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ABSTRACT. The behaviour of an ARMA process for parameter values
closer to unity has been of paramount interest in the literature. Various
studies have been undertaken for this case. The present study
undertakes the problem of a small parameter value when it is closer to
zero and therefore the process being on the boundary of a white noise
process. Some conventional procedures for identification of ARMA
(1,0) process with small parameter values are evaluated using
simulation.

Let {Z,t > 1} be atime series generated by stochastic process ARMA(1,0)
Zl = ¢Zl—l + €y

where Z, =0 fort <0, and {€, t 2 1} are independent identically distributed random
variables with mean zero and variance 62 > 0, commonly known as white noise and
¢ is an unknown parameter. Given a series Z,, the basic conventional tools for the
identification of an ARMA(1,0) process are autocorrelation and partial
autocorrelation functions. The use of Akaike information criteria (AIC) and
Schwartz Bayesian Criteria (SBC) is also helpful to recognize the correct order of
the underlying ARMA process which has given rise to the observed series Z,. These
procedures for the identification of Autoregressive Moving Average (ARMA)
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process are to be tested in special cases. See Priestly (1981).

Various studies are undertaken for the case when the parameter is closer to unity
and therefore process being on the boundary of non-stationarity. The examples in the
literature are Dickey and Fuller (1979), Hasza (1979), Rao (1978), and Evans
(1981). The present study focuses on problem when parameter values are small. We
investigate the effectiveness of conventional identification procedures when the
parameter is closer to zero and therefore the process is on the boundary of a white
noise. The study adopts the Monte Carlo method to achieve this aim.

Procedure

It is observed that for smaller parameter values and sample size less than 200,
the usual procedure of employing autocorrelation and partial autocorrelation
functions (ACF and PACF) as identification tools fail as the values of ACF and
PACF are not significant and therefore do not give a clear picture of the order of
autoregressive and moving average parameters. Therefore a simulation procedure is
used like Barry and Khan (1995), Dent and Min (1978), Nelson and Schwert (1982)
to generate realizations from ARMA(1,0) process for small samples. The
disturbances are generated as mutually independent and uncorrelated random normal
variates. The IMSL subroutine GGNML is used to generate these numbers for
different seed values. The algorithm employed has been rigorously tested by
Learmonth and Lewis (1973). The first 200 values of each series were discarded to
get rid of the transient effect.

The series length selected as 50, 100 and 150. The values of parameter ¢ are
taken 0.10, 0.15, 0.20, 0.25 and 0.30 for each series length.

For each of these series length, first we use the conventional tools of ACF and
PACEF to identify the process. We find that in case of series length 50 the ACF and
PACF are all insignificant for all selected parameter values. In case of series length
100 and series length 150 the same pattern repeats for parameter values 0.10, 0.15,
0.20. For parameter value 0.25, ACF and PACF are approaching to significant
values but their patterns do not help for the identification of the process. For
parameter value 0.30, ACF and PACF are significant but again fail to identify the
process. The next thing is to simulate ARMA(1,0) process as mentioned above and
to study various tentative models and to find their suitability by using AIC and SBC
criteria. The results of this study are recorded in Tables 1-3. The discussion of the
results follow in the next section.
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Discussion of results for tentative models fitted to ARMA(1,0) process

The ARMAC(1,0) process Z, = ¢Z,_; + €, is generated with sample size 50, 100
and 150 and for varying parameter values. We attempt to identify these processes by
traditional method of using autocorrelation and partial autocorrelation functions. We
find that for smaller values of parameters ACF and PACF are not helpful. We also
attempt the use of Akaike Information Criteria AIC and Schwartz Bayesian Criteria
SBC to recognize the correct order of each generated process (see Wei 1990). The
values of AIC and SBC are computed in each case for the tentative models fitted to
realizations from ARMA(1,0). The estimated standard deviation of residual series,
3}, are also obtained. The values of AIC, SBC and 8,, are recorded 1n Tables I, 2 and
3 for sample size 50, 100 and 150 respectively, the abbreviation ERSD is used forG,.
The discussion of the results is given as follows.

