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ABSTRACT. The paper gives a short overview of the area of knc.wledge 
based programming. Research direction toward an intelligent support 
to software development is identified as an important aim. The paper 
concentrates on an original work in the area of knowledge based 
programming. The work reported in the paper relates to a tool to assist 
trainee programmers . A knowledge base on programming was built for 
a special area of programming expertise related to selecting a data type 
in the process of program formation . Properties of the knowledge base 
are discussed and its representation is devised. Description of one 
experiment is given in detail, showing user·system interaction. In the 
experiment, which relates to processing of data under a specific 
strategy, the user describes the relevant properties of the problem 
(such as whether the data elements will be processed more than once, 
whether their number can be determined in advance) and the system 
tries to infer what data type(s) would be appropriate to represent data 
with such properties. This can be regarded as an adviser to the user. 
The results show that the system is able to offer qualified advice. This 
is also an important consideration in the process of learning 
programming. 

Viewing the historical developments in the area of computer programming, we 
identify a constant endeavour to incorporate the computer as a tool in the task of 
programming. The reason is not a desire for recursion, but a necessity to cope 
somehow with the complexity of the task . However. the (meta-) task of making the 
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computer assist humans in the task of writing programs appears to be extremely 
complex and therefore difficult. There have been taken various different approaches 
to it, ranging from automatic program synthesis to computer aided software 
engineering (part 2; for more detailed elaboration, see [Navrat 1993]). Often, 
methods borrowed from the field of artificial intelligence are found useful. One 
approach is to make use of as much available knowledge about both how to program 
and the respective problem domain as possible. The knowledge must be represented 
explicitly, however. There is much research done in the area of knowledge based 
programming. There are several important questions to be investigted here. As far as 
the knowledge itself is concerned, we can roughly distinguish problem dependent 
and problem independent knowledge . The latter includes the knowledge on 
programming. Their respective roles in the process of forming a program should be 
properly identified. Proper forms for their representation should be found. Ways of 
capturing knowledge pieces are to be sought. An architecture of the system to 
support the human programmer should be devised, as well as mode of their 
interaction. But all this would not work without building real knowledge bases that 
would incorporate at least part of the knowledge possessed by the experts of the 
particular domain. 

We were interested in the form and content of the programming knowledge. Our 
goal was to build a base of knowledge related to certain programming procedures 
and to perform experiments on how such knowledge could be useful in the program 
formation . Our concern is also a possible use of such knowledge in learning of 
programming. It should be noted that such a base can be treated as a model of the 
programming process. We report here on an experiment involving the selection of 
proper data type (part 3; for more detailed elaboration of the background, see 
(Rozinajova and Navrat 1993, Navrat and Rozinajova 1993]). 

From Automating Program Formation to Knowledge Based Programming 

Since the very beginnings of the use of computers, which requires accurate and 
logical programming to solve given problems, an endeavour can be traced to 
automate that task. Frequently, attempts have been made to achieve automatic 
program snythesis (Burstall and Darlington 1977, Green and Barstow 1978, Manna 
and Waldinger 1980, Vojtek et at. 1986, Molnar et at. 1987). This is indeed an 
extremely challenging task. Some properties of it were investigated e.g., (Molnar et 
at. 1986). On the other hand, high level language translators, editors and other tools 
have long ago become part of the programmer's everyday's practice, and these tools 
automate part of the program formation process. Another example is the syntax 
directed editor, e.g. (Navrat and Klaudiny 1983). 
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The motivation for automating programmIng or more generally the software 
development process is twofold: to improve quality of software and to improve 
quality of the process of its development. Of course, the notion of quality is 
understood here in quite a general sense, encompassing many dimensions: 
efficiency, correctness, reliability, etc. 

The reason why it has been so often very difficult to achieve an acceptable level 
of quality is the great complexity of the programming task and the insufficiency of 
the human ability to cope with it. The vision of automatic synthesis of programs is 
based on an assumption that we can separate what is the problem from how it can be 
solved. What is to be solved is expressed in a problem specification. How it can be 
solved is a matter of algorithmisation. 

In order to be able to synthesise programs automatically, the problem 
specification must be expressed in a formal way. They have been devised various 
different ways of expressing the problem specification. Problems have been 
specified as pairs of input and conditions, or pairs of input and output examples, or 
as sets of computation traces, e.g. (Biermann and Krishnaswamy 1976, Siklossy and 
Sikes 1975, Molnar and Navrat 1985). Appropriate methods have been proposed to 
synthesise programs from such specifications. The results can be described as 
modest at best, having in mind the high expectations and real needs of the 
programming practice. The reason for this situation can be identified as follows: 

- high expectations imposed on the outcome of the endeavour, 
- low maturity of the field, 
- high complexity of the task of constructing a program, 
- low utilisation of any additional knowledge on programming. 

