Integral Sum Graphs from Complete Graphs, Cycles and Wheels

Ahmad Sharary

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

ABSTRACT. A graph G is an integral sum graph if there is a labelling θ of its vertices with distinct integers, so that for any two distinct vertices u and v, uv is an edge of G if and only if $\theta(u) + \theta(v) = \theta(w)$ for some vertex w. G is a sum graph if the labels are positive integers. For each graph G there is a minimum number $\sigma(G)$ such that $G \cup \sigma$ (G)K₁ is a sum graph, and there is a minimum number $\zeta(G)$ such that $G \cup \zeta(G)K_1$ is an integral sum graph. In this paper, we prove a conjecture of Harary that $\zeta(K_n) = \sigma(K_n)$ for all K_n with $n \ge 4$. Also, we show that cycles C_n and wheels W_n are integral sum graphs for all $n \ne 4$.

All graphs in this paper are finite and have no loops or multiple edges. We follow in general the graph-theoretic notation and terminology of (Harary 1969, 1994).

A graph G is an integral sum graph if there is a labelling θ of its vertices with distinct integers, so that for any two distinct vertices u and v, uv is an edge of G if and only if $\theta(u) + \theta(v) = \theta(w)$ for some vertex w. The integral sum graph $G^+(S)$ of a finite subset $S \subset Z = \{..., -2, -1, 0, 1, 2, ...\}$ is the graph G(V,E) where V = S and $uv \in E$ if and only if $u + v \in S$. Thus, an integral sum graph is isomorphic to the integral sum graph of some $S \subset Z$. If Z is replaced by $N = \{1,2,3,...\}$, then we obtain sum graphs.

Mathematics subject Classification (1991): 05C78.

Key words: Integral sum graph, complete graph, cycle, wheel.

Harary (1990, 1994) introduced these classes of graphs and noted that for each graph G there is a minimum number $\sigma(G)$ such that $G \cup \sigma(G)K_1$ is a sum graph, and there is a minimum number $\zeta(G)$ such that $G \cup \zeta(G)K_1$ is an integral sum graph. $\sigma(G)$ is the sum number of G, and $\zeta(G)$ is the integral sum number of G. Obviously $\zeta(G) \leq \sigma(G)$ for all graphs G. The sum numbers of complete graphs were derived by Bergstrand *et al.* (1989). The sum numbers of complete bipartite graphs were obtained by Hartsfield and Smyth (1992). Ellingham (1993) proved that $\sigma(T) = 1$ for all nontrivial trees. Harary (1994) noted that paths P_n and matchings mK_2 are integral sum graphs, and offered some problems. The purpose of this paper is to prove a conjecture of Harary (1994) that $\zeta(K_n) = \sigma(K_n)$ for all $n \ge 4$, and to show that cycles C_n and wheels W_n are integral sum graphs for all $n \ne 4$.

Complete graphs

Bergstrand *et al.* (1989) verified that $\sigma(K_3) = 2$, $K_3 \cup 2K_1 \cong G^+ \{1,3,4,5,7\}$, and derived the following formula for $\sigma(K_n)$.

Theorem 1. (Bergstrand et al. 1989) For all positive integers $n \ge 4$, $\sigma(K_n) = 2n - 3$.

To realize $\sigma(K_n) = 2n - 3$, Bergstrand *et al.* (1989) labelled the vertices of K_n with 1 + 4(i - 1), $1 \le i \le n$, and labelled the isolated vertices with 2 + 4j, $1 \le j \le 2n - 3$.

Subsequently, Harary (1994) conjectured that $\zeta(K_n) = \sigma(K_n)$ for all K_n with $n \ge 4$. The purpose of this section is to prove this conjecture.

Let $G = K_n \cup \zeta(K_n)K_1$, $n \ge 4$, and consider a labelling θ of the vertices of G which realizes G as an integral sum graph. Without loss of generality, we may assume that the vertices of K_n are labelled with the distinct integers $a_1, a_2, ..., a_n$

which satisfy $a_1 < a_2 < ... < a_n$. Then all the $\frac{n(n-1)}{2}$ sums $a_i + a_j$ for $i \neq j, 1 \le i, j \le n$ occur as labels of the vertices of G.

Lemma 1. If the vertices of G are labelled as above, then (i) the label of every vertex of G is distinct from zero,

(ii) $a_i \neq -a_j$ for all $1 \le i, j \le n$.

