
Arab Gulf1. Scient. Res. , 14 (I), pp. 01-14 (1996) 

Integral Sum Graphs from Complete Graphs, 

Cycles and Wheels 


Ahmad Sharary 

Department of Mathematics, College ofScience, King Saud University, 
P.O. Box 2455, Riyadh 11451, Saudi Arabia 

ABS TRACT. A graph G is an integral sum graph if there is a labelling 8 
of its vertices with distinct integers, so that for any two distinct 
vertices u and v, uv is an edge of G if and only if 8(u) + 8(v) = 8(w) 
for some vertex w. G is a sum graph jf the labels are positive integers. 
For each graph G there is a minimum number a(G) such that G u a 
(G)K I is a sum graph, and there is a minimum number i.;(G) such that 
G u i.;(G)K I is an integral sum graph. [n this paper, we prove a 
conjecture of Harary that i.;(Kn) = a(Kn) for all Kn with n;:: 4. Also, we 
show that cycles Cn and wheels W n are integral sum graphs for all n '" 4. 

All graphs in this paper are finite and have no loops or multiple edges. We follow in 
general the graph-theoretic notation and terminology of (Harary 1969, 1994) . 

A graph G is an integral sum graph if there is a labelling 8 of its vertices with 
distinct integers, so that for any two distinct vertices u and v, uv is an edge of G if 
and only if S(u) + S(v) =Sew) for some vertex w. The integral sum graph G+(S) of a 
finite s~bset S c Z = { .. . , -2, -I, 0, I, 2, ... ) is the graph G(V,E) where V =Sand uv 
E E if and only if u + v E S. Thus, an integral sum graph is isomorphic to the 
i ntegraJ sum graph of some S c Z. If Z is replaced by N = { 1,2,3, ... ). then we obtain 
sum graphs. 

Mathematics subject Classification (1991): 05C78. 
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Harary (1990, 1994) introduced these classes of graphs and noted that for each 
graph G there is a minimum number a(G) such that G u a (G)K, is a sum graph, 
and there is a minimum number S(G) such that GuS(G)K, is an integral sum graph. 

a(G) is the sum number of G, and S(G) is the integral sum number of G. Obviousl¥ 
S(G) ~ a(G) for all graphs G. The sum numbers of complete graphs were derived by 

Bergstrand et al. (1989). The sum numbers of complete bipartite graphs were 

obtained by Hartsfield and Smyth (1992). EJlingham (1993) proved that a(T) = I for 

all nontrivial trees. Harary (1994) noted that paths Pn and matchings mK2 are 

integral sum graphs, and offered some problems. The purpose of this paper is to 
prove a conjecture of Harary (1994) that S(Kn) = a(Kn) for all n ~ 4, and to show that 

cycles Cn and wheels W n are integral sum graphs for all n "j:. 4. 

Complete graphs 

Bergstrand et al. (1989) verified that a(K3) = 2, K3 u 2K, == G+ {1,3,4,5,7}, and 

deri ved the following formula for a(Kn). 

Theorem 1. (Bergstrand et al. 1989) For all positive integers n ~ 4, a(Kn) =2n 

3. 
To realize a(Kn) = 2n - 3, Bergstrand et at. (1989) labelled the vertices of Kn 

with 1 + 4(i - 1), I ~ i ~ n, and labelled the isolated vertices with 2 + 4j, 1 ~ j ~ 2n 

3. 

Subsequently, Harary (1994) conjectured that S(Kn) = a(Kn) for all Kn with n ~ 

4. The purpose of this section is to prove this conjecture. 

Let G = Kn u S(Kn)K" n ~ 4, and consider a labelling 8 of the vertices of G 
which realizes G as an integral sum graph. Without loss of generality, we may 

assume that the vertices of Kn are labelled with the distinct integers a" a2, ... , an 

n(n-l )
which satisfy a, < a2 < ... < an' Then alI the 2 sums aj + aj for i ;t:. j, 1 ~ i, j ~ n 
occur as labels of the vertices of G. 

Lemma 1. If the vertices of G are labelled as above, then 
(i) the label of every vertex of G is distinct from zero, 

(ii) aj "j:. -aj for all 1 ~ i, j ~ n. 