High expectations were caused may be partly be a too ambitious description of 
it. But soon it was realised that this would be nothing else but a shift from the task of 
program formation to that of specification formation. Many problems remained, 
appearing possible on a different level: instead of verifying the program correctness, 
the specification completeness and consistency has become the property to be 
verified. 

Theory of programming as the scientific basis for any achievements in this field 
is very young, when measuring with standards of more traditional disciplines. It is 
therefore natural that it has not been able to develop until now a sufficient theoretical 
and methodological apparatus. Clearly, this supports our observation on the low 
maturity of the field. 
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On the other hand, the programming task is considered to be very complex. This 
is true for programming in the small, and it holds also for programming in the large 
where complex software, information, control and management systems are 
involved. Once again, we are faced with the recurring reason for most of our 
difficulties. 

It can be argued that we know if fact a lot more than what has actually been 
formalised by the theory so far. For example, there are many programming 
techniques or rules which have proven to be very useful in practice but which have 
the nature of heuristics, not any axiomatic knowledge. 

An interesting parallel was drawn between automatic program synthesis and 
automatic problem solving as studied in artificial intelligence, cf. (Navrat et al. 
1988, 1989). However, it has been more frequent that conversely, results from 
artificial intelligence influenced attempts to automate program formation. In parallel 
with the developments in the area of automatic program synthesis, there has been in 
artificial intelligence a shift from problem solvers of a general nature to very 
specialised tools supporting problem solving in special and very limited domains. 
These so called expert systems are based on a large body of heuristic knowledge 
rather than on axiomatic system expressing the ' first ' principles of the particular 
domain. Of course, this does not mean that any principles known would or should be 
excluded from such a knowledge base. Much more it means that provisions have 
been made to allow much wider scope of knowledge to participate in the problem 
solving process. First of all, languages for expressing domain knowledge were 
developed. These knowledge representation formalisms include not only production 
rules, but also frames, semantic networks, concepts etc. and allow to express 
procedural as well as declarative knowledge. Expert systems, when their knowledge 
base has been filled with knowledge acquired usually from experts from the domain , 
are able to support quite effectively the search for a solution of the given problem . 
Their role is thus to support a human in the problem s.olving process, and not to 
automate the process entirely . It is another shift in the point of view. It is also to be 
noted that while the expert systems are definitely one of the major application results 
of the work in artificial intelligence so far, at the same time they are not considered a 
mature methodology and much more research is needed. 

Similarly to the shift of attention from automating the entire problem solving 
process to providing support to it as we witnessed in artificial intelligence, there has 
also been a shift in the program development process from automating it to 
providing support to the programmer. Of course, this should not be understood to 
imply that there has not been other research directions besides automatic program 
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synthesis before and that recently this research direction has been abandoned 
entirely. In fact, none of .these are true. We are only trying to identify the shift in 
attention. The attention to providing support to the entire software development 
process is quite apparent now. Even the more traditional approaches like computer 
aided software engineering (CASE) seek progress in incorporating techniques of 
artificial intelligence, first of all those incorporating knowledge bases e.g., (Aslett 
1991 ). 

As can be seen from the above, there are several directions of research all within 
the general endeavour to create methods and tools to support the software 
development process in a form of a computer assistance to humans. It is quite clear 
that the area is too broad to be covered in a single line of research . We shall present 
our specific approach devoted to making the programming knowledge and its 
representation explicit. 

The idea of explicit representation of programming knowledge is not new. 
There have been several attempts to identify and formalize programming knowledge 
e.g. (Barstow 1979), (Anderson and Skwarecki 1986), (Soloway and Ehrlich 1984). 
But it is obvious that the knowledge base must be divided into specialized 
subdomains, as the manipulation is then much more flexible and this approach can 
be made more effective. The division of knowledge base is useful from the point of 
view of its creation as well as from the point of view of its using. 

The Goal 

From the different kinds of knowledge involved in knowledge based software 
development, we wi! I concentrate here on knowledge of programming. Our goal is 
to build an experimental knowledge base. Its contents reflect the know-how applied 
by a programmer during program formation. Its form is constrained by our choice to 
investigate the possibility of using a commercially available knowledge 
representation tool, rather than a specially tailored tool e.g., (Navrat et al. 1989 , 
Navrat and Fric 1991, Gasparovic and Navrat 1991). We were interested in finding 
out to what extent we can actually proceed without interferring substantially with 
possible limitations of the chosen tool. 

We were interested in a particular framework for our experiments. Our objective 
is to support a student who is learning programming. This is a particular situation 
where the programming knowledge is of special importance. For professional 
programmers, it is expected that the basic principles of programming have been fully 
understood and therefore it becomes much more important to understand the 
problem domain. It should be noted however, that the task of learning programming 
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has many facets and we are aware that externalisation of the relevant body of 
knowledge is only one of them (Navrat 1987). 

