found C,69.3; H,8.7, C₃₀H₄₆Si₄ requise C,69.5; H,8.8%).

Attempted Preparation of (PhMe₂Si)₃CSiMe(Bu¹)H

A 1.6M solution of LiBu^t (4.0 mmol) in hexane (2.5 cm³) was added to a solution of $(PhMe_2Si)_3CSiMeHCl$ (1 g, 2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24 h. Water was then added. The organic layer was separated, washed, dried (MgSO₄) and evaporated to give a solid which was shown by its ¹H nmr spectrum to be exclusively unchanged starting material.

Attempted Reaction of (Me₃Si)₃CSiMe₂Cl with Various Organolithium Reagents

A 1.6M solution of MeLi (3.1 mmol) in Et_2O (1.93 cm³) was added to a solution of $(Me_3Si)_3CSiMe_2Cl$ (0.5 g, 1.54 mmol) in Et_2O (50 cm³). The mixture was stirred at room temperature under nitrogen for 24 h Water was then added. The organic layer was separated, washed, dried (MgSO₄) and evaporated to give a solid which was shown by its ¹H nmr spectrum to be exclusively unchanged starting material.

The same result was observed when the following organolithium reagents were used:

a) A 1.2M solution of EtLi (3.1 mmol) in pentane (2.6 cm³)

- b) A 1.4M solution of LiBuⁿ (3.1 mmol) in hexane (2.2 cm³)
- c) A 1.6M solution of LiBu^t (3.1 mmol) in hexane (1.9 cm³)

Preparation of $(Me_3Si)_3CSiMe_2H$

A 1.6M solution of MeLi (6.4 mmol) in Et_2O (3 cm³) was added to a solution of (Me₃Si)₃CSiMeHCl (1 g, 3.2 mmol) in Et_2O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24 h. Water was then added. The organic layer was separated, washed, dried (MgSO₄) and evaporated. The residue was washed with methanol followed by filtration to leave a solid which was shown to be

exclusively dimethyl [tris(trimethylsilyl)methyl]silane (0.79 g, 84%) by the identity of its ¹H nmr spectrum with that of an authentic sample. $\delta^{1}H_{(CCl_4)}$ 0.13 (s, 27H, Si<u>Me_3</u>), 0.21 d, 6H, Si<u>Me_2</u>), 4.07 ppm (m, 1H, SiH).

Preparation of (Me₃Si)₃CSiMeEtH

A 1.2M solution of EtLi (6.4 mmol) in pentane (5.4 cm³) was added to a solution of $(Me_3Si)_3CSiHCl$ (1 g, 3.2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24 h. Water was then added. The organic layer was separated, washed, dried (MgSO₄) and evaporated. The residue was washed with methanol followed by filtration to leave a solid which was shown to be exclusively ethylmethyl[tris(trimethylsilyl)methyl]silane (0.8 g, 82%) showing to be idential with an authentic sample by means of its ¹H nmr spectrum $\delta^{1}H_{(CCl_4)}$ 0.20 (s, 27H, (SiMe₂); 0.26 (1d, 3H, (SiMe); 0.90 (m, 5H, SiEt); 3.93 ppm (m, 1H, SiH).

Preparation of (Me₃Si)₃CSiMe(Buⁿ)H

A 1.6M solution of LiBuⁿ (6.4 mmol) in hexane (4 cm³) was added to a solution of $(Me_3Si)_3CSiMeHCl$ (1 g, 3.2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature under nitrogen for 24 h. Water was then added. The organic layer was separated, washed, dried (MgSO₄) and evaporated to give a solid which was recrystallized from methanol to give n-butylmethyl[tris(trimethyl-silyl)methyl]silane (0.68 g, 80%, mp 44.1°C, $\delta^1 H_{(CDCl_3)}$ 0.21 (s, 27H, SiMe₃); 0.26 (d, 6H, SiMe₂); 0.35-1.54 (m, 9H, SiBuⁿ); 3.96 ppm (m, 1H, SiH) (Found: C, 54.0; H, 12.0, C₁₅H₄₀Si₄ requires C, 54.2; H, 12.1).