Proof 

(i) Since a, < a2 < ... < an, then 
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Let A ={a, + a2, a, + a3, ... , a, + an, a2 + an, a 3+ an, ... , an_, + an} . Then IAI =2n 
- 3. Since n ~ 4, then 2n - 3 > n and consequently S(Kn) ~ I. Therefore, the label of 
every vertex of G is different from zero. 

(ii) This follows directly from (i). 

Let S ={s" S2, ... , sm} C Z. For r E Z, r -:;:. 0, we put rS ={rs" rS2> ... , rsm}. It is 
easy to verify the following result. 

Lemma 2. If r E Z, r -:;:. 0, S c Z, then G+ (rS) == G+ (S). 

Now we assume that the labelling e has the property that the vertices of Kn are 
labelled with the integers c" C2, . . . , cp, b" b2, ... , bq which satisfy cp < .. . < C2 < c, < 0 
< b, < b2 < .. . < bq, p ~ 1, q ~ 1, P + q = n. 

Lemma 3. If the vertices of G are labelled as above, then 

(i) for q ~ 2, c , + b, and c, + b2are the labels of isolated vertices of G, 

(ii) there exist no i < j < k with bj + bj = bk , 

(iii) there exist no i < j < k with Cj + Cj = Ck> 

(iv) for p ~ 2, c, + b, and C2 + b, are the labels of isolated vertices of G. 

Proof 

(i) Since c, < 0 < b, then c, < c, + b, < b,. Hence, c, + b, is the label of an 
isolated vertex of G. Now suppose that c, + b2 = b,. If q = 2 then p ~ 2, (cp + c,) + b2 

=cp + b" which contradicts that (cp + c,) is the label of an isolated vertex of G. If q 
> 2 then c, + (b2 + bq) = b, + bq, which contradicts that b2 + bq is the label of an 
isolated vertex of G. Thus c, + b2 is the label of an isolated vertex of G. 

(ii) It is clear that (ii) holds for 1 ~ q ~ 2. For q = 3, if b, + b2 =b3 then (c, + b,) 
+ b2 =c, + b3, which contradicts that c, + b, is the label of an isolated vertex of G. 
For q ~ 4, the argument given below is similar to the proof of Lemma 1 in 
(Bergstrand el at. 1989) and fills a gap in the proof of Case 3 of that proof. We 
consider four cases . 
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Case I . For k < q, if bi + bj = bk then bi + (b j + bq) = bk + bq, which contradicts 
that bi + bq is the label of an isolated vertex of G. 

Case 2. k = q, i > I and there exists m < i such that bm + bi > bq. 

If bi + bj = bq then (bm + b;) + bj =bm + bq, which contradicts that bm + bi is the 
label of an isolated vertex of G. 

Case 3. k = q, i > I and for all m < i, bm + bi ~ bq-

Let bi + bj = bq. If bm + bi is the label of some isolated vertex of G for some m < 
i then, as in Case 2, we obtain a contradiction. Hence, for all m < i, bm + bj is not the 
label of an isolated vertex of G. Let s < i. Then b, + bi = b, for some r ~ q. If r = q 
then b, + bi = bq = bi + bj . It implies that s = j > i which is a contradiction. If r < q 
then b, + (b i + bq) = b, + bq, which contradicts that bi + bq is the label of an isolated 
vertex of G. 

Case 4. k = q, i = 1. 

Since q ~ 4, then there is an index t e {I ,j,q} such that I < t < q. If b i + bj = bq 

then bl + bj > b i + bj = bq, and consequently b i + (b l + bj) = bl + bq, which contradicts 
that bl + bi is the label of an isolated vertex of G. 

(iii) Let S be the set of labels of the vertices of G. By Lemma 2, G+ (-1S) == G+ 

(S). Moreover, 

Hence, by (ii), there exist no i < j < k ~ P with (--Ci) + (--Cj) = - Ck' Therefore, 
there exist no i < j < k ~ P with Ci + Cj = Ck ' 

(iv) Since CI < 0 < b i then CI < CI + bi < bl ' Hence, CI + bl is the label of an 
isolated vertex of G. If C2 + bl = C I and q ~ 2 then C2 + (b l + b2) = c i + b2, which 
contradicts that bl + b2 is the label of an isolated vertex of G. If q = 1 then p ~ 3, 
(cp + C2) + bl = cp + c), which contradicts that cp + C2 is the label of an isolated vertex 
ofG. 
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Theorm 2. The integral sum number of complete graphs is given by 

owhen 1 ::; n ::; 3, 


0' (Kn) = 2n - 3 when n 2: 4. 