The Approach 

First, there is the question of choosing a suitable way of representing and 
processing knowledge pieces. Often, some form of production rules is chosen and 
indeed, for many kinds of knowledge this way of representing is quite 
straightforward. To some extent, this applies also for programming knowledge. 
However, there are situations which call for other methods of structuring. We find in 
the context of programming especially that the so called stereotypical situations arise 
e.g., 

- programming input of a sequential file 
- take care of its end: 

-EOF 
- specific value (sentinel) 
- explicit number of items 

- programming a loop: 

- find its invariant 

- choose how to devise the halting condition. 


We can make a more general observation that mIxIng both precedural and 
declarative knowledge in a common structure is desirable. The issue has been 
extensively studied by (Molnar 1989) who suggested that relevant knowledge should 
be organised in "program frames". 

We have created an experimental knowledge base coding one relatively well 
known area of programming problems. In fact, we have coded part of the knowledge 
relevant to the problem of the choice of a data type. 

This topic is one of the most important ones in the introductory courses of 
programming, independent on programming language. It is hard to be learned just by 
studying the textbooks, neither by mere explanation. One usually needs quite some 
experience to be able to select right data types. 

We have also conducted several experiments using the knowledge base. The 
aim of the experiments was to establish how useful the approach is in supporting the 
students to acquire programming skills, and how closely we have modelled the 
respective domain. 
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For the former, our basic source of comparison was our own teaching 
experience. We have been giving various Computer Programming courses for 
several years at the Slovak Technical University, and recently at the Kuwait 
University. We are fully aware that more experiments with more extensive 
involvement of students will be necessary to be able to make other than the most 
obvious conclusions in this regard. We believe the latter aspect is more important for 
the time being in the sense that without having the domain knowledge model (i.e. 

source of new skills) it is hard to investigate the process of acquiring skills from that 
domain . 

For the latter aspect, we have devi sed experiments which involve nontrivial 
decis ions. We compare the solutions recommended by our system with those 
expected by the professional programmers. 

Structured data types are often categorized as either static or dynamic: 

Structured data type 

- static 
- array 

- one_dimensional 
- two_dimensional 

- table 
- with_sorted_elements 
- hash 

-dynamic 
- linked_list 
- graph 
-tree 

-queue 

- stack 


Eac h of these types has propelties which suggest certain class of applications. In 
order for a programmer to choose the most suitable data type she or he (from now 
on, she) needs not only to know the respective data types but some experience in 
their use is also necessary . We shall show that this knowledge can be identified, 
formalized and properly represented. 

The above outline of data types can be viewed also as a system of classes and 
subclasses in the sense of the object-oriented approach . 
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Using classes and subclasses coupled by inheritance in the sense of the object­
oriented approach is the natural way of representing the whole system of data types 
used in most programming languages. 

For example, when the following properties of a superclass: 

- all the elements are of the same type, 
- there exists a mapping from the set of ordinals to the set of elements , 
- frequency of operations over more than one element will be high, 

are all set to true then the system proceeds to its subclass, which in this case is static 
data structure and then directly to one dimensional array. This process is very 
straightforward. It would be possible to implement the system also without an 
object-oriented tool , but using it the process of reasoning is made more efficient and 
effective. 

This approach has the advantage of offering such (meta-) properties as 
inheritance of represented properties within a common class, multiple inheritance 
and polymorphi sm. 

In our experiments, introducing several classes proved to be appropriate. They 
describe the set of basic entities that we work with during a program development: 

- a problem specification defined by means of input and output relations, 
- processing of data within the program being developed, and 
- problem solving method used in solving the specified problem. 

In designing these classes we took an advantage of polymorphism: although the 
structure of the classes is always the same, by activating them each time other slots 
are active. This depends on input conditions of the session. 

It is necessary to describe pieces of programming knowledge within a 
conceptual framework of the above entities. A system of rules appears to be the most 
suitable from specifically for these knowledge pieces. A rule is for example (in 
English paraphrase). 

Rule 7: 

IF I. Use of structured data type is recommended 


2. There exists mapping from the set of ordinals to the set of elements 
3. All elements are of same type 
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4. Order of processing of elements cannot be decided in advance 
THEN Use of one dimensional array is recommended 

We present all the rules in English paraphrase. The whole set used at the current 
stage of experiments can be found in Appendix A. The rules express basically 
different conditions that suggest use of a particular data type. Some rules refer to 
properties of data (e.g., rule 12), or to properties of the expected processing (e.g., 

ru Ie 14), or to properties of the problem so lving method (e.g., rule 21). 

To implement our system, we have chosen the NEXPERT OBJECT tool 
becau se it offers facilities to work with both procedural and declarative 
representation of knowledge and provides for certain inheritance of properties. Its 
availability (and lack of it in case of some other tools) played its role , too. 

The NEXPERT OBJECT tool allows users to develop models which can be 
classified as "deep worlds". It provides several distinct representation mechanisms. 
It allows the user to capture facts and procedural knowledge of the domain of 
interest in rules, and provide descri pti ve knowledge about the problem domain in 
c lasses and objects. 