According to both AIC and SBC, the best fitted mode! to the simulated series Z,
=¢Z_, + €, with ¢ =0.10 and sample size 50 is ARMA(0,0) i.e. white noise and the
next best model is ARMA(1,0). The minimum value of &, is also for ARMA(0,0)
followed by ARMA(1,0). The parameter values for all the tentative models are not
significant. The autocorrelation function and partial autocorrelation function do not
help in the identification of the process.

For the simulated series with @ = 0.15, AIC and SBC show that best fitted mode!
for this series is also ARMA(0,0) and the next best mode! is ARMA(L,0). The
standard deviations of residual series Ga, are also in accordance with these results.
But the parameter estimate of ARMA(1,0) is not significant. The only significant
estimates are for the model ARMA(2,2) in which the value of Ga i1s also
comparatively small as shown in Table 1. For this series the autocorrelation function
and partial autocorrelation function are not helpful in identifying the tentative
models. The parameter values for ARMA(2,2) are given as follows:

Model Parameter value Standard error
ARMA(2,2) 8, = 0.830 0.157
A
8, =0.833 0.140
A
g, =0911 0.200
5 =~0.796 0.191
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Table 1. Fitted Models to ARMA(1,0) for series length 50

1 2 3
q AIC SBC ERSD| AIC SBC ERSD| AIC SBC ERSD| AIC SBC ERSD

g=0.10

0 13481 134.81 0932 ]136.69 138.60 0.940 [ 13798 141.80 0.942 [ 13993 14567 0952
| 136.71 138.62 0.940 | 138.51 14233 0.948 | 139.94 14567 0.953 |141.47 149.11 0458
2 137.95 141.77 0943 | 139.92 14566 0952 | 141.92 149.57 0.962 | {41.61 |51.17 045!
3 13991 145.64 0952 | 141.91 14991 0963 | i41.61 151.17 095! |143.57 15505 0.962
a=0.15
0 13526 13526 0.876 | 136.71 138.62 0940 [ 138.00 141.82 0.943 | 13991 14566 0952
! 136.82 138.73 0.941 | 138.44 142.26 0947 | 13993 14567 0952 [ 141.43 149.08 0.958
2 137.96 141.78 0943 [ 13991 14566 0952 | 139.67 147.26 0.941 | 141.60 151.16 0.951
3 139.90 145.64 0.952 [ 141.90 149.95 0.962 | 141.60 151.16 0.951 | 144.55 156.02 0971
é=0.20
0 136.04 136.04 0.943 | 13674 138.65 0940 | 138.04 141.86 0943 |139.41 14565 0.952
| 137.01 13892 0943 | 138.40 14223 0.947 | 140.56 141.30 0958 [141.92 149.57 0.963
2 137.99 141.81 0943 1139.92 14566 0.952 [ 14192 149.57 0963 | 141.60 151.16 0.951
3 139.90 145.65 0952 | 141.89 149.59 0.962 | 140.36 149.92 0.939 | 143.69 155.17 0.963
8=0.25
0 137.12 137.12 0953 | 136.76 138.67 0.941 {138.08 141.90 0.944 | 139.89 14563 0.952
l 137.28 139.19 0.946 | 13839 14222 0.947 | 13993 14567 0952 [ 141.92 149.57 0.963
2 138.02 141.85 0.943 1139.92 14566 0.952 | 141.93 149.57 0.963 1 141.60 151.16 0.951
13990 14563 0.952 [ 141.88 149.53 0.962 | 143.80 [53.36 0.972 | 144.47 15594 0.970
¢ =0.30
0 138.55 13855 0.967 | 136.76 138.68 0.941 | 138.12 141.94 0.942 | 139.87 14561 0952
| 137.65 139.56 0.949 [ 138.39 142.22 0.947 | 139.93 14587 0952 | 14135 14899 0957
2 138.07 14190 0944 | 13991 14565 0.952 | 141.93 14958 0.963 [141.59 151.15 0.950
139.89 14563 0.952 [ 141.85 149.50 0.962 | [34.57 153.13 0.970 [ 14470 156.17 0.972
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For the series simulated for ¢ = 0.20 the best fitted model is again ARMA(0,0)
and the next best model is ARMA(1,0) as indicated by AIC and SBC. The minimum
value of&, is for ARMA(1,0) model. But the parameter estimate for ARMAC(1,0) is
not significant. The significant parameters are only for ARMA(2,1), but the model is
found non-stationary and non-invertible and therefore is not given any consideration.
The autocorrelation and partial autocorrelation are again insignificant for this series
also and therefore are not authentic to select the tentative models.