Proof It is clear that KI == G+ { I }, K2 == G+ (0, I ), and K3 == G+ {-I ,0, I }. Thus 1;, 
(Kn) =0 for I ::; n ::; 3. Now, we use the notation of Lemma 3. If q =0 then, by 
Theorem I, the number of isolated vertices of G is greater than or equal to 2n - 3. 

Let S be the set of labels of the vertices of G. If P =0 then, by Lemma 2, G+ (-I S) == 
G+ (S). Hence, by Theorem I, the number of isolated vertices of G is greater than or 

equal to 2n - 3. Now, suppose that p 2: I and q 2: I. Let C = (CI + C2> ... , CI + cp, C2 + 
cp, ... , c 1 + c ) and B = (b l + b2, ... , b l + bq, b2 + bq, 00 ' , bq_1 + bq ) . Ifp =I then q 2:p_ p 

3, by Lemma 3, the set B u (CI + bl> CI + b2) implies that the number of isolated 

vertices of G is greater than or equal to 2n - 3. If q = I then, by Lemma 3, the set C 

U {CI + b l , C2 + b l } implies that the number of isolated vertices of G is greater than 
or equal to 2n - 3. If P 2: 2 and q 2: 2 then, by Lemma 3, the set CuB u (C2 + bl> CI 
+ b l , CI + b2) implies that the number of isolated vertices of G is greater than or 
equal to 2n - 3. Hence, 1;, (Kn) 2: 2n - 3. By Theorem 1,0' (Kn) =2n - 3. It is obvious 

that 1;, (Kn) ::; 0' (Kn)· Therefore, 1;, (Kn) = 0' (Kn) =2n - 3. 

Cycles and Wheels 

Harary (1994) showed that all paths are integral sum graphs. (0) realizes 1;, (PI) 

=0, (O, 1) realizes 1;, (P2) =0, and (O, 1,2) realizes 1;, (P3) =O. To realize 1;, (Pn) =0 for 
n 2: 4, take the initial subsequence of order n of the sequence 

(bl> b2> 00') = (1,2, -1,3, -4,7,00 ') 

satisfying bn =bn-2 - bn_1 for n 2: 3, b l =1 and b2 =2. Sequences which satisfy this 
recurrence relation and which are useful for realizing 1;, (Pn) =0, may be obtained by 
requiring b l + b2 to be a certain suitable term of the sequence. Besides (1,2, - 1, 3, 

.. . ), here are two examples: (4,1,3, - 2,5, -7,00') may be used to label Pn for n 2: 5, 
and (9,4,5, - \,6, - 7, \3, - 20, ... ) may be used to label Pn for n ~ 7. In what 

follows we will use (4, 1,3, - 2,5,-7, 00')' Rather than using the recurrence relation, 
we will view this sequence as derived from the Fibonacci sequence 

satisfying an = 30-2 + an_I for n ~ 6, a4 = 2 and a5 = 5, by setting b l = 4, b2 = I, b3 = 3, 
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and bn =(- I )n+' an for n ~ 4. This view will be useful because certain properties of 

(b" b2, ... ) =(4, 1, 3, - 2, 5, ...) follow from the properties of Fibonacci sequences. 

The following result will be used in the proof of the theorem about cycles . 

Lemma 4. Let Pn = V'V2 ... Vn be a path with n vertices Vio V2, ... , Vn. Define a 
labelling S of the vertices of Pn as follows: 

I) Choose two integers S(vI) and S(v2) such that S(v,) S(V2) < 0 and IS(vI)I< 

IS(V2)1, 

If S(u) + S(v) = Sew) then uv is an edge of p.. 

Proof Notice that S(vI), S(V2), ... S(vn) is an alternating sequence, and IS(v,) 1< 

IS(V2)1 < ... < IS(vn)l. Thus, for 2 ~ i ~ n, S(Vj_,) S(vJ < 0 and consequently IS(vi-!) 

- S(vj)1 = IS(vj_,)1 + IS(vj)l . Without loss of generality, we may assume that Is 

(u ) I < I 8( v ) I . 