These features were useful when looking for appropriate representation of 
knowledge about data types. We have represented the data types outlined above as a 
system of classes and subclasses in the NEXPERT OBJECT system. The knowledge 
of an expert-programmer is represented by rules. Rules usually have a complex right 
hand side, composed of a hypothesis and actions. The system is able to perform both 
backward and forward chaining. 

Objects represent the knowledge used for reasoning about by the rules. Objects 
describe variables in the knowledge base. Hierarchical relationships can be defined 
among objects to give rules greater reasoning flexibility over objects. We use 
objects, properties, and classes in these relationships. 

A rule or a hypothesis can become relevant simply because an external event 
justifies its evaluation, even when the system is currently evaluating another part of 
the knowledge base. The tool provides inference control mechanisms that can either 
be set globally or incorporated into the rules themselves. 

NEXPERT OBJECT is an agenda-based system. In particular, it processes 
events according to how they were generated rather than merely according to some 
fi xed strategy, such as LIFO or FIFO. The system keeps a prioritized I ist of 
hypotheses to evaluate. This allows to modify dynamically a list of events with 
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varying priorities. It also incorporates the notions of conflict resolution, which is a 
decision between di fferent possi ble inference paths, and non monotonic reasoning, 
which allows one to change previous conclusions which have been reached. This 
feature is important to allow reasoning that would respect facts supplied during a 
session in form of an user's answer without ending up in a inconsistency. 

A subset of our experimental knowledge base (li st of 23 rules) used in some of 
the experiments is given in Appendix A. 

Experiments 

We have conducted several experiments with the knowledge base. From the 
system user ' s (a student programmer) view, we have distinguished two possible 
situations. First, the user has no idea which data type she should use. She merely 
inputs the relevant data describing the problem specification. The system starts a 
forward reasoning process. It asks the user to supply additional information in cases 
where it either does not directly have it or it cannot deduce it. Second, she is able to 
make a guess and what she in fact wants from the system is either confirmation or 
rejection of her hypothesis. The system is able to provide a suggestion in case it 
rejects the user's hypothesis, which amounts to a qualified advice. 

In the former type of experiments, we were interested in finding out how such 
system can model decisions made by a programmer during the program formation 
process. The system was provided by comparable input information as a 
programmer would have at that stage of the development process. The latter type of 
experiments was concerned with a question, how supportive in fact can the system 
be for a programmer who proposes a solution to a particular programming (meta-) 
problem, e.g .. how to implement representation of some structured data involved in 
given problem. The system is presented a hypothesis and attempts to either confirm 
or refute it in a process of deductive reasoning, which may involve inquiries to user 
that are related to problem properties. We presented some such experi ments 
elsewhere (Navrat and Rozinajova 1993). 

Here, we present other experiment not published elsewhere that aimed to select 
a data type for a problem which involves processing according to so called first-in 
first-out strategy. We give a detailed record of the user-system interaction which 
should give an idea about the system behaviour. Of course, there is the usual comfort 
including windows environment etc. provided. 

The given problem requires processing in order described as "first in first out". 
Initially, following condition was set : 
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During processing multiset of elementfirst-infirst-out strategy will be employed 

According to thi s, only conditions of the rules 9 and 10 become relevant: 

The first condition of rule 9 is the recommendation of use of structural data , so 
the system starts up deductive reasoning to find out if this condition is true . To 
perform this, the rule 17 has to be evaluated as the first one: 

Question (Q): "/s input a multiset of elements?" 
Answer (A): YES 
Q: "While processing multiset: will elements be processed more than once?" 
A: YES 

Rule 17 is set to true: 

- > * Use of structured data type is recommended* 
Now both conditions of rule 10 are true, so: 
Ru Ie 9 is set to true: 
-> *Use ofqueue is recommended* 
& Action (Ac): *Use of stack is not recommended* 
Now the system proceeds to rule 10, the first condition of which is the 

recommendation of dynamic data structure. To prove or to reject thi s, again 
deductive reasoning is needed : 

Rule I: The first condition - the use of a structure data type (from now on 
abbreviated as SDT) is true . 

Q: "Can cardinality ofmultiset be estimated in advance?" 
A:NO 
Rule I is set to true: 
- > *Use ofdynamic data structure is recommended* 
From thi s comes the deduction that rule 10 is set to true, which confirms that: 
-> *Use olqueue is recommended* 
The first appropriate data type was proposed. However, the processing goes on. 

The system investigates other possibilities, e.g., whether queue is the only data type 
which suits thi s problem. Next rule to be processed is rule 21: The first condition ­
SDT is true. 

Q: "Does the problem solving method presuppose organizing multiset of 
elements (IS matrix?" 