The estimated parameter values are again not significant for all tentative models
fitted to the simulated series with @ = 0.25. The AIC values, SBC values and
estimated standard deviations of the residuals indicate that the best among the
tentative models is ARMA(1,0). The parameter value for ARMA(],0) and its
corresponding standard error are 0.216 and 0.139 respectively which shows that
parameter value is approaching to be signiticant. According to AIC values still the
next best model to be fitted is ARMA(0,0), the white noise. But the value of
estimated standard deviations of the residuals is among the largest for ARMA(0,0)
and eliminates the possibility for the selection of this model. The behaviour of
autocorrelations and partial autocorrelations is still not clear for the selection of the
tentative model.

For the simulated series with @ = 0.30, the parameter values for all tentative
models are insignificant. But for ARMA(1,0) model the estimated parameter is 0.27
with corresponding standard error equal to 0.138 and is very close to significant
value. The AIC value is minimum for this model and the estimated standard
deviation of residual series is also minimum. The SBC value is smaller than other
models except ARMA(0,0) but the difference is not much.

The result for the tentative models fitted to ARMA(1,0) process with series
length 100 are recorded in Table 2.

According to AIC and SBC computed for tentative models fitted to series with ¢
= 0.10, the best fit is ARMA(0,0) and estimated standard deviation of residuals is
also minimum for this model indicating that generating process is white noise. The
next best fit is ARMA(1,0) followed by ARMA(1,1). The only models with
significant parameter values are ARMA(I,1), ARMAA('I,Z) ,{md ARMA(1,3). In all
these models significant parameter values are only ¢, and 8,. Still autocorrelations
and partial autocorrelations do not help in identifying tentative models. The
parameter values for these models are as follows:
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Model Parameter estimate Standard error
ARMA(1,1) 6, = 03880 0.188
@ =0.939 0.150
ARMA(1,2) 8, = 0.896 0.186
8,=-0019 0.110
) =0.938 0.159
ARMAC(I,3) 8, =0.896 0.200
8, = -0.022 0.137
0, = 0.033 0.114
9 =0938 0.175

In case of series Z, with ¢ = 0.15, we observe that the minimum values of AIC
and SBC are for ARMA(0,0) followed by ARMA(1,0). The minimum of estimated
standard deviation of residuals is for ARMA(1,0). But the only models with
significant parameter values are ARMA(1,2), ARMA(2,1) and ARMA(3,1). In these

models the significant parameter estimates

are only for ¢, and 6,. The

autocorrelation and the partial autocorrelations do not help in identifying the
tentative models. The parameter values for the models are as follows.

Model Parameter estimate Standard error
ARMA(1,2) 8, = 0.846 0.184
8, = 0022 0.113
) =0937 0.155
ARMA(2,1) 8, =087 0214
3, =0.963 0.240
9, = 0.025 0.123
ARMAG3, 1) 9, = 0.875 0.254
%1 = 0.967 0.277
By =-0.018 0.144
93 = —0.009 0.123
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Table 2. Fitted Models to ARMA (1,0) for series length 100
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AlIC

