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ABSTRACT. The diffraction of an acoustic wave from a point source of 

sound by an absorbing half-plane and a nearly half plane (y == Eg (x,z); x 

:S; 0 and 0 :S; E « I) in the presence of a moving fluid is studied. This is 

done by using a recently developed method . It is assumed throughout 

the paper that the point source sets in at time t == O. When E =0, it is 

shown that the far field of the diffracted wave is anharmonic. It behaves 

merely as the inverse of the distance from the point source but as if the 
point source moves at the fluid speed far from the barrier. On the other 

hand it is found that acoustic noise reduction by a nearly half-plane 

barriers y == Eg (x,z); 0 :S; g (x,z) :S; I; x :S; 0 and - 00 < Z < 00 is be tter than 

reduction by a half-plane one . 

Noise reduction by using barriers in heavily built-up areas has received the attention of 
several workers (Butler 1974, Kurze 1974, Jones 1952, 1972, Rawlins 1974, 1975 and 
Asghar et al. 1991). It has been found that good barriers are those having absorbing 
lining on the surface. In these works, the sound waves are taken generated by a permanent 
harmonic point source and the solution of the problem is a priori assumed to be harmonic 
in time. A mathematical model for reduction of noise by means of barrier with absorbing 
lining on one face has been proposed (Rawlins 1974, 1975). In this context the problem 
of diffraction of an acoustic wave by an absorbing half-plane has been studied (Asghar 
1991). Here, by using a recently developed method (Abdel-Gawad 1991), this problem 
is reconsidered for a half-plane and a nearly half-plane: y =£g (x,z), 0 < £« 1; x:::; 0 
and 0 :::; g (x,z) :::; 1 for x :::; 0 and - 00 < z < 00. This method introduces the notion of 
exponential operator which , we think, simplify calculations. In the present work, the 
Weiner-Hopf technique is also used. 
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Here, the point source is setting in at time t =O. The anharmonic far field is then 
evaluated when £ = 0 and when 0 < £ « I separately. Finally the obtained results in 
this paper are disscused. 

Mathematical Formulation 

Here, we adopt the mathematical model considered by Rawlins (1975).The point 
source is considered to be located at (~" Yo' zo) and is taken to be harmonic in time. We 
suppose that the sound wave propagates in a fluid moving with velocity U parallel to 
the x-axis. First the barrier is taken to be the semi-infinite plane y =0, x:S; 0 and is of 
negligible thickness. The geometry of the problem is shown in Fig. (I). The absorbing 
boundary condition on the two sides of the barrier is 

p - u" Z = 0, (2 .1 ) 

here P is the pressure on the surface, u" is the normal derivative of the perturbation 
velocity of the irrotational sound filed ; Z is the acoustic impedance of the surface and 
nis the normal to the surface in the inward direction with respect to the barrier The 
perturbation velocity u is given in terms of the velocity potential cp as l1 =grade cpo 
The resulting pressure in the sound field is given by: 

P = - PI) (at + ua) cp (2.2) 

where U is defined before and Po is the mass density in the sound stream. \\e assume 
that the excitation of the source sets on at time t = O. In this case, the equation satisfied 
by p in the presence of a time harmonic source is 

[ \72- ( ~ d + Ma )2] '" = J e- iw, o(y-y) O(z-z) · t> O· t < 0 (2.3)C I :\ 'f' 1 0 () () t , 

The problem of diffraction of acoustic waves by an absorbing half-plane y =0, x:s; 0 is 
described by the boundary conditions (Rawlins 1974, Jones, 1952). 

~ (d 
y 

± ~Mdx ± c d,) cp (x, Q±, z,t) = 0, x < 0 (2.4) 

cp (x, 0+, z) = cp (x,O-, z,t) ; 

(2.5) 


where ~ = Po c/Z, M = U/c is the Mach number and for a subsonic flow IMI < 1 and Re 
~ > O. 

Now, we confine ourselves to find the general solution of (2.3). As the boundary 
conditions (2.4-5) are given at y = 0\ it is convenient to rewrite (2.3) in the form 
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Fig. 1. The geometry of the problem of diffraction of a point source by a half-plane in the presence of a moving fluid. 
-.lThe half-plane is represented by y =0 and x ::; O. The fluid is assumed moving with velocity U parrallel to the x-axis. -.l 
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Fig. 2. 	 The geometry of the problem of diffraction of a point source by a nearly half-plane in the presence of a moving fluid. 