A:NO 
Rule 21 is set to fal se. 
Rule 22: The first condition - SDT is true . 
Q: "Does the specification presuppose organizing multiset of elements as 

matrix ?" 
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A: NO 
Rul e 22 is set to false. 

Rule 23: The first condition - SOT is true. 

Q: "Are all the elements ofmulti set of the same Iype ?" 
A: YES 
Q: "Does the mapping from the set o.fordinals to the set ofelemel1 ts exist .?" 
A: NO 
Rule 23 is set to false. 

- > *Use of two diemensional array is not recommended* 

Rule 18: The first condition SOT is true. 

Q: "Does accessing of an element depend on the contents of element ?" 

A:NO 

Rule 18 is set to false: 

-> *Use of table is not recommended* 

As the use of a table is one of the conditions of rules 4 and 19, these rules are 


now set to false: 
- > "' Use of hash tahle is not recommended* 
-> *Use of table with ordered elemellts is not recommended * 
Rule II : The first conditi on - SOT is true. 
Q: "/s ordering upon the set of elements defined?" 

A:NO 

Now four rules are set to false - No. I 1,12, 13,14: 

- > *Use ofsearch tree is not recommended* 

Rule 8: The first condition - SOT is true. 

Q : "Does mapping from the set of ordinals to the set of elements ex.ist ?" 

A: YES 
The third condition is true: all the elements are of same type. 
Q: "Can order ol"processing of elements be decided in advance ?" 

A:NO 

Rule 8 is set to true: 

- > *Use of one dimensional array is recornmeluled* 

Rule 7: The first condition - SOT is true. 

Q: "/s ordering upon the set 0.1" elements defined ?" 

A:NO 

The third condition is true : all elements are o f same type . 

Q : " Will the frequency o.f operations remove and in sert element be high?" 

A:NO 
Rule 7 is set to false. 



Pavol Navrat and Viera Rozinajova 91 

This result does not support the recommendation of a one dimensional array. 
But, as we have seen, other arguments support it, so in the final report one 
dimensional array comes into consideration for this problem. 

Rule 6: The first condition - SDT is true. 
Q: "Will order ofprocessing be sequential most of the time ?" 
A: NO 

Rules 5 and 6 are set to false: 

-> *Use of linear list is not recommended* 
Rule 2: The first condition - SDT is true. 
Q: "Does the problem require an explicit representation ofa binary relation ?" 
A: NO 

Rules 2 and 3 are set to false: 

-> *Use of graph is not recommended* 
Rule 20: As the use of a graph is one of its conditions, it is set to false: 
-> *Use oftree is not recommended* 
As we can see, the system has proposed two data types after investigating many 

possibilities: 
- > Queue <­

and the second one is: 
-> One dimensional array <­

This is annotated description of the system's performance which includes also 
user-system interaction. System recommends use of the dynamic data type queue 
after inductive reasoning, but "allows" use of the one dimensional array as well. 

This result is in coincidence with an advice that would probably be received 
from an experienced programmer: 

When a queue is suitable for the problem, usually an one dimensional array can 
be used as well. The dialogue given here is just one sample of interaction with our 
tool. Other working modes are pssible in the NEXPERT OBJECT tool, e.g. specific 
properties of objects or classes can be volunteered, hypotheses can be suggested or 
knowledge bases loaded, or one has access to working memory to investigate the 
values of data which is being processed . However, we find this kind of dialogue 
quite effective: the consultation is fast, the system communicates in a (quasi-) 
natural language and asks only the questions necessary for successful reasoning. 
Another advantage of using the tool as described in this paper is that the student can 
learn how to use the tool. 
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Results and Discussion 

Results concern the experimental knowledge base that is presented here. We 
have shown that coding programming knowledge is possible, and can be done in a 
way which allows meaningful manipulation. Here, two facts perhaps should be 
stressed. The base is very modest in volume, and it is written in a general tool not 
specifically tailored to this kind of expertise. We have benefitted greatly from the 
advanced facilities of the tool, especially of its representation language, allowing 
expression of class-like relationships. 

The experience of using non-dedicated tool was an interesting one: we found the 
tool appropriate. However, we have detected also some limitations of using this tool: 
the representation of programming knowledge by a system of classes and subclasses 
is not always suficiently rich. The representation does not reach the level known 
from typical frame-based knowledge representation languages used in artificial 
intelligence (Bobrow and Winograd 1977). Seen from another perspective, we must 
note that working with more complex expertise would require different language 
structures and modes of reasoning. In particular, incorporating problem 
specifications and problem solving methods requires that alternative kinds of 
representation would have to be sought. Programming schemes, for example, would 
probably require defining specific unification algorithms in order to be represented 
appropriately. An excellent proposal was made in this direction by (Rich and 
Feldman 1992). Even more, a programming method probably defines its own 
strategies when and how such schemes are to be combined and used. To represent 
such a meta-level knowledge requires more tlexibility in the representation language 
itself. 

