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Clustering is the process of organizing dissimilar objects into natural
groups in such a way objects in the same group is more similar than objects
in the different groups. Since we know clustering is an unsupervised
learning problem, typical clustering algorithms not achieving its end
to handle uncertainty that exists in the real life experience. Though
fuzzy clustering handles incompleteness and vagueness in the data set
efficiently, it is highly descriptive than hard clustering algorithm. Rough
clustering algorithm is the popular soft clustering technique which
uses rough set to handle uncertainty. In Rough Fuzzy clustering, each
cluster is represented by centroid, crisp lower approximation and fuzzy
boundary. Clustering undergoes sequence of partitions where cluster
evaluation is the final step in clustering process. Efficient clustering
structure can be obtained through validity measures. Various validity
measures have been proposed to evaluate rough fuzzy clustering. Since
those measures are Geometric measures, this paper proposes decision
theoretic measure for validating rough fuzzy clustering structure.
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Introduction

Cluster analysis (Mirkin, 1996) organizes a set
of unlabeled objects into subsets, such that the
objects belonging to the same group of cluster
are more similar than those belonging to different
group of clusters. It is a main task of exploratory
data mining and a common technique for statistical
data analysis, widely applied in many areas such
as pattern recognition, Marketing, information
retrieval, bioinformatics and so on.

In real life, a data point should belong to
multiple clusters. This problem can be brought to a
solution based on different soft computing approaches.
For instance, Fuzzy c-means (FCM) algorithm
(Bezdek, 1981) uses Fuzzy set representation of
clusters. As an important approach for uncertain and
vague data analysis, the theory of Rough sets was also
incorporated in HCM framework to develop the Rough
c-means (RCM) algorithm (Lingras, 2004). Like HCM,
RCM can be classified into the partitional clustering
methods where RCM can also assign a data point to
more than one clusters, but uses different restrictions.
Representing cluster in RCM includes lower and upper
approximations. Based on the distance between a
datapoint and cluster centroid, each data point may be
assigned to the lower approximation of a certain cluster
(and hence in the upper approximation of this cluster) or
the boundary areas of two or more clusters (and hence
in the upper approximations of the clusters). (Mitra, et
al, 2006) proposed a Rough Fuzzy c-means clustering
algorithm (RFCM) with fuzzy lower approximations
and fuzzy boundaries and (Maji and Pal,2007 )
proposed Rough Fuzzy Possibilistic c-means clustering
algorithm (RFPCM).

To determine the number of clusters, good cluster
validity checking method is helpful. Clustering
validity evaluation is concerned with “assessing the
validity of clustering that has been obtained from
the application of clustering procedure”. In general,
a cluster validation checking method includes a
measure of cluster quality and the optimal number
of clusters for some kind of clustering algorithms.

Cluster Validity Index (CVI) is a helpful
criterion used to assess the quality of clustering
and are based on external criteria, internal criteria
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and relative criteria (Gardon, 1999). For example,
some indices are based on considering the
compactness within each cluster or the separation
between clusters (Bouguessa, et al, 2006), some
on the information entropy (Liang, et al, 2012).
Xie—Beni Index and its derivations need to assign
a membership u, for an object x to a cluster,
(Beni,1991). On the other side, the decision-
theoretic rough set (DTRS) model introduced by
(Yao, et al,2007) has been verified to be helpful
in providing a better understanding of clustering,
which inspires us to determine the number of
clusters through the DTRS model.. This paper
proposes the new cluster validity index for rough
fuzzy clustering which utilizes this DTRS model.

Materials and Methods

(1) Related Work

(1.1) Rough Fuzzy C Means Clustering

This allows one to incorporate fuzzy membership
value ug of a sample X; to a cluster mean Vi relative
to all other means ¥} € j = i, instead of the absolute
individual distance d; from the centroid. The
major steps of the algorithm are provided below.
(1) Assign initial means ¥; for the ¢ clusters.

(i1)) Compute ug by (3) for ¢ clusters and N data
objects.

(ii1)) Assign each data object (pattern) X; to the
lower approximation EU; or upper approximation
BU;, BU; of cluster pairs U; and U; by computing
the difference in its membership uy — wuy to
cluster centroid pairs ¥; and v; .

(iv) Let uy be maximum and uj; be the next to
maximum.
If ug — ug is less than some threshold, then
X, € BU; and X; € BU; and X; cannot be a member
of any lower approximation, else X; € EU; such
that membership u; is maximum over the ¢
clusters.

(v) Compute new mean for each clusterl;,
incorporating (2) and (3) into (4), as in (9), shown
at the bottom of the page.

(vi) Repeat Steps 2)-5) until convergence, i.e.,
there are no more new assignments.

We use wy, =1 = wigy, 0.5 <wyy <1,m=2,and
0 < threshold < 0.5
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(1.2) Cluster Validity

Although cluster evaluation is the final for clustering
process, yet in order to obtain good clustering structure,
typical objective functions formalize the goal of
attaining high intra-cluster similarity and low inter-
cluster similarity which uses cluster validity indices to
evaluate the resulting clusters. Following are some of
the cluster validity indices used to evaluate rough fuzzy
clustering structure.