The nearly half-plane is modeled byy =0.1 sin (x 21100) cos (Zl/ 100); -10 {1t ~ x ~ 0, Izl ~ 10 {1t and y = 0 elsewhere. 

The fluid is assumed moving with velocity U parrallel to the x-axis. 
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(2.6a) 

(2.6b) 

Where f, stands for the right hand side of (2.3). In view of theorem (3)of Abdel Gawad 
(1991), the solution of (2.4) is 

(2.7) 

where 4>[1" is the solution of the homogeneous equation of (2.4) and is given by Abdel
Gawad (1991) 

4>Bv=eyil: '1'0 (x,z,t) + e - yK \}JI (x,z,t) . 	 (2.8) 

The second term in (2.7), namely 4>s' is the part of the solution which is due to the 
source term and is given by 

(2 .9) 

the lower bounds in the integrals in (2.9) are arbitrarily taken . Equations (2.7 -9) are the 

general solution of (2.6). There remain two points to illustrate in (2.7-9) . The first point 

is about the justification S?f validity of the fraction power operator 1<.The second one 

is about how to evaluate K\jIo.I' In this respect, we require that the boundary conditions 

are in C" n L2 over an appropriate domain. If this is the case, then so will be the 

function '1'0 and '1'1' Now as the operator ~ is a linear differential operator, acting on 

C- n L , then it is L2 - bounded. We define a fraction power of any linear bounded
2

operator N1 as 

rOI-B =	_1_ J~ e- ),r:i 11.8- 1 dA B > 0 (2.10)
reB) 0 " 

where we bear in mind that the integral in (2.10) is convergent. Also we have 

(2.11 ) 

The exponential operator in (2.10) is defined by 

e)..~ = 2 ~ i Ir e ),p (M - pItl dp, 	 (2.12) 
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where CWI-PItl is the resolvant operator and r is a Cauchy contour surrounding a 
subset of the spectral set of the operator WI if the spectrum is discrete. If the spectrum 
is continuous and, for example, is positive real valued, then r is taken with a branch 
cut along the positive real axis . The definitions (2.10-12) are adopted by Bemelmans 
(1980) . 

" An estimate for the L2- norm of the operator K is given by: 

" where k = ro/c is the wave number. Thus the L2- norm of the"operator K is bounded and 
the validity of this operator is justified . Now, we evaluate K '1'0. 1. By using (2.10), we 
have 

(K)-I \11 = (K2)-112 \11 = __1_ I e-i. 1< 2 A-I12 dA \11 (2.13)
'YO. I 'YO. I n1l2) 0 • 'YO,I' 

" " " and use K '1'0.1 = (K-I)-I '1'0.1. It remains to evaluate exp-AK2. '1'0.1. To this end, we 
introduce the Fourier-Laplace transform of '1'0 and '1' 1. Thus we have 

a+ioo 

" (2 .14)exp -AK2 
'1'0.1 = Jds If 

11-1 00 

Now we assume that Abdel-Gawad (1990) 

~ Ang 
ex p- AK2 e,,+i (pX+<jZ) = eSl +i (pX+<jZ) I. .e~ (2.15) 

In=1 

We evaluate gl' g2' .. . , gn' ... by differentiating both sides of (2.15) with respect to A and 
setting A = 0 in both sides at each time of differentiation. Thus we have 

(2.16) 

By substituting from (2.16) into (2.15), (2.14) and in (2.13), we find 

" I ds II dpdq (Ktl 'I' = -.-- K- ' eSI+i( pZ+<jZ) 'I' . (2.17) 
0.1 D I(21t? 0.1 
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where K = [p2 + q2 + (sic + iMPy]' 12. The condition of convergence of the integral in 

(2.13) requires to restrict the domain of the integrals in (2.14) to the domian D = ((p,q,s) 
: Re K2 > O}. After (2.17), we have 

K-' eSI+i(p .w;+q'l.) = K-' e "l+i(px+l\z) (2.18) 

Acting by the operator k. on both sides of (2. 18) we obtain 

{( e... l+ i(px+ZI..1l = K e:-. t+ i(px+lj2.) (2.19) 

Thus, we obtain a result similar to (2.17) but k and K replace (kr' and K- I respec

tively. 