0
SBC

ERSD

AIC

1
SBC ERSD

AIC

2
SBC ERSD

AlIC

3

SBC ERSD

¢=0.10

276.90
278.61
280.16
282.16

276.90
281.22
285.37
289.97

0.966
0.970
0.972
0.977

278.57
278.79
280.76
282.76

281.17 0.969
284.01 0.966
288.57 0971
293.18 0.976

280.02
280.92
281.83
283.58

285.25 0.972
288.74 0.971
292.25 0971
296.61 0.975

282.04
28291
283.64
283.91

289.85
293.33
296.66
299.54

0.978
0.976
0.975
0.972

6 =0.15

277.83
278.77
280.17
282.17

277.83
281.37
285.38
289.98

0971
0.970
0972
0.977

278.59
278.80
280.75
282.74

281.20 0967
284.01 0.966
288.57 0.970
293.16 0975

282.02
280.75
282.19
283.45

28523 0.972
288.57 0.970
292.61 0.973
296.48 0.974

282.02
282.74
283.61
283.31

289.84
93.16
296.63
298.94

0.977
0.975
0.975
0.969

@ =020

279.36
279.05
280.20
282.20

279.36
281.66
285.41
290.0!

0.978
0.972
0.973
0978

278.63
279.14
280.77
282.72

281.23 0.970
284.35 0.967
288.59 0971
293.14 0.975

280.01
280.76
282.75
283.30

285.22 0972
288.57 0.971
293.17 0976
296.32 0974

282.01
282.75
283.59
283.14

289.83
293.17
296.62
298.77

0.977
0.976
0.975
0.968

g =10.25

281.54
27951
280.70
282.25

281.54
282.11
285.47
290.07

0.989
0.974
0.973
0.978

278.66
279.63
280.83
282.67

281.27 0970
284.84 0970
288.64 0.971
293.09 0.975

279.99
280.92

283.12

28521 0.972
288.73 0.971

296.15 0.973

281.99
282.75
290.23
283.16

289.81
293.17
303.25
298.79

0.977
0976
1.008
0.968

¢ =030

284.38
280.18
280.34
282.34

284.38
28278
285.55
290.15

1.003
0977
0.973
0.978

278.68
279.56
280.91
282.62

280.38 0.970
284.97 0970
280.73 0.971
293.02 0.975

278.96
28575
282.90
282.94

285.17 0971
288.57 0.970
293.32 0.976
295.97 0.972

281.95
282.73
283.54
283.32

289.77
293.15
296.57
298.95

0.976
0.975
0.975
0.969
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For the fitted models to series Z, with ¢ = 0.20, AIC values show that the best fit
is ARMA(1,0) followed by ARMA(I,1). The minimum 34 is for ARMA(L,1)
followed by ARMA(1,0). The only models with significant parameters are
ARMA(I,1), ARMA(1,2), ARMA(1,3) and ARMA(3,1) of which ARMA(3,1) is
non-stationary. In all these models the significant estimates are for g, and 6,. The
parameter values for these models are as follows:

Model Parameter estimate Standard error
ARMA(1,1) 8, = 0.827 0.181
A
3, =0918 0.137
ARMA(I 2) 8, =0.796 0.182
A
6, = 0.060 0.116
¥ =0.936 0.150
ARMA(I 3) 8, =0.794 0.197
A
0, = 0.046 0.115
A
0, =0.023 0.133
$ =0939 0.171

For series Z, with ¢ = 0.25 we find that according to AIC and SBC values the
best fit is ARMA(1,0) followed by ARMA(O,1). The minimum estimated standard
deviation of residuals is for the model ARMA(1,0). The models with significant
parameter estimates are ARMA(1,0), ARMA(2,0) and ARMA(!,: ).A In each
ARMA(1,0) and ARMA(2,0), the SIgmhcant parameter estimate is ¢, and in

ARMA(1,3) the significant estimates are ;z)l and 9,

The models having significant parameters are listed below with estimated
parameter values and corresponding standard error.