Proof.

(i) Since $a_1 < a_2 < ... < a_n$, then

 $a_1 + a_2 < a_1 + a_3 < \dots < a_1 + a_n < a_2 + a_n < a_3 + a_n < \dots < a_{n-1} + a_n$

Let A = { $a_1 + a_2, a_1 + a_3, ..., a_1 + a_n, a_2 + a_n, a_3 + a_n, ..., a_{n-1} + a_n$ }. Then |A| = 2n - 3. Since n ≥ 4, then 2n - 3 > n and consequently $\zeta(K_n) \ge 1$. Therefore, the label of every vertex of G is different from zero.

(ii) This follows directly from (i).

Let $S = \{s_1, s_2, ..., s_m\} \subset Z$. For $r \in Z$, $r \neq 0$, we put $rS = \{rs_1, rs_2, ..., rs_m\}$. It is easy to verify the following result.

Lemma 2. If $r \in Z$, $r \neq 0$, $S \subset Z$, then $G^+(rS) \cong G^+(S)$.

Now we assume that the labelling θ has the property that the vertices of K_n are labelled with the integers $c_1, c_2, ..., c_p, b_1, b_2, ..., b_q$ which satisfy $c_p < ... < c_2 < c_1 < 0 < b_1 < b_2 < ... < b_q, p \ge 1, q \ge 1, p + q = n$.

Lemma 3. If the vertices of G are labelled as above, then

(i) for $q \ge 2$, $c_1 + b_1$ and $c_1 + b_2$ are the labels of isolated vertices of G,

(ii) there exist no i < j < k with $b_i + b_i = b_k$,

(iii) there exist no i < j < k with $c_i + c_j = c_k$,

(iv) for $p \ge 2$, $c_1 + b_1$ and $c_2 + b_1$ are the labels of isolated vertices of G.

Proof.

(i) Since $c_1 < 0 < b_1$ then $c_1 < c_1 + b_1 < b_1$. Hence, $c_1 + b_1$ is the label of an isolated vertex of G. Now suppose that $c_1 + b_2 = b_1$. If q = 2 then $p \ge 2$, $(c_p + c_1) + b_2 = c_p + b_1$, which contradicts that $(c_p + c_1)$ is the label of an isolated vertex of G. If q > 2 then $c_1 + (b_2 + b_q) = b_1 + b_q$, which contradicts that $b_2 + b_q$ is the label of an isolated vertex of G.

(ii) It is clear that (ii) holds for $1 \le q \le 2$. For q = 3, if $b_1 + b_2 = b_3$ then $(c_1 + b_1) + b_2 = c_1 + b_3$, which contradicts that $c_1 + b_1$ is the label of an isolated vertex of G. For $q \ge 4$, the argument given below is similar to the proof of Lemma 1 in (Bergstrand *et al.* 1989) and fills a gap in the proof of Case 3 of that proof. We consider four cases.

Case 1. For k < q, if $b_i + b_j = b_k$ then $b_i + (b_j + b_q) = b_k + b_q$, which contradicts that $b_i + b_q$ is the label of an isolated vertex of G.

Case 2. k = q, i > 1 and there exists m < i such that $b_m + b_i > b_q$.

If $b_i + b_j = b_q$ then $(b_m + b_i) + b_j = b_m + b_q$, which contradicts that $b_m + b_i$ is the label of an isolated vertex of G.

Case 3.
$$k = q$$
, $i > 1$ and for all $m < i$, $b_m + b_i \le b_q$.

Let $b_i + b_j = b_q$. If $b_m + b_i$ is the label of some isolated vertex of G for some m < i then, as in Case 2, we obtain a contradiction. Hence, for all m < i, $b_m + b_i$ is not the label of an isolated vertex of G. Let s < i. Then $b_s + b_i = b_r$ for some $r \le q$. If r = q then $b_s + b_i = b_q = b_i + b_j$. It implies that s = j > i which is a contradiction. If r < q then $b_s + (b_i + b_q) = b_r + b_q$, which contradicts that $b_i + b_q$ is the label of an isolated vertex of G.

Case 4. k = q, i = 1.

Since $q \ge 4$, then there is an index $t \notin \{1,j,q\}$ such that 1 < t < q. If $b_1 + b_j = b_q$ then $b_t + b_j > b_1 + b_j = b_q$, and consequently $b_1 + (b_t + b_j) = b_t + b_q$, which contradicts that $b_t + b_j$ is the label of an isolated vertex of G.