Diffraction of an acoustic wave by an absorbing half-plane 

The boundary conditions (2.4-5) suggest to rewrite the solution of (2 .3), namely 

(2.6-9) in terms of Iyl instead of y. Thus, we have 

(3. 1a) 

"' = el )' l~ \ 11 (x Z t) + e -lylK \11 ( Z t) (3.1 b)'t'B v '1' 1) ' , '1' I x, , . 

For the reason of finiteness, we set \jI1)(x ,z,t) = 0 and (3.1) becomes 

"' = e-IYI~ \11 (x Z t). (3.2)
'+' l3v 't'l " 

Also, for the reason of finiteness , we rewrite <Ps as 

(3.3) 

One can verify that <Ps satisfies (2.3). 

Now, we work with the Fourier - Laplace transform of the functions <p, <Psv' <Ps and \jI, 
thus we have 

(3.4) 

,t; = e-1ylK iii 
'+'13 v 't' I' (3.5) 

+ Y Y, 
e ipxo + iq7.() f fij) d y I dY2 e-1IY1- 21Y,1 + ly,IIK b(Y2- YI)) (3.6)

s = (s +iw) 
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(~, \V I) = 
00

f dt f dx f dze-st.i(qz=px) (4), "',) (X,z,t) (3.7) 
o 

We evaluate the integrals in (3.6). For this we assume that Yr, > O. If the lower bounds in 
(3.6) are taken + 00, then we find 

(3.8) 


But if the lower bounds are taken -00, then we find 

(3.9) 


Thus it is convenient to take 4>s= 112 (4); + 4>~), where ± corresponds to the choiceof the 
lower limits as ± oo in (3.6). Consequently we have 

(3.10) 

and this result is valid for all values of y. 

We write 4> = 4>" + 4>- , where 4>" and 4>- correspond to the integral over x on (0,00) and (

00, 0) respectively (cf.- (3.7)). We use the Wiener - Hopf technique and have for the 
boundary conditions (2.4-5) 

4>" (0") = 4>" (0-) = 4>" (0) (3.11 ) 

a 4>" (0") = a ~" (0-) = a~"(O) (3.12)
y y y 

(3.13) 

(3.14) 

Now, we use the boundary conditions (2.5) into (3.4-5), and have 

(3.15) 
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~+ (0-) + ~- (0-) =\VI + ~S (0-) (3.16) 

dy~+ (0+) + dy~- (0+) = -K \VI + dy~s(O+) (3.17) 

(3.18) 

As ~s (0+) =~s (0-), then from (3.15) and (3 .16), we obtain 

(3 . I 9) 

Also, as dy~s (0+) = -dy ~s (0-)1 then from (3 . 17) and (3.18), we have 

(3 .20) 

From (3.13) and (3.14), we obtain 

d ~- (0+) =- d ~- (0-) 
y y 

(3.21 ) 

Combining (3.20) and (3.21), we have 

(3.22) 

Now, we consider (3.13), (3.15) and find 

(3.23) 

Eliminating d ~-(O+) between (3.23) and (3. 17), we find 
y 

-dy ~s (0+) + ~ ( ~ + iMp) (\)II + ~s (0)) =  K\jil + dy ~(O+). (3.24) 

Solving for \VI' we find 

1 - s -\VI = K+ [2dy 4>s(O+) -~ (c + iMp) 4>s (0+)]. (3.25) 

Or by using (3.10), we obtain 

(3 .26) 
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where K+=K+P(~+iMp)
c 

By substituting from (3.26) into (3.5) and (3.14), we find 

(3.27a) 

(3.27b) 

We remark that the last term in (3.27b) gives the field of the incident wave. While the 
remaining terms give the field of the diffracted wave 

The inverse Fourier-Laplace transform of ~ is 

~ = f ds f f ~pdq (S+iW)-' e ip(x-X .,J +q(l-Z,l +SI A, (3.28)o 1(211:)1 

where D = {(s,p,q) : Rek2= Re [p2 + q2 +(~ + iMp?] > O}.
c 

In fact as IMI < I, then Re K2 > 0 holds every where when - 00 <p, q < 00 and Re s>O. 
Now by making the transformations s = Sl - iMcP, P = R cos 8, q = R sin 8 and carrying 
out the integral over R by using the steepest descent method, we find 

E +'j.i~ ds -fSJC r 2 Mcos8R' 
tI. = l id 8 R * " A* (I - fI )-1 (3.29)
't' (2 )512 fI L.. j R'