Our interest has not been so much to verify the very fact that building a 
knowledge base is possible, as there have been already presented reports on similar 
projects e.g. (Barstow 1979) which however do not take advantage of using classes 
in representing knowledge. Other works were interested in programming knowledge 
in the context of learning programming e.g. , (Anderson and Skwarecki 1986, 
Soloway and Ehrlich 1984). Partially, this is also our interest. We feel encouraged 
by our experiments and conclude that developing knowledge bases can aid in 
learning programming. Here, the approach can be from two sides. Either a teacher 
provides a knowledge base to the learner who learns from such externalisation . Or 
the learner builds a knowledge base which helps her organise and clarify the ideas 
about the subject matter. We find the former aspect important especially in such 
domains as programming, where studying an axiamatically built theory of 
programming is still not the usual procedure for learning programming, and 
obviously for good reasons, but where the need for more formal knowledge is 
recognised as urgent. The latter aspect is presented in e.g .. (Webb 1992). 
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In the future work we plan that the system would be a part of working 
environment which would help the student also in initial stages of program 
development - i,e, analysis and specification (CASE tool should be very useful in 
this concern). The system would maintain more information about the program 
being developed by the student. The presented version of the system is an 
experimental one. There were performed limited experiments, but till now it has not 
been used regularly in programming courses. However, it has shown already in the 
testing phase to be a valuable tool not only in advising students but also forcing them 
to think more deeply about this programming domain, 

From a more general perspective, use of explicitly formulated knowledge is 
found an important direction in software engineering, In intelligent support of 
software development, attempt is made to provide assistance to professional 
programmers e,g., (As lett 1991, Fisher et al. 1992). 
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Appendix A. 


Experimental knowledge base (set of rules) written in natural language 


Rule I: 
IF I . Use of structured data type is recommended 

2. Cardinality of multi set cannot be estimated in advance 
THEN Use of dynamic data structure is recommended 

Rule 2: 

IF I. Use of dynamic data structure is recommended 


2. The problem requires explicit representation of binary relation 
3. The multiset of elements is set of elements 

THEN Use of graph is recommended 

Rule 3: 

IF I. Use of structured data type is recommended 


2. The problem requires explicit representation of binary relation 
3. The multiset of elements is set of elements 

THEN Use of graph is recommended 

Rule 4: 

IF I. Use of table is recommended 


2. Complexity consideration tells us that access time should not be 
dependent on size of the set of elements 

THEN Use of hash table is recommended 

Rule 5: 

IF I. Use of structured data type is recommended 


2. It can be assumed that the order of process ing of elements will be 
sequential most of the time 

THEN Use of linear list id recommended 

Rule 6: 

IF I. Use of dynamic data structure is recommended 


2. It can be assumed that the order of processing of elements will be 
sequential most of the time 

THEN Use of linear li st id recommended 
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Rule 7: 

IF I. Use of structured data type is recommended 


2. There exists mapping from the set of ordinals to the set of elements 
3. All elements are of same type 
4. Order of processing of elements cannot be decided in advance 

THEN Use of one di mensional array is recommended 

Rule 8: 
IF 1. Use of structured data type is recommended 

2. Ordering upon multiset of elements is not defined 
3. All elements are of same type 
4. Frequency of operations over more than one element is high 
S. There exists mapping from the set of ordinals to the set of elements 

THEN Use of one dimensional array is recommended 

Rule 9: 
IF I. Use of structured data type is recommended 

2. During processing multiset first-in-first-out strategy will be employed 
THEN Use of queue is recommended 

Rule 10: 

IF I. Use of dynamic data structure is recommended 


2. During processing multiset first-in-first-out strategy will be employed 
THEN Use of queue is recommended 

Rule II: 

IF I. Use of structured data type is recommended 


2. Ordering upon set of elements is defined 
3. This ordering is referred to in problem specification 
4. Multiset of elements is set of elements 

THEN Use of search tree is recommended 

Rule 12: 

IF I. Use of dynamic data structure is recommended 


2. Ordering upon set of elements is defined 
3. This ordering is referred to in problem specification 
4. Multiset of elements is set of elements 

THEN Use of search tree is recommended 
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Rule I): 


IF I. Use of structured data type is recommended 

2. Ordering upon set of elements is defined 
). Frequency of operations remove element and insert element is high 
4. Multiset of elements is set of elements 

THEN Use of search tree is recommended 

Rule 14: 

IF I. Use of structured data type is recommended 


2. Orderi ng upon set of elements is defi ned 
). Frequency of operations remove element and insert element is high 
4. Multiset of elements is set of elements 

THEN Use of search tree is recommended 

Rule 15: 

IF I. U se of structured data type is recommended 


2. During processing of elements last-in-first-out strategy will be employed 
THEN Use of stack is recommended 

Rule 16: 