(iii) Let S be the set of labels of the vertices of G. By Lemma 2, $G^+(-1S) \cong G^+$ (S). Moreover,

$$-b_{q} < ... < -b_{2} < -b_{1} < 0 < -c_{1} < -c_{2} < ... < -c_{p}$$

Hence, by (ii), there exist no $i < j < k \le p$ with $(-c_i) + (-c_j) = -c_k$. Therefore, there exist no $i < j < k \le p$ with $c_i + c_j = c_k$.

(iv) Since $c_1 < 0 < b_1$ then $c_1 < c_1 + b_1 < b_1$. Hence, $c_1 + b_1$ is the label of an isolated vertex of G. If $c_2 + b_1 = c_1$ and $q \ge 2$ then $c_2 + (b_1 + b_2) = c_1 + b_2$, which contradicts that $b_1 + b_2$ is the label of an isolated vertex of G. If q = 1 then $p \ge 3$, $(c_p + c_2) + b_1 = c_p + c_1$, which contradicts that $c_p + c_2$ is the label of an isolated vertex of G.

Theorm 2. The integral sum number of complete graphs is given by

$$\zeta (K_n) = \begin{cases} 0 \text{ when } 1 \le n \le 3, \\ \sigma (K_n) = 2n - 3 \text{ when } n \ge 4. \end{cases}$$

Proof. It is clear that $K_1 \equiv G^+ \{1\}$, $K_2 \equiv G^+ \{0,1\}$, and $K_3 \equiv G^+ \{-1,0,1\}$. Thus ζ (K_n) = 0 for $1 \le n \le 3$. Now, we use the notation of Lemma 3. If q = 0 then, by Theorem 1, the number of isolated vertices of G is greater than or equal to 2n - 3. Let S be the set of labels of the vertices of G. If p = 0 then, by Lemma 2, $G^+ (-1S) \equiv G^+ (S)$. Hence, by Theorem 1, the number of isolated vertices of G is greater than or equal to 2n - 3. Let $O = \{c_1 + c_2, ..., c_1 + c_p, c_2 + c_p, ..., c_{p-1} + c_p\}$ and $B = \{b_1 + b_2, ..., b_1 + b_q, b_2 + b_q, ..., b_{q-1} + b_q\}$. If p = 1 then $q \ge 3$, by Lemma 3, the set $B \cup \{c_1 + b_1, c_1 + b_2\}$ implies that the number of isolated vertices of G is greater than or equal to 2n - 3. If $p \ge 2$ and $q \ge 2$ then, by Lemma 3, the set $C \cup B \cup \{c_2 + b_1, c_1 + b_1, c_1 + b_2\}$ implies that the number of isolated vertices of G is greater than or equal to 2n - 3. If $p \ge 2$ and $q \ge 2$ then, by Lemma 3, the set $C \cup B \cup \{c_2 + b_1, c_1 + b_1, c_1 + b_2\}$ implies that the number of isolated vertices of G is greater than or equal to 2n - 3. If $p \ge 2$ and $q \ge 2$ then, by Lemma 3, the set $C \cup B \cup \{c_2 + b_1, c_1 + b_1, c_1 + b_2\}$ implies that the number of isolated vertices of G is greater than or equal to 2n - 3. If $p \ge 2$ and $q \ge 2$ then, by Lemma 3, the set $C \cup B \cup \{c_2 + b_1, c_1 + b_1, c_1 + b_2\}$ implies that the number of isolated vertices of G is greater than or equal to 2n - 3. Hence, $\zeta (K_n) \ge 2n - 3$. By Theorem 1, $\sigma (K_n) = 2n - 3$. It is obvious that $\zeta (K_n) \le \sigma (K_n)$. Therefore, $\zeta (K_n) = \sigma (K_n) = 2n - 3$.