First, we suppose that w =vi for some 3 ~ j ~ n. We claim that 8(u)S(v) < O. To 

prove this claim, we suppose that 8(u)8(v) > 0 and derive a contradiction . Since 8(u) 
+ S(v) = Sew) and S(u)S(v) > 0, then IS(u) 1+ IS(v) I = I 8(w) I. But IS(u) I < IS(v) I, 

18(w)1 
so I 8(v) I > --2-' We have Sew) = S (Vj) = S(Vj_2) - S(Vj_'), and this gives IS(w) I 

= I 8(vi_2) I + IS(vi_J) I > 2IS(vj_2) I. Hence, I 8(Vj_2) I < IS(v) I < I 8(vj) I . Therefore v 
= vi-I, and S(v)8(w) = 8(vj_,)8(vj) < 0 which is a contradiction. 

Since 8(u) + S(v) =Sew) , S(u)S(v) < 0, and IS(u)1 < 18(v)l, then IS(v)1 = 18 
(w) - S(u)1 = IS(w)1 + IS(u)l. Clearly v -::f- VI and v -::f- V2, so V = Vj for some 3 ~j ~ 
n. Thus S(v) = S(Vj) = S(Vj_2) - S(Vj_I), and this gives IS(v)1 = I S(Vj_2) I + IS(vj_I)\ > 
2IS(vi_2)1 . If IS(u)\ < \S(w)1 then IS(v)l< 2\S(w)l. Hence, IS(Vj_2) I < \S(w)1 < 
IS(v) I , and consequently w = Vj_1 which contradicts the alternating nature of S( v I)' 
S(v2), ... , S(vn)' Therefore IS(w)1 < IS(u)l. Repeating the previous argument we 
obtain u = Vj_1o and consequently uv is an edge of Pn
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Second, we suppose that w = v,. Since 18(v,)1 < 18(v2)1 < ... then 8(u)8(v) < 0; 

hence 18(v)1 = 18(v,)-8(u)l= 18(v,)1 + 18(u)l. Obviously 18(v,)1 < 18(u)1 < 18 
(v)l, so v = vi for some 3 S; j S; n. Repeating the previous argument we obtain u = 
Vj-' . Thus 8(vj_') + 8(vj) = 8(v,), so j = 3. Therefore uv = Vj_' Vj is an edge of Po. 

Third, we suppose that w = V2 . Then 8(u) + 8(v) = 8(v2) . If u = v" then 8(v) = 
8(V2) - 8( v,) = -8(v3)' which contradicts that I8(vl) I < I8(v2) I < .... Thus u = Vb V = 
Vi for some 3:S k <j S; n.1f 8(u)8(v) > 0 then 18(u)1 + 18(v)1 = 18(v2)1, which 

contradicts that 18(v,)1 < I8(v2) I < .... Thus 8(u)8(v) < 0, and consequently we 
obtain 18(vj)1 = 18(v2) - 8(u)1 = 18(v2)1 + 18(u)l. Then, by applying the previous 

argument, we have u = Vj-I . Thus 8( Vj) =8(v2) - 8( Vj_'); since I8( v I) I < I8(v2) I < ... , 
then j = 4 and consequently uv =v3v4 is an edge of Poo 

Theorem 3. The integral sum number of cycles is given by 

when n =4I 3 
o when n:f. 4. 

Proof Harary (1994) remarked that ~(C4) = cr(C4) =3 and noted that {I, 5, 9, 13, 

6, 14, 22) realizes ~(C4) =3. For completeness, we give a proof of this fact. Let G = 
C4 U ~(C4) KI == G+ (S). It is clear that 0 (2' S, and consequently the sum of any edge 
of C4 is different from zero (the sum of an edge uv is 8(u) + 8(v) where 8(u) and 8 
(v) are the labels of u and v respectively). Assume that the vertices of C4 are labelled 
as in Figure I ( i). If a + b =d + c and a + d =b + c, then a = c gives a contradiction. 

a b a b a b a 2a

DO D o 

d c a+b c a-b 3a -a 

(i) (ii) (iii) (iv) 