IF I. Use of dynamic data type is recommended 


2. During processing of elements last-in-first-out strategy will be employed 
THEN Use of stack is recommended 

Rule 17: 

IF I. Input is multiset of elements 


2. It cannot be ruled out that while processi ng the multiset, elements will be 
processed more than once 

THEN Use of structured data type is recommended 

Rule 18: 

IF I. Use of structured data type is recommended 


2. Accessing an element depends on the contents of this element 
THEN Use of table is recommended 

Rule 19: 

IF I. Use of table is recommended 


2. Ordering upon set of elements is defined 
). Optimization of the accessing of element is required 

THEN Use of table with ordered elements is recommended 
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Rule 20: 

IF I. Use of graph is recommended 


2. 	 For the relation predecessor successor defined on the set the inverse 
relation is one-one 

3. 	Only one element exists, for which the relation predecessor successor is 
not defined (root) 

THEN Use of tree is recommended 

Rule 21: 

IF I. Use of structured data type is recommended 


2. 	Problem solving method presupposes organizing multiset of elements as 
matrix 

3. All elements are of same type 
4. Matrix is not sparse matrix 

THEN Use of two dimensional array is recommended 

Rule 22: 

IF 1. Use of structured data type is recommended 


2. 	 Specification presupposes organising multiset of elements as matrix 
3. 	 All elements are of same type 
4. Matrix is not sparse matrix 

THEN Use of two dimensional array is recommended 

Rule 23: 

IF I. Use of structured data type is recommended 


2. All elements are of same type 
3. There exists mapping from the pair of ordinals to the set of elements 
4. This mapping will be used for accessing an element 

THEN Use of two dimensional array is recommended 



98 Knowledge Based Programming: An Experiment in ... 

References 

Anderson, J.R. and Skwarecki, E. (1986) The Automated Tutoring of Introductory Computer 
Programming. Communications of the ACM, 29(9): 842-849. 

Aslett, M.J. (1991) A Knowledge Based Approach to Software Development. North Holland 
Publishing Co., Amsterdam, The Netherlands, 249 p. 

Barstow, D.R. (1979) An Experiment in Knowledge-Based Automatic Programming, Artificial 
Intelligence. 12: 73-119. 

Biermann, A.W. and Krishnaswamy, R. (1976) Constructing Programs from Example 
Computations. IEEE Transactions on Computers, C-24(2): 141-153. 

Bobrow, D.G. and Winograd, T. (1977) An Overview of KRL, a Knowledge Representation 
Language. Cognitive Science. I( I): 3-46. 

Burstall, R.M. and Darlington, J. (1977) A Transformation System for Developing Recursive 
Programs. Journal of the ACM, 24( I): 44-67. 

Fisher, G. , Girgensohn, A., Nakakoji, K. and Redmiles, D. (1992) Supporting Software 
Designers with Integrated Domain Oriented Design Environments. IEEE Transactions on 
Sofiware Engineering, 18(6): 51 1-522. 

Gasparovic, L. and Navrat, P. (1991) Extalk - Smalltalk Based Expert Systems Development 

Tool. In: Mrazik, A. (edt.). Proc. East EurOOPe'91, Short Papers, Bratislava, 65-73 pp. 


Green, C. and Barstow, D.R. (1978) On Program Synthesis Knowledge. Artificial Intelligence, 

10: 241-279. 

Manna, Z. and Waldinger, R. (1980) A Deductive Approch to Program Synthesis. ACM Trans. 
on Prog ramming lLInguages and Systems, 2( I): 90-121. 

Molnar, L. and Navrat, P. (1985) Automation of Program Creation and Methodology of 
Programming. (1n Slovak). The Journal ofEectrical Engineering, 36(4): 316-323. 

Molnar, L., Navrat, P. and Vojtek, V. (1986) Heuristic Search with Global and Local Heuristics. 
Computers and Artificial InteLLigence, 5(5): 417-426. 

Molnar, L., Navrat, P. and Vojtek, V. (1987) A System for Automatic Implementation of 
Abstract Data Types. Computers and Artificial InteLLigence, 6(5): 481-488. 

Molnar, L. (1989) A Knowledge Based Program Creation. DrSc. Dissertation. Slovak Technical 
University, Bratislava. 

Navrat, P. and Klaudiny, M. (1983) A Syntax Directed Editor of Pascal Programs. (In Slovak). 
In: Proc. Modern Programming 1983, Part 2, Zi lina, 125-136 pp. 

Navrat, P. (1987) Towards a Master Programmer: A Paradigm for Automated Tutoring of 
Programming. In: Plander, I. (edt.). Proc . Artificial Intelligence and Information Control 
Systems of Robots 87, North-Holland, Amsterdam, 375-379 pp. 

Navrat, P., Molnar, L. and Vojtek, V. (1988) Using Automatic Program Synthesizer to Generate 
Solutions from Diverse Problem Environments. Computers and Artificial intelligence, 7(2): 
139-146. 