Cycles and Wheels

Harary (1994) showed that all paths are integral sum graphs. {0} realizes ζ (P₁) = 0, {0,1} realizes ζ (P₂) = 0, and {0,1,2} realizes ζ (P₃) = 0. To realize ζ (P_n) = 0 for $n \ge 4$, take the initial subsequence of order n of the sequence

$$(b_1, b_2, ...) = (1, 2, -1, 3, -4, 7, ...)$$

satisfying $b_n = b_{n-2} - b_{n-1}$ for $n \ge 3$, $b_1 = 1$ and $b_2 = 2$. Sequences which satisfy this recurrence relation and which are useful for realizing ζ (P_n) = 0, may be obtained by requiring $b_1 + b_2$ to be a certain suitable term of the sequence. Besides (1, 2, -1, 3, ...), here are two examples: (4, 1, 3, -2, 5, -7, ...) may be used to label P_n for $n \ge 5$, and (9, 4, 5, -1, 6, -7, 13, -20, ...) may be used to label P_n for $n \ge 7$. In what follows we will use (4, 1, 3, -2, 5, -7, ...). Rather than using the recurrence relation, we will view this sequence as derived from the Fibonacci sequence

$$(a_4, a_5, a_6, \ldots) = (2, 5, 7, \ldots)$$

satisfying $a_n = a_{n-2} + a_{n-1}$ for $n \ge 6$, $a_4 = 2$ and $a_5 = 5$, by setting $b_1 = 4$, $b_2 = 1$, $b_3 = 3$,

and $b_n = (-1)^{n+1} a_n$ for $n \ge 4$. This view will be useful because certain properties of $(b_1, b_2, ...) = (4, 1, 3, -2, 5, ...)$ follow from the properties of Fibonacci sequences.

The following result will be used in the proof of the theorem about cycles.

Lemma 4. Let $P_n = v_1 v_2 \dots v_n$ be a path with n vertices v_1, v_2, \dots, v_n . Define a labelling θ of the vertices of P_n as follows:

1) Choose two integers $\theta(v_1)$ and $\theta(v_2)$ such that $\theta(v_1) \theta(v_2) < 0$ and $|\theta(v_1)| < |\theta(v_2)|$,

2) For $3 \le j \le n$, define $\theta(v_j)$ by $\theta(v_j) = \theta(v_{j-2}) - \theta(v_{j-1})$.

If $\theta(u) + \theta(v) = \theta(w)$ then uv is an edge of P_n .

Proof. Notice that $\theta(v_1)$, $\theta(v_2)$, ... $\theta(v_n)$ is an alternating sequence, and $|\theta(v_1)| < |\theta(v_2)| < ... < |\theta(v_n)|$. Thus, for $2 \le i \le n$, $\theta(v_{i-1}) \theta(v_i) < 0$ and consequently $|\theta(v_{i-1}) - \theta(v_i)| = |\theta(v_{i-1})| + |\theta(v_i)|$. Without loss of generality, we may assume that $|\theta(u_i)| < |\theta(v_i)|$.

First, we suppose that $w = v_j$ for some $3 \le j \le n$. We claim that $\theta(u)\theta(v) < 0$. To prove this claim, we suppose that $\theta(u)\theta(v) > 0$ and derive a contradiction. Since $\theta(u) + \theta(v) = \theta(w)$ and $\theta(u)\theta(v) > 0$, then $|\theta(u)| + |\theta(v)| = |\theta(w)|$. But $|\theta(u)| < |\theta(v)|$,

so $|\theta(v)| > \frac{|\theta(w)|}{2}$. We have $\theta(w) = \theta(v_j) = \theta(v_{j-2}) - \theta(v_{j-1})$, and this gives $|\theta(w)|$

 $= |\theta(v_{j-2})| + |\theta(v_{j-1})| > 2 |\theta(v_{j-2})|. \text{ Hence, } |\theta(v_{j-2})| < |\theta(v)| < |\theta(v_j)|. \text{ Therefore } v = v_{j-1}, \text{ and } \theta(v)\theta(w) = \theta(v_{j-1})\theta(v_j) < 0 \text{ which is a contradiction.}$

Since $\theta(u) + \theta(v) = \theta(w)$, $\theta(u)\theta(v) < 0$, and $|\theta(u)| < |\theta(v)|$, then $|\theta(v)| = |\theta(w)| - \theta(u)| = |\theta(w)| + |\theta(u)|$. Clearly $v \neq v_1$ and $v \neq v_2$, so $v = v_j$ for some $3 \le j \le n$. Thus $\theta(v) = \theta(v_j) = \theta(v_{j-2}) - \theta(v_{j-1})$, and this gives $|\theta(v)| = |\theta(v_{j-2})| + |\theta(v_{j-1})| > 2|\theta(v_{j-2})|$. If $|\theta(u)| < |\theta(w)|$ then $|\theta(v)| < 2|\theta(w)|$. Hence, $|\theta(v_{j-2})| < |\theta(w)| < |\theta(w)| < |\theta(v_j)|$, and consequently $w = v_{j-1}$ which contradicts the alternating nature of $\theta(v_1)$, $\theta(v_2)$, ..., $\theta(v_n)$. Therefore $|\theta(w)| < |\theta(u)|$. Repeating the previous argument we obtain $u = v_{j-1}$, and consequently uv is an edge of P_n .