Figure 1 
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Thus, either a + b -:;:. d + c or a + d -:;:. b + c. We claim that the sum of every edge of C4 

does not belong to {a, b, c, d}. For the sake of a contradiction, we may assume 
without loss of generality that the vertices of C4 are labelled as in Figure 1 (ii). 
Clearly, a +b+CE Sandb+c~ (b , c,a+b}.Ifb+c-:;:'athena+(b+c)= a+b 
+ c, which contradicts that b + c is the label of an isolated vertex of G. If b + c = a 
then c = a - b, and we obtain Figure 1 (iii). Obviously 2a ~ {a, a + b, a - b}. If 2a -:;:. 
b then b + (2a) = 2a + b, which contradicts that 2a is the label of an isolated vertex of 
G. If 2a = b then we obtain Figure 1 (iv), and -a + (4a) = 3a, which contradicts that 
4a is the label of an isolated vertex of G. This completes the proof of the claim. 
Hence, S(C4 ) ~ 3. It is obvious that S(C4 ) :::; cr(C4) and C4 u 3 K J == G+ { I, 5, 9, 13, 
6, 14,22}. Therefore S(C4 ) = cr(C4 ) = 3. 

Now, we consider some special cases. We have 

G+ {-I, 0, 1},C3 == 


G+ {I, 2, -1 , 3, -2},
Cs 

G+ {-6, 5,-4,-1,-5, I},C6 

G+ {4, 3, 1,2, -5, 7, -3},C7 	 

_ G+{-I,-3,-4,1,-15 , 8,-7,15,-14},C9 

_ G+{-1,4,3, 1,-23,15,-8,7,-6,2I,-22} .C JJ 

In what follows we assume that n is a positive integer such that n ~ {3, 4, 5, 6, 
7,9, II }. To realize S(Cn) = 0 we use the sequence 

(b J , b2, ... ) = (4, 1,3, - 2,5 , -7, .. . ) 

satisfying bn = bn-2 - bn- J with bJ = 4 and b2 = 1. We put dn_J = bJ + b2 - bn- 2 = 5 
bn_2 and dn = b - bJ = bn 2 -4. We claim that n- 2 _
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The labelling is illustrated below (see Fig. 2). 

• • • 0---------0------0 

Figure 2 

The proof of this claim is easy but cumbersome. Before giving it, we demonstrate 
the algorithm on the following two examples (see Fig. 3). 

-23 24 

1 0 0 0 0 I
4 3 -2 5 -7 12 -19 

77 

C==-----.o----o.-] 
-76 

0 0 
4 1 3 -2 5 -7 12 -19 31 -50 81 

Figure 3 
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It is easy to verify the claim for n E {8, IO} . So we assume that n ~ 12. If n is 

even then bn-2 < O. Thus I dn-II = 15 - bn-2 1 = 5 + I bn-2 1and I dnI = I bn-2 - 4 
I = I bn- 2 1 + 4. Hence, for n even, we have 

If n is odd then bn-2 > O. Thus I dn_11 = I bn-2 1 -5 and I dn1 = 1bn_2 1 - 4. Obviously 
I bn-2 1- I bn-3 1 > 5; so , for n odd, we have 

Let x + y = z where x, y, Z E S = {bl' b2, .•• , bn-2, dn-I, dn}, and without loss of 
generality assume that I x I < I y I. 

If z = I then x + y = I, which implies that x < 0 and y > O. Hence y = 1y 1 = 1xl 
+ I . Thus, by (1) and (2), either x = -2, y = 3 or x = dn-I, Y = dn for n even and x = 

dn, Y = dn- I for n odd. 

If z = -2 then x + y = -2, which implies that x > 0 and y < O. Thus I y I = I x I + 

2. Hence, by (1) and (2), x = 5, y = -7. 

Similarly, we use (1) and (2) implicitly in the discussion of the following cases. 

If z = 3 then x + y = 3. If xy > 0 then x = 1,y = 2 ~ S. If xy < 0 then x < 0 and y 
= I y 1 = 1 xl + 3. Thus x = -2, y = 5. 

If z = 4 then x + y = 4. If xy > 0 then x = 1, Y = 3. If xy < 0 then y = I y I = 1 xl + 
4 which has no solution in S = {bl' b2, ... , bn-2, dn_l, dn} · 

If z = 5 then x + y = 5. If xy > 0 then x = I , Y = 4 or x = 2 ~ S, Y = 3. If xy < 0 
theny= Iyl = Ixl +5. Henceeitherx=-7,y= 120rx=bn_2, y=dn_I forneven 

and x = dn_l, Y = bn-2 for n odd. 

If z = -7 then x + y = -7 which has no solution in S when x < 0 and y < O. If xy 
<Othenx>O, y<Oand Iyl = Ixl +7.Thus,x=12,y =-19. 