E-i~ 7! 0 J=O flj 

(3.30) 


P (S,+iw,~)-'A' e-S,R;, /c , = (3.31 )2 R'312
IXI (P+A/R;12) 


(I +Mcos8R~/R:II) (S,+iw:t' 
 e-S,R;,/c ,N = + (3.32)I 
(S/C)312 (s+iw)RI:

3 R' 312 
fli 



85 H.I. Abdel - Gawad 

We evaluate the integral in the Sl- plane and obtain for the field of the incident and 
diffracted wave, <1» and <1>0 respectively: 

2n 	 2n 

<1» - ie-iOlt f dEl R'-2 + 1 f 

2nJI2 0 ()"* (2n)JI2 0 


- -vro:, (~+2AJR;M,) e-iw~ .. F(w;)to) 

R;::2 (~+AJR:MI) (1-MR;)cosElIR~o) 

+ ~~ e-iw,~ F (w; t) ] R;l 
(3.34)

R'312 (~+~IR;I) (1-MR~cosEl) (2n)3/2 -rc02 	 __ 


R;12 


where t = t - R* ./c. Finally, when evaluating the integral over El by the method of 
J OJ 

stationary phase, we obtain 

e-iw,<, u 
il4 F(wit) 

<1»- + ~~~~~~~---	 (3.35)
2n RlIP-Mx'IRO) 

(3.36) 


}...1I2 

where w. =w/(l-x'M), R20 =X'2 + (Z-ZIl? + N, and F(A) =f '¥-- dll. 
J ~ ~ J 0 '\In 


OJ 


The results (3.35.36) for the far field <1> reveal some important physical interpreta
tions: 

(i) 	 The field <1>0 behaves merely as the inverse of the distance from the point source 
as if it moves with speed Mc (=U) far from the barrier: 
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(ii ) 	 The frequency shift of the sound wave due to diffraction by the barrier is gi ven 
by /).w!w =Mx*j(R()j - Mx') which is spacetime dependent. 

(iii) 	 The phase of the wave has a strong nonlinear time dependence in contrast to 
the result of the previous work (Asghar 1991 ), where it was found that it is 
linear in time. 

(iv) 	 In view of (3.36), one finds that the principle of limiting amplitude holds 
(Morawetz 1962) while the principle of limiting absorption (Eidus 1962) does 
not hold . This is in contrast to the results found previously (Rawlins 1974, 
1975), where the two principles hold . This disagreement results from the fact 
that in the previous works, the source was assumed permanently harmonic. 
Consequently, the filed of the diffracted wave is also permanently harmonic. 
Here, the source is taken as· setting in at time t =O. Hence, it is necessary that 
the solution would be anharmonic. 

In the next section we study diffraction of acoustic waves by a nearly half-plane. 

Diffraction of acoustic waves by a nearly half-plane 

We suppose that the boundaries of the barrier are given by y =± Eg(X,Z), x<O; 
where g(x,z) ELI [(-00,0) x (- 00, 00)] and is a positive definite function which is 
bounded by unity. Here, we rewrite the solution of (2.3) as 

[1-e-11y,I-lyI IK] 

+ 	 (4.1 ) 
(s + iro)K 

We notice that, for solving this problem, the boundary conditions (2.4-3) have to be 
modified by terms of order E. When evaluating the far filed of the diffracted wave, 
these terms would produce corrections of orderE2. So that, we confine ourselves with 
the conditions (2.4-5) as we shall conserve only terms of orderE. 

Now, we evaluate <1> * (y =Eg (x,z)) by substituting for y =Eg (x,z) into (4.1) and 
expanding e-£g(x.z)K up to first order in E. Finally, we find the Fourier-Laplace transform 

of both sides of (4.1). We write Iji~ =ijJl + EIji, where ljil is given by (3.25) and have 

$* (y = Eg (x,z)) = ~ (y = 0') + E\jiE - £11(], 	 (4.2a) 



• 
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(4.2b) 

Oy ~* (y =Eg(X,Z)) =-K~(y =0+) - EEK \ji + EHI ' ( 4.3a) 

- f~f dPldq lKIE I . 
HI = _~ (2n)2 [- e-IYoIK, <1>/0) + \VJp l, ql,s)]g (p-P I' q--qt) (4.3b) 

where K = K (p --t PI ,q --t ql) and K is given as before. 
J 

Combining (3.13) (evaluated at y = Eg(X,Z) and (4.2), we obtain an equation similar to 
(3.23) but the right hand side of (4.2) replaces the terms in the last brackets. Finall)( we 

have 

(4.4) 

Solving (4.4) for \Ii, we find 

(4.5) 

(4.6) 

By substituting from (4.6) into (4.1), bearing in mind the results (3.35-36), we find 

(4 .7) 

I 
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where 4>gl)and <\lg) stand for the first and second parts of (3.36) respectively while<\l, is 
given by (3 .35). Also x(j) = (x - x*c/w R ) and zU) = (z - (Z-ZII)C/W R). 