Second, we suppose that $w = v_1$. Since $|\theta(v_1)| < |\theta(v_2)| < ...$ then $\theta(u)\theta(v) < 0$; hence $|\theta(v)| = |\theta(v_1) - \theta(u)| = |\theta(v_1)| + |\theta(u)|$. Obviously $|\theta(v_1)| < |\theta(u)| < |\theta(v_1)| < |\theta(u)| < |\theta(v_1)|$, so $v = v_j$ for some $3 \le j \le n$. Repeating the previous argument we obtain $u = v_{j-1}$. Thus $\theta(v_{j-1}) + \theta(v_j) = \theta(v_1)$, so j = 3. Therefore $uv = v_{j-1} v_j$ is an edge of P_n .

Third, we suppose that $w = v_2$. Then $\theta(u) + \theta(v) = \theta(v_2)$. If $u = v_1$, then $\theta(v) = \theta(v_2) - \theta(v_1) = -\theta(v_3)$, which contradicts that $|\theta(v_1)| < |\theta(v_2)| < \dots$. Thus $u = v_k$, $v = v_j$ for some $3 \le k < j \le n$. If $\theta(u)\theta(v) > 0$ then $|\theta(u)| + |\theta(v)| = |\theta(v_2)|$, which contradicts that $|\theta(v_1)| < |\theta(v_2)| < \dots$. Thus $\theta(u)\theta(v) < 0$, and consequently we obtain $|\theta(v_j)| = |\theta(v_2) - \theta(u)| = |\theta(v_2)| + |\theta(u)|$. Then, by applying the previous argument, we have $u = v_{j-1}$. Thus $\theta(v_j) = \theta(v_2) - \theta(v_{j-1})$; since $|\theta(v_1)| < |\theta(v_2)| < \dots$, then j = 4 and consequently $uv = v_3v_4$ is an edge of P_n .

Theorem 3. The integral sum number of cycles is given by

$$\zeta(C_n) = \begin{cases} 3 \text{ when } n = 4 \\ 0 \text{ when } n \neq 4. \end{cases}$$

Proof. Harary (1994) remarked that $\zeta(C_4) = \sigma(C_4) = 3$ and noted that $\{1, 5, 9, 13, 6, 14, 22\}$ realizes $\zeta(C_4) = 3$. For completeness, we give a proof of this fact. Let $G = C_4 \cup \zeta(C_4) K_1 \cong G^+(S)$. It is clear that $0 \notin S$, and consequently the sum of any edge of C_4 is different from zero (the sum of an edge uv is $\theta(u) + \theta(v)$ where $\theta(u)$ and $\theta(v)$ are the labels of u and v respectively). Assume that the vertices of C_4 are labelled as in Figure 1 (i). If a + b = d + c and a + d = b + c, then a = c gives a contradiction.

Figure 1

Thus, either $a + b \neq d + c$ or $a + d \neq b + c$. We claim that the sum of every edge of C_4 does not belong to $\{a, b, c, d\}$. For the sake of a contradiction, we may assume without loss of generality that the vertices of C_4 are labelled as in Figure 1 (ii). Clearly, $a + b + c \in S$ and $b + c \notin \{b, c, a + b\}$. If $b + c \neq a$ then a + (b + c) = a + b + c, which contradicts that b + c is the label of an isolated vertex of G. If b + c = a then c = a - b, and we obtain Figure 1 (iii). Obviously $2a \notin \{a, a + b, a - b\}$. If $2a \neq b$ then b + (2a) = 2a + b, which contradicts that 2a is the label of an isolated vertex of G. If $2a \neq b$ then b + (2a) = 2a + b, which contradicts that 2a is the label of an isolated vertex of G. If 2a = b then we obtain Figure 1 (iv), and -a + (4a) = 3a, which contradicts that 4a is the label of an isolated vertex of G. This completes the proof of the claim. Hence, $\zeta(C_4) \ge 3$. It is obvious that $\zeta(C_4) \le \sigma(C_4)$ and $C_4 \cup 3$ K₁ \cong G⁺ {1, 5, 9, 13, 6, 14, 22}. Therefore $\zeta(C_4) = \sigma(C_4) = 3$.