Lastly for series Z, with ¢ = 0.30, both AIC and SBC values are minimum for
ARMA(1,0) model. The estimated standard deviation of residuals is also minimum
for this model. The parameter estimate for the model is significant as well.
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Model Parameter value Standard error
ARMA(1,0) 9 =0.221 0.100
ARMA(2,0) ) =0.205 0.102

@, =0.083 0.103
ARMA(] 3) 8, =0.742 0.195
8,=0.074 0.132
8, =0.037 0.117
9, =0938 0.167

Finally we consider the case when samples size is 150. The results for the
tentative models fitted to ARMA(1,0) process for this case are recorded in Table 3.
According to AIC and SBC values the best fit to series with ¢ = 0.10 is ARMA(0,0)
followed by ARMA(1,1) and ARMA(1,0) in that order. The minimum value of G, is
also for ARMA(0,0) and the same value repeats for ARMA(2,1) and ARMA(I,2).
The models with significant estimates for parameter values are ARMA(I,1),
ARMAC(1,2), ARMA(2,1) and ARMA(3,1). In all these models the significant
estimates are for ¢, and 8,. Still autocorrelations and partial autocorrelations do not
help in identifying tentative models.

The parameter values and corresponding standard errors for the models
mentioned above are as follows:

Model Parameter value Standard error
ARMA(1,1) 8, =-0.937 0.091
B, = -0.969 0.067
ARMA(1,2) 8, =-0.985 0.110
8, = -0.069 0.085
) =-0.956 0.077
ARMA(2,1) 8, =-0915 0.106
% =-0.893 0.133
¥, = 0.064 0.088
ARMAG,1) 8, = -0.869 0.150
% =-0.843 0.170
¥y =0.028 0.109
¥ =-0.056 0.093
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Table 3. Fitted Models to ARMA(1,0) for series length 150

0 1 2 3
q | AIC SBC ERSD| AIC SBC ERSD| AIC SBC ERSD| AIC SBC ERSD

8= 0.10

0 358.23 35823 0.799 | 360.22 363.23 0.801 [362.16 368.18 0.804 {363.72 372.75 0.805
| 360.22 363.23 0.801 ] 360.04 366.06 0.798 |361.49 370.53 0.799 | 363.17 37521 0.801
2 362.17 368.19 0.804 [ 361.44 370.47 0.799 | 363.31 37535 0.802
3 363.76 372.79 0.805

¢=0.15
0 358.75 35875 0.800 | 360.24 363.25 0.801 | 362.17 368.19 0.804 [363.80 372.83

| 360.27 368.28 0.801 36221 368.23 0.804 |361.47 370.50 0.799 [ 366.54 378.58 0.806
2 362.14 368.16 0.804 [361.33 370.36 0.799
3 363.67 372.71 0.80S [363.21 375.25 0.80l

¢=0.20
0 360.07 360.07 0.804 | 360.27 363.28 0.801 |362.17 268.19 0.804 | 363.87 37290 0.806
| 36040 363.41 0.802 §362.21 368.23 0.804 165.61 377.66 0.808

2 362.10 368.12 0.804 | 361.3¢ 37027 0.799
3 363.60 373.63 0.805 | 363.21 375.25 0.801

=025
0 362.23 362.23 0.809 | 360.29 363.60 0.801 |362.17 36819 0804 [363.91 37295 0.806
| 360.64 363.66 36220 36822 0.804

2 362.03 368.05 0.803 |361.20 370.23 0.799 | 365.52 377.01 0.808
3 363.52 372.56 0.805 | 363.22 37525 0.801
8=0.30
0 365.32 36532 0.818 | 360.34 363.35 0.802 [ 362.18 368.26 0.804 | 363.98 1373.01 0.806
| 361.13 364.14 0.804 | 36221 36823 0.804
2 361.98 368.00 0.803
3 363.52 372.55 0805 | 36329 37534 0.802

The minimum value in each of AIC and SBC in the fitted model to series with ¢
= 0.15 is for ARMA(0,0) followed by ARMA(1,0). The minimum &, is for
ARMAC(1,2) and ARMA(2,1). The next minimum value 1s for ARMA(0,0) The
modles with some estimates having significant values are ARMAC(!,2), ARAMA(Z,II\),
and ARMA(1,3). In All these models the only significant estimates are @; and 9.
The parameter values and corresponding standard errors for these models are listed
below:
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Model Parameter value Standard error
ARMA(I 2) 8, =-1.030 0.111
8,=-0.118 0.084
) =-0952 0.081
ARMA(2.1) 6,=-0915 0.105
%) =-0.844 0.131
G =0.111 0.086
ARMA(1.3) 8, = 0.852 0.265
8, = -0.080 0.112
8, =0.075 0.055
%) =-0.722 0.057