Attempted Preparation of (Me₃Si)₃CSiMe(Bu^t)H

A 1.6M solution of LiBu^t (6.4 mmol) in hexane (4 cm³) was added to a solution of $(Me_3Si)_3CSiMeHCl$ (1 g, 3.2 mmol) in Et₂O (100 cm³). The mixture was stirred at room temperature for 24 h. Water was then added. The organic layer was separated, washed, dried (MgSO₄) and evaporated to give a solid which was shown by its ¹H nmr spectrum to be exclusively unchanged starting material.

Acknowledgement

The author indebted to the Research Center, College of Science, King Saud University for financial support and also thanks Mr. A. Al-Basheer for his laboratory and technical assistance.

References

Bryce-Smith, D. and Turener, E.E. (1953) Organometallic compounds of the alkali metals. The metallation and dimetallation of benzene, J. Chem. Soc., 861-867.

- Cook, M.A., Eaborn, C. and Walton, D.R.M. (1970) [Tris(trimethyl)-methyl]lithium: An alkyllithium compound of unusual stability, J. Organometal. Chem. 24: 529-535.
- Dua, S., Eaborn, C., Happer, D.A.R., Hopper, S.P., Safa, K.D. and Walton, D.R.M. (1979) preparation of tris(trimethyl)methyl derivatives of silicon, J. Organometal. Chem. 178: 75-82.
- Eaborn, C., Happer, D.A.R, Safa, K.D. and Walton, D.R.M. (1978) The unusual behaviour of tris(trimethylsilyl)methyl]silicon compounds, J. Organometal. Chem. 157: C50-C52.
- Eaborn, C. and Hopper, S.P. (1979) The reactions of Tris(Trimethylsilyl) silicon iodides and hydrides with iodinemonochloride, J. Organometal. Chem. 192: 27-32.
- Eaborn, C., Happer, D.A.R., Hopper, S.P., and Safa, K.D. (1979) Novel rearrangements in reactions of tris(trimethylsilyl)methyl silicon iodides and hydrides with electrophilic reagents, and the possibility of cationic intermediates, J. Organometal. Chem. 170: C9-C12.
- Eaborn, C. and Mansour, A.I. (1985) Reactions at silicon centres bearing the bulky tris(phenyldimethylsilyl)methyl Ligand, J. Chem. Soc. Perkin Trans 2: 729-735.
- Liu, S.L. and Ma, M.M. (1970) Tris and tetrakis(dimethylphenylsilyl) methane, J. Organometal. Chem. 24: 89-90.

(Received 03/03/1987; in revised form 20/09/1987) Preparation of Some Sterically Hindered Organosilicon Compounds

تحضير بعض مركبات السلكون العضوية ذات الاعاقة الفراغية

عبدالرحمن إبراهيم المنصور

قسم الكيمياء ـ كلية العلوم ـ جامعة الملك سعود ـ ص . ب ٢٤٥٥ ـ الرياض ١١٤٥١ المملكة العربية السعودية

عند الظروف التي يكون فيها مركب السلكون العضوي ذي الاعاقة الفراغية CSiMe₂C1 (PhMe₂Si) حامل، تجاه عدد من كواشف الليثيوم العضوية فإن مركب السلكون العضوي الأقل إعاقة CSiMeHC1 يتفاعل مع ميثيل الليثيوم (PhMe₂Si) CSiMe₂C1 (PhMe₂Si) CSiMeHC1) يتفاعل مع ميثيل الليثيوم وأثيل الليثيوم وبيوتيل الليثيوم النظامي ليعطي المركبات PhMe₂Si) CSiMe₂C1 و PhMe₂Si) CSiMe₂H على الترتيب لكنه لا يتفاعل مع بيوتيل الليثيوم الثالثي . تمكن التفاعلات بين المركب SiMeHC1 (PhMe₂Si) ومركبات الليثيوم العضوية من تحضير بعض مركبات السلكون العضوية ذات الإعاقة الفراغية والتي يتعذر تحضيرها من التفاعل بين المركب PhMe₂Si) وهاليدات السلكون العضوية البسيطة بالإضافة إلى ذلك فقد تم الحصول على نتائج مشابهة من تفاعلات مركب السلكون العضوي الشابه CSiMeHC1 (Me₃Si) مع كواشف الليثيوم العضوية .