Navrat, P. and Mlada, I. (1989) What Knowledge is the Knowledge Based Programming Based 
on?": An Inquiry into Knowledge Sources. In: PIander, I. (edt.). Proc. Artificial Intelligence 
and Information - Control Systems of Robots 89, North-Holland, Amsterdam, 187-190 pp. 



Pavol Navrat and Viera Rozinajova 99 

Navrat, P., Frie, P., Adamy, M. and Mlada, 1. (1989) KEX: Computer Aided Knowledge 

Engineering System . In: Proc. Computers ' 89 Conference. Blahova. 156-162 pp. 

Navrat, P., Molnar, L. and Vojtek, V. (1989) Using Automatic Program Synthesizer as a 
Problem Solver: Some Interesting Experiments. In: Davenport, J. (edt.). Proc. EUROCAL 
. 87. LNCS 378. Springer, Berlin, 412-423 pp. 

Navrat , P. and Frie, P. ( 1991) A Tool for Knowledge-Based Systems Development. In. Marik, 
V. (edt.). Proc. Artificial Intelligence Applications Conference Al '9 1, Pragu e, 351-360 pp . 

Navrat. P. and Rozinajova, V. (1993) Making Programming Knowledge Explicit. Computers and 
Education, 21(4): 281-299. 

Navrat, P. and Rozinajova, V. ( 1983) Experiment in Knowledge Based Programming . Computer 
and Information Sciences - Journal of King Saud University. 

Rich, C. and Feldman, Y.A. (1992) Seven Layers of Knowledge Representation and Reason ing in 
Support of Software Development. IEEE Transactions on Software Engineering, 18(6): 
451 -469 

Rozinajova, V. and Navrat , P. (1993) Explicit Knowledge Representation in Support of Learning 
Programming. In : Brna, P., Ohlsson, S., Pain, H. (edt.). Proc. AI-ED '93 World Conference 
on Artificial Intelligence in Educa tion (Edinburgh). Association for the Advan cement of 
Computing in Education , Charlottesville. 584 p. 

Siklossy, L. and Sykes, D.A. (1975) Automatic Program Synthesis from Example Problems. In : 

Advance Papers IJCAI4, Tbilisi , 268-273 pp. 

Soloway, E. and Ehrlich, K. (1984) Empirica l Studies of programming knowledge. IEEE 
Transactions on Software Engineering, 10(5) : 595-609. 

Vojtek, V., Molnar, L. and Navrat, P. ( 1986) Autom atic Program Syntheis Using Heuristics and 
Interaction . Computers and Artificial Intelligence, 5(5) : 427-442. 

Webb, M. (1992) Learning by Building Rule - Based Models . Computers and Educalion. 18( 1-3) : 
89-100. 

(Received 28/09//993; 
in revisedform 1//07/1995) 



100 Knowledge Based Programming: An Experiment in '" 

( 0 q1q) ,:-" c.T - ...:.."fl'.t.....~ - 0~~)1,..-i I 

...:.."fll- 1 r· l' o'l..i...aJ1 


r fjh ySJj - ~I~fjy-L.t.....~ - ...... -4fG./11 ~L-lI,..-i r 


L?[jy-L - II 1 rI q - [j~!r. 


J-y WI ~y-:-ll J~ j-Y 4.LL.; o~ ~L..a--jl: ~I I~ i~ 

;5J... L~ 19..u ~~.)I J.-y1:J -J)~..0~ ~)I ~101· :ijrll 

~r... :ijrl\ ~WI ~~I J~ J ~~~.u~~I \~ 

d.~ ~..lAJ. ~) ..t:..U ~.r.11 o..lYLl obi ~~~I I~ J i M \ ~I 
~ J u~LJI .f tj )L;.:.>~ ~~\ ~.)\ o).~~ ~l>- U T-" o..lYL9 

~i JjJJ. 4J ~~IJ :ijrll (i..lYL9 uP1y>-~y W'. r:-"~.)\ 0":-§.; 

i~\ i~' ilkJ\J i...G..:...J\ ~ ~W\~ o.h-IJ ~~~ U..oJ 

~I uP1y.JJ L.i...oJ ~ ~I.i---'I ~ uUJI ~L.u: ~ ~I ~~\ J 
o.h-IJ Or if f5i ~~ u~LJI ~L5 1)1 ~~) ~Ll~ a..a.JI ~J ~ 
J..l:-.: 0i iwl JJ~..J' (L...\..Q..,o y.oUI ~,)..lY~..u:: ~ 0L5 1)1 ~J 

~. uP1yLi m; 4J ~I u~~1~~)UI u~~1 (eyl) tj ~ 
~L,a.; ~.u~ ),)U i W \ 0i ~L::JI ~. i..G. - " \ \ ..Gr5 I~ )~I 

. ~.)I~~J~~U\)'7~1~11-4J0lJ. ~ 