The AIC and SBC values for tentative models fitted to generated series with ¢ =
0.20 show that the best fit is ARMA(0,0) followed by ARMA(1,0). The minimum
value for Ga is for ARMA(1,0). Among the fitted models ARMA(1,2), ARMA(1,3)
and ARMA(3,1) have significant parameter estimates. In all these models the
significant parameter values are for ¢, and ©,. The parameter values and

corresponding standard errors for these models are as follows:

Model Parameter value Standard error
ARMA(1.2) 8, =-1.073 0.114
6,=-1.166 0.083
@1 =—1.945 0.187
ARMA(I 3) 0, = ~1.885 0.280
8,=-1.128 0.119
= 0.065 0.097
9, =-0.755 0272
ARMA(,1) 8, =0.836 0.418
91=0.938 0.426
¥, =-0.067 0.122
63=-0.013 0.097
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For generated series with ¢ = 0.25 AIC values for tentative models show that the
best fit is ARMA(1,0) followed by ARMA(0,1), ARMA(1,2), ARMA(2,0) and
ARMA(0,2) in that order. The SBC value is minimum for ARMA(0,0) followed by
ARMAC(1,0). The minimum value of 6,, is for ARMA(1,2). The next minimum value
is for ARMA(1,0) and ARMA(3,1). The models with significant parameter values
are ARMA(0,3), ARMAC(1,2) Aand AI}MA(1,3). In these models the significant
parameter values are only for ¢, and 8,. The parameter values and corresponding
standard errors for these models are listed below:

Model Parameter value Standard error
ARMA(0.3) 8, =-0.177 0.083
8, = —0.044 0.085
A
8, = —0.063 0.184
ARMA(!,2) B, =-1.106 0.123
8,=-0214 0.082
) =-0930 0.101
ARMA(1.3) 8, =-0.929 0.289
8,=-0.182 0.128
A
8, =-0.050 0.101
9, =-0.749 0.280

Among tentative models fitted to series with g = 0.30, the models with
significant  parameter values are ARMA(3,0), ARMA(0,3) ARMA(2,0),
ARMA(0,1), ARMA(1,0) and ARMA(1,3). The best fit is ARMA(1,0) considering
AIC and SBC values and the value of &, The parameter values and corresponding
standard errors fg‘r thesi models are given below. The significant parameters in all
these models are 8, and @,.
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Model Parameter value Standard error
ARMA(1,0) 3,=0214 0.080
ARMA(0,1) 8, =-0.189 0.081
ARMA(3,0) 3, =0.208 0.083

%, =0.041 0.086
s = -0.037 0.084
ARMA(0,3) 8, =0.288 0.083
8, = -0.065 0.085
8, =0.060 0.084
ARMA(2,0) ®, =0.207 0.083
%) =0.033 0.083
ARMA(0.2) 9, =-0215 0.083
8, =-0.080 0.083
ARMA(!,3) 8, = -0.985 0.295
8, =-0.241 0.139
8y =0.027 0.105
% =-0.775 0.282

Concluding Remarks

For sample size 50 and small parameter values, the conventional methods of
identification for ARMA models fail to recognize the autoregressive element in the
simulated ARMAC(1,0) process. With the available tools for identification, the
process is recognized as white noise. It is at ¢ = 0.30 that we have the glimpse of the
actual simulated process of ARMAC(1,0). For sample size 100 recognizable patterns
start to immerge at parameter value 0.25 and similar thing happens for sample size
150. The study concludes that in case of small parameter values and in the case of
small sample size the investigations are needed to supplement the existing
identification techniques. Only this can ensure the greater accuracy in the
identification procedure for ARMA processes with small parameter values,
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