Now, we consider some special cases. We have

$$C_{3} \cong G^{+} \{-1, 0, 1\},$$

$$C_{5} \cong G^{+} \{1, 2, -1, 3, -2\},$$

$$C_{6} \cong G^{+} \{-6, 5, -4, -1, -5, 1\},$$

$$C_{7} \cong G^{+} \{4, 3, 1, 2, -5, 7, -3\},$$

$$C_{9} \cong G^{+} \{-1, -3, -4, 1, -15, 8, -7, 15, -14\},$$

$$C_{14} \cong G^{+} \{-1, 4, 3, 1, -23, 15, -8, 7, -6, 21, -22\}$$

In what follows we assume that n is a positive integer such that $n \notin \{3, 4, 5, 6, 7, 9, 11\}$. To realize $\zeta(C_n) = 0$ we use the sequence

$$(b_1, b_2, ...) = (4, 1, 3, -2, 5, -7, ...)$$

satisfying $b_n = b_{n-2} - b_{n-1}$ with $b_1 = 4$ and $b_2 = 1$. We put $d_{n-1} = b_1 + b_2 - b_{n-2} = 5 - b_{n-2}$ and $d_n = b_{n-2} - b_1 = b_{n-2} - 4$. We claim that

$$C_n \cong G^+ \{b_1, b_2, ..., b_{n-2}, d_{n-1}, d_n\}.$$

The labelling is illustrated below (see Fig. 2). d_n d_{n-1} d_{n-2} d_{n-2} d_{n-2}

Figure 2

The proof of this claim is easy but cumbersome. Before giving it, we demonstrate the algorithm on the following two examples (see Fig. 3).

Figure 3

9

It is easy to verify the claim for $n \in \{8, 10\}$. So we assume that $n \ge 12$. If n is even then $b_{n-2} < 0$. Thus $|d_{n-1}| = |5 - b_{n-2}| = 5 + |b_{n-2}|$ and $|d_n| = |b_{n-2} - 4| = |b_{n-2}| + 4$. Hence, for n even, we have

$$0 < |b_2| < |b_4| < |b_3| < |b_1| < |b_5| < |b_6| < ... < |b_{n-2}| < |d_n| < |d_{n-1}| < |b_{n-1}| \dots (1)$$

If n is odd then $b_{n-2} > 0$. Thus $|d_{n-1}| = |b_{n-2}| - 5$ and $|d_n| = |b_{n-2}| - 4$. Obviously $|b_{n-2}| - |b_{n-3}| > 5$; so, for n odd, we have

$$0 < |b_2| < |b_4| < |b_3| < |b_1| < |b_5| < |b_6| < \dots < |b_{n-3}| < |d_{n-1}| < |d_n| < |b_{n-2}| \dots$$
(2)

Let x + y = z where x, y, $z \in S = \{b_1, b_2, ..., b_{n-2}, d_{n-1}, d_n\}$, and without loss of generality assume that |x| < |y|.

If z = 1 then x + y = 1, which implies that x < 0 and y > 0. Hence y = |y| = |x| + 1. Thus, by (1) and (2), either x = -2, y = 3 or $x = d_{n-1}$, $y = d_n$ for n even and $x = d_n$, $y = d_{n-1}$ for n odd.

If z = -2 then x + y = -2, which implies that x > 0 and y < 0. Thus |y| = |x| + 2. Hence, by (1) and (2), x = 5, y = -7.

Similarly, we use (1) and (2) implicitly in the discussion of the following cases.

If z = 3 then x + y = 3. If xy > 0 then $x = 1, y = 2 \notin S$. If xy < 0 then x < 0 and y = |y| = |x| + 3. Thus x = -2, y = 5.

If z = 4 then x + y = 4. If xy > 0 then x = 1, y = 3. If xy < 0 then y = |y| = |x| + 4 which has no solution in $S = \{b_1, b_2, ..., b_{n-2}, d_{n-1}, d_n\}$.