Now,JetzE {b7,bg, ... ,bn_2 }.Clearly, 12::::; I z l::::; !bn_2 !. Thusx+y=zhasno 
solution in {bl' b2, ... , b6 } . Also dn_1 + dn = 1 :;t z, and if x,y E {b7, bg, ..• , bn-2 } then it 
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follows from Lemma 4 that xy is an edge of G+ {b7, bs, ... , bn- 2}. By definition, bl + 
d" =bn- 2, bn- 2 + dn_ 1=bs, and dn_1+ dn =b2. Let x =bj , y =bj, z =bkfor some I ~ i ~ 
6, 7 ~ j, k ~ n - 2. Thus bj + bj =bk, which implies that bj + (-ly+1 aj =(_I)k+1 ak' We 
observe that 1 bj 1 ~ 7, aj ~ 12, ak ~ 12, 1 ak - ~ 1 ~ 7, and consider four cases 
according to parity. If both j and k are odd then bj = ak - aj which occurs only when 
ak =b7, aj =-bs, bj =b6, and this solution is rejected because aj =-bs implies that j = 
8 which is even. If both j and k are even then bj = aj - ak which occurs only when aj = 
b7, ak = -bs, bj = b6, and this solution is rejected because ~ = b7 implies that j = 7 
which is odd. If j is odd and k is even then bj = -(~ + ak) which cannot occur because 
aj + ak > 1bj I . If j is even and k is odd then bj =aj + ak which cannot occur. Clearly 
bn- 2 + d; :t:. bj for all 7 ~ j ~ n - 2, n - I ~ i ~ n. Let y =dj , x =bj, z =bk for some n 
1 ~ i ~ n, 7 ~ j ~ n - 3, 7 ~ k ~ n - 2. Thus bj + dj = bk> which implies that dj = 
(-l)k+l ak - (-IY+l aj . Thus 

I
an-2 + 5 when i = n -I and n is even, 


k+1 '+ 1 I an-2 - 5 when i =n - I and n is odd,
I(- 1 ) ak - (- J\I a 
f J - a0-2 + 4 when i =nand n is even , 

an-2 - 4 when i =nand n is odd, 

which is impossible. 

It remains to consider x + y = d j , n - I ~ i ~ n. Let x = bj, y = bk> I ~ j < k ~ n 
2. Then, for 4 ~ j < k ~ n - 2, we have 

an_2 + 5 when i =n -I and n is even, 
an-2 - 5 when i = n -1 and n is odd, 
an-2 + 4 when i =nand n is even , 
an-2 - 4 when i =nand n is odd,I 

which is impossible. For I ~ j ~ 4 and 1 ~ j < k ~ n - 2, bj + bk =d j is impossible. 
Finally, x + dj = d j is impossible. This completes the proof. 

Recall that the wheel Wn is defined by W" = KI + Cn_1for n ~ 4. 

Theorem 4. The integral sum number of wheels is given by 


I 5 when n = 4, 

\ 0 when n:t:. 4. 
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Proof First, we consider some special cases. By Theorem 2, since W4 =: K4 , 

then S(W4) =S(K4) =5 and W4 u SKI =: G+ I I, 5,13,9,6,10,14,18, 22} . 1t is easy 
to verify that 

Ws =: G+ 10, -I, I, -2, 2}, 
W6 =: G+IO,-I, 1,3 , -3,4}, 
W7 =: G+ 10, 1, 3,-2, 5,-4, 4}, 
Wg =: G+IO, 1, 6, -5,4, -3,7,-1}, 

WIO =: G+ 10, 1,6,-5,4, -9, 16, -16 , 7,-1}, 
W I2 =: G+ 10, 1,6, -5 , 4, -9, IS, -27,27, -12, 7 , -I} . 

Second, for n + I ~ 14, 5, 6, 7, 8, 10, 12}, we consider the set S = Ib" b2, .. . , bn- 2, 

dn_ l , dn } which was defined in the proof of Theorem 3. We claim that if x and y 
belong to S, then x + y 1= 0. Indeed, as in the proof of Theorem 3, we have 

whenever n is even, and 

whenever n is odd. Thus, if x, YES and x 1= y, then Ix I 1= Iy I and consequently x + 
y 1= 0. Hence, 
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