J OJ J OJ 

After the result (4 .7) , we find that whenever g(x,z) > 0, acoustic noise reduction by a 
nearly half-plane barrier is better than reduction a half-plane one. In fact we have 
I <\l*D I < I 4>J if g (x,z) > O. Also, waves diffracted by a nearly half-plane and whose far 
field are vanishingly small, are coming from a point source with high frequency; namely 
when W = O(C/E). 

Finally, the result (4.7) is valid for a barrier in the form of a half-plane but with thickness 
2E when g(x ,z) = I ::; 0, - 00 < z < 00. 

Conclusion 

By using a recently developed method , we studied the problem of reduction of 
acoustic noise by barriers in the shape of a half-plane and a nearly half-plane. 

The anharmonic far field has been found in both two cases. It is shown that the far field 
behaves mainly as the inverse of the distance from the point source as if it moves at the 
fluid speed far from the barrier. Consequently, the field of the diffracted wave tends to 
zero as t -7 00. This result was not found in the literature. This di sagreement results 
from the fact that in these works, the source was assumed permanently harmonic. It is 
worth noteing that the problem studied in this paper is different from that studied there. 
Indeed, here, the source is taken as setting in at time t = O. Furthermore, we have found 
that acoustic noise reduction by a nearly half-plane is better than reduction by a half
plane one. In particular, when acoustic waves are generated by a point source of high 
frequency. Finally, our method based on the use of fractional power operators facilitates 
the study of the problem that considered here. We think that this problem can not be 
easiling the known techniques. 
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~~Iy' u.rall.J..L.,a.o :..ro ~I ~~I uL:;)1 .JLS:;1 V".J~ 

~ O~e«l, y=eg(x,z); x~O 4.:.b~ <.S~ ~~ JI ~lA <.S~ 
~Iy.l!:-L>- 0.J}u ~y1 il~k Ih ~..l9J . ~~ ~~.h...,J ~y.-J 

. t=O lA~ I~ ..l9 u.raJ1 ~ 01 ~lAll oh JJl> ~pi ..l9 , ~l)1 

.GI, ~IY.d-o~I:i..::;~~IJ~101k..bJi..l9 c=O L,~ 
u ~1.J..L.,a.o 01.5} W' j50 u~I.J..L.a-o:..ro ~UI L ~~l:..:: 
01 ~J ..G <.S.r>-I ~l.i ~ u.ra-U ~U\ ?LJ,.\ ~I~ ~~ 

- ~~ \(' •. \'-. I ~\~. -lIyW ;.11 ... 
<.S~ . r..r---~ y. y y. -.r--' ~~ 

~ ?\y>- i\~k~\ :..ro J-a.91 O~g(x,z)~l, y = cg (x,z) 

.)1 JJY ;;~\~~I :i..::;)1 o-l.!. 01 41 ~I ..l9, <.S~~~ 
~~, 0~')f1 d ~y.-yo rlA...jJl> ~ ~~J t ~ 00 lA...l.:-Y yL.aJ1 
4:~J..G-.:..o l..l;-o ~'j ~~~)1 o.L!:JI 4:~J..b.-o l..l:--a 01 ~y.. 

. ~~')fl o.J..l9 

~t)\ ~\y. o~ o~~ ~y1 ~~1..l9 ~\ Ih y\y.)f 
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~ W -UJ ~~I ~)I ul~ ~LA::.lI ul))11 i~Jl:>-~~ ~~J 

i..w \~ lS?i o~iJ ~I~l o~l>-l ~~~ t..?- u~l..,lll 
JIJ..llI ~ Hopf-Wiener ~yb il~~: W . ~..L:lI.1J?I Jl.,a.jl 

i W1 J:lI J ~-J~)11 

http:Jl.,a.jl