If z = 5 then x + y = 5. If xy > 0 then x = 1, y = 4 or $x = 2 \notin S$, y = 3. If xy < 0 then y = |y| = |x| + 5. Hence either x = -7, y = 12 or $x = b_{n-2}$, $y = d_{n-1}$ for n even and $x = d_{n-1}$, $y = b_{n-2}$ for n odd.

If z = -7 then x + y = -7 which has no solution in S when x < 0 and y < 0. If xy < 0 then x > 0, y < 0 and |y| = |x| + 7. Thus, x = 12, y = -19.

Now, let $z \in \{b_7, b_8, ..., b_{n-2}\}$. Clearly, $12 \le |z| \le |b_{n-2}|$. Thus x + y = z has no solution in $\{b_1, b_2, ..., b_6\}$. Also $d_{n-1} + d_n = 1 \ne z$, and if $x, y \in \{b_7, b_8, ..., b_{n-2}\}$ then it

follows from Lemma 4 that xy is an edge of G^+ { b_7 , b_8 , ..., b_{n-2} }. By definition, $b_1 + d_n = b_{n-2}$, $b_{n-2} + d_{n-1} = b_5$, and $d_{n-1} + d_n = b_2$. Let $x = b_i$, $y = b_j$, $z = b_k$ for some $1 \le i \le 6$, $7 \le j$, $k \le n - 2$. Thus $b_i + b_j = b_k$, which implies that $b_i + (-1)^{j+1} a_j = (-1)^{k+1} a_k$. We observe that $|b_i| \le 7$, $a_j \ge 12$, $a_k \ge 12$, $|a_k - a_j| \ge 7$, and consider four cases according to parity. If both j and k are odd then $b_i = a_k - a_j$ which occurs only when $a_k = b_7$, $a_j = -b_8$, $b_i = b_6$, and this solution is rejected because $a_j = -b_8$ implies that j = 8 which is even. If both j and k are even then $b_i = a_j - a_k$ which occurs only when $a_j = b_7$, $a_k = -b_8$, $b_i = b_6$, and this solution is rejected because $a_j = b_7$ implies that j = 7 which is odd. If j is odd and k is even then $b_i = a_j + a_k$ which cannot occur because $a_j + a_k > |b_i|$. If j is even and k is odd then $b_i = a_j + a_k$ which cannot occur. Clearly $b_{n-2} + d_i \ne b_j$ for all $7 \le j \le n - 2$, $n - 1 \le i \le n$. Let $y = d_i$, $x = b_j$, $z = b_k$ for some $n - 1 \le i \le n$, $7 \le j \le n - 3$, $7 \le k \le n - 2$. Thus $b_j + d_i = b_k$, which implies that $d_i = (-1)^{k+1}a_k - (-1)^{j+1}a_j$. Thus

$$\left| (-1)^{k+1} a_{k} - (-1)^{j+1} a_{j} \right| = \begin{cases} a_{n-2} + 5 & \text{when } i = n - 1 \text{ and } n \text{ is even,} \\ a_{n-2} - 5 & \text{when } i = n - 1 \text{ and } n \text{ is odd,} \\ a_{n-2} + 4 & \text{when } i = n \text{ and } n \text{ is even,} \\ a_{n-2} - 4 & \text{when } i = n \text{ and } n \text{ is odd,} \end{cases}$$

which is impossible.

It remains to consider $x + y = d_i$, $n - 1 \le i \le n$. Let $x = b_j$, $y = b_k$, $1 \le j < k \le n - 2$. Then, for $4 \le j < k \le n - 2$, we have

$$|(-1)^{j+1}a_{j} + (-1)^{k+1}a_{k}| = \begin{cases} a_{n-2} + 5 & \text{when } i = n - 1 \text{ and } n \text{ is even,} \\ a_{n-2} - 5 & \text{when } i = n - 1 \text{ and } n \text{ is odd,} \\ a_{n-2} + 4 & \text{when } i = n \text{ and } n \text{ is even,} \\ a_{n-2} - 4 & \text{when } i = n \text{ and } n \text{ is odd,} \end{cases}$$

which is impossible. For $1 \le j \le 4$ and $1 \le j < k \le n - 2$, $b_j + b_k = d_i$ is impossible. Finally, $x + d_i = d_i$ is impossible. This completes the proof.

Recall that the wheel W_n is defined by $W_n = K_1 + C_{n-1}$ for $n \ge 4$. Theorem 4. The integral sum number of wheels is given by

$$\zeta(W_n) = \begin{cases} 5 \text{ when } n = 4, \\ 0 \text{ when } n \neq 4. \end{cases}$$

Proof. First, we consider some special cases. By Theorem 2, since $W_4 \cong K_4$, then $\zeta(W_4) = \zeta(K_4) = 5$ and $W_4 \cup 5K_1 \cong G^+ \{1, 5, 13, 9, 6, 10, 14, 18, 22\}$. It is easy to verify that

$$\begin{split} W_5 &\cong \ G^+ \{0, -1, 1, -2, 2\}, \\ W_6 &\cong \ G^+ \{0, -1, 1, 3, -3, 4\}, \\ W_7 &\cong \ G^+ \{0, 1, 3, -2, 5, -4, 4\}, \\ W_8 &\cong \ G^+ \{0, 1, 6, -5, 4, -3, 7, -1\}, \\ W_{10} &\cong \ G^+ \{0, 1, 6, -5, 4, -9, 16, -16, 7, -1\}, \\ W_{12} &\cong \ G^+ \{0, 1, 6, -5, 4, -9, 15, -27, 27, -12, 7, -1\}. \end{split}$$

Second, for $n + 1 \notin \{4, 5, 6, 7, 8, 10, 12\}$, we consider the set $S = \{b_1, b_2, ..., b_{n-2}, d_{n-1}, d_n\}$ which was defined in the proof of Theorem 3. We claim that if x and y belong to S, then $x + y \neq 0$. Indeed, as in the proof of Theorem 3, we have

$$0 < |b_2| < |b_4| < |b_3| < |b_1| < |b_5| < |b_6| < \dots < |b_{n-2}| < |d_n| < |d_{n-1}| < |b_{n-1}|$$

whenever n is even, and

$$0 < |b_2| < |b_4| < |b_3| < |b_1| < |b_5| < |b_6| < \dots < |b_{n-3}| < |d_{n-1}| < |d_n| < |b_{n-2}|$$

whenever n is odd. Thus, if x, $y \in S$ and $x \neq y$, then $|x| \neq |y|$ and consequently $x + y \neq 0$. Hence,

$$W_{n+1} \cong G^+ \{0, b_1, b_2, ..., b_{n-2}, d_{n-1}, d_n\}.$$

Acknowledgement

The author is grateful to the referees for their suggestions which improved the presentation of this article.

References

Bergstrand, D., Harary, F., Hodges, K., Jenning, G., Kuklinski, L. and Weiner, J. (1989) The sum number of a complete graph, *Bull. Malaysian Math. Soc.* 12: 25-28.

Ellingham, M.N. (1993) Sum graphs from trees, Ars Combin. 35: 335-349.

Harary, F. (1969) Graph Theory, Addison-Wesley, Reading.

Harary, F. (1990) Sum graphs and difference graphs, Congr. Numer. 72: 101-108.

Harary, F. (1994) Sum graphs over all the integers, Discrete Math. 124: 99-105.

Hartsfield N. and Smyth, W.F. (1992) The sum number of complete bipartite graphs, Graphs and Matrices, ed. Rolf Rees, Marcel Dekker: 205-211.

(Received 21/12/1994; in revised form 01/11/1995)

أحمد حميد شراري

قسم الرياضيات - كلية العلوم - جامعة الملك سعود ص .ب (٢٤٥٥) - الرياض ١١٤٥١ - المملكة العربية السعودية

يقال عن رسم G إنه رسم مجموع صحيح اذا كانت توجد عنونة θ لرؤوسه بأعداد صحيحة مختلفة بحيث يتحقق الشرط التالي : لأي رأسين مختلفين v, u فإن uv ضلع في G اذا وفقط اذا كان يوجد رأس w بحيث (w) = $\theta(v) = \theta(u) + \theta(v) = 0$. رسم مجموع اذا كانت العناوين اعدادا صحيحة موجبة . لكل رسم G يوجد عدد أصغر (G) بحيث G(G) لا مجموع صحيح . بحيث G(G) لا رسم مجموع صحيح .

في هذا البحث ، نثبت صواب مخمنة لهراري (Harary 1994) بأن سومات C_n عدا البحث ، نثبت صواب مخمنة لهراري (K_n)=σ(K_n) رسومات رسومات مجموع صحيح لكل n≠4 .