(1.3)Rough Fuzzy Cluster Quality measures

. 1 A
(1) @ Index: a index =r,i i LW:L V5, @)
where A4;= Ly cata0 {-""'ij') =4, ]] sand

Bi=%, catan {.ul-j-) )

M constitutes the probabilistic memberships of
object X, incluster B;. The parameters w and # correspond
to the relative importance of lower and boundary
region. The o index provides the average accuracy of
¢ clusters. It is the average of the ratio of the number
of elements in lower approximation to that in upper
approximation of each cluster. In effect, it captures the
average degree of completeness of knowledge about
all clusters. A good clustering procedure should make
all objects as similar to their centroids as possible.The
o index increases with increase in similarity within
a cluster. Therefore, for a given data set and c value,
the higher the similarity values within the clusters, the
higher would be the a value. Thus similarity value is
directly proportional to the oo value. The value of a
also increases with c.

(ii) 1 Index: 7 1) index = - =15, = A“f;ﬁ 3)

The 1 index corresponds to the average roughness
of ¢ clusters and is described by subtracting the average
accuracy o from 1, where A, and B, are given by Equation
3. Note that the lower the value of 1, the better is the
overall clusters approximations. Thus 1 is inversely
proportional to the overall cluster approximations. Also,
0 <n=< 1. Basically, 1) index states the average degree of
incompleteness of knowledge about all clusters.

(iii) @= a*Index: o*= g; where C = ¢, wd;; and D =
¥ wd +WEB Y (4)
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The a* index constitutes the accuracy of approximation
of all clusters. It captures the exactness of approximate
clustering. The value of a* being as high as possible
makes it a best clustering procedure. The exactness of
approximate clustering is maximized by o* index.
(iv) ¥ Index: ¥= E ; where R = £¢_,|4(8,)|; and S =
=n (5)

It is the proportion of the total number of objects in
lower approximations of all clusters to the cardinality
of the universe of discourse U. The index primarily
symbolizes the quality of approximation of clustering
algorithm.

Ul

(2) Proposed Rough Fuzzy Cluster Quality Index
(2.1) Risk for Assigning Objects under Clusters

For rough fuzzy clustering (RC), an object x; may
belong to more than one cluster. Moreover, each cluster
¢, is represented by its lower approximation apr(z; )
and upper approximation apr(c; ). There also exists the
boundary region bnd(c; ) = @pr(c, ) — apr (g, ).
Let C={cl,c2,3} Then b={{cl},{c2},{g} {clc2}
B={b1b2p3...... bj}

For rough fuzzy clustering, let b;(RC, %7 ) be the action
that assigns the object x; to sub clusters. The loss
function for x; can be expressed as follows:
Az(b; (€5, 2)IE)=0,if ¢ € b;(RC.%;)  (6)
Az(b;(Cs. 2)IE)=1,if & e b;(RC.T})

The risk associated with the assignment will then
be given as R{E:J.-{CS,x_JIx_l}.It can be calculated by
multiplying loss and probability. Risk measure is
defined as,

R(B; (€S, TIF)=Eim g i cion; tmczn Ax (B (€S, FDIF)*
Plclx) (D)
In Rough Fuzzy Clustering P(CIX)) can be

calculated us1n% the following equation
U P(XI|ci)

S

P(z; I—Z]_”"H:m (8)
Where

PCI) =mm— Q)

PX) =If.PcdP(Z) (10)
P(X) =Zi. P(COug (11)

(2.2)Risk for Lower Approximation

For rough clustering, let R(RC, apr(z; Hibe the risk for
a lower approximation. o

R(RC, E!-P?’":E_L :]:] =Ef[E apric}) R {‘I-:J_i'{':'_s* ‘r_l:l |-r_1} (12)
(2.3)Risk for Upper Approximation

For rough clustering, let R(RC, apr(c; J) be the risk for
a upper approximation. o

(RC 857 (T, )= Ls,e vz R (b;(C5. T)Ix)) (13)
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(24)Risk for Boundary Area
For rough clustering, let R(RC, bnd(¢; })be the risk for
the boundary area of t;c,.

R(RC,bnd(e)) = Zsepmaiz R (5, RC.TDE)  (14)
(3)Proposed Algorithm
Input : Rough Fuzzy clusters (Obtained thro

Rough Fuzzy C Means Clustering).

Output: Best Rough Fuzzy Clustering Structure

1. repeat/, 2. for i=2 to n-1/, 3. for each C, do /,
4 for each object X of Lower Approximation
of C. /, 5. calculate risk R(bj(C,Xl))/ ,6.end/, 7.
calculate R(RC, apr(c;)y/. 8. for each object X
of Upper Approximation of C. /, 9. calculate risk
R(b,(C.X))/, 10. end/, 11 calculate R(RC, apric; )
)/, 12. for each object X of Boundary of Ci/, 13.
calculate risk R(bi(C,Xl)) /,14. end/, 15. calculate
R(RC, bnd(¢; }(¢; 1)/,16. Calculate Risk R(RFC,Ci)
for Clustering Structure Ci/, 17.end/, 18. for
c=2 to n-1/, 19.compare risk for each clustering
structure(CS) /, 20. end/, and, 21. Best Clustering
Structure(c) =Clustering structure with minimum
risk.

Results and Discussion

(1)Syntactic Data

Let us illustrate the proposed risk measure for two
different clustering schemes, rough clustering and
rough fuzzy clustering, with the following example.
The following data set consists of 10 objects described
by two features, table 1.

Table 1: 2- Dimension Data Set

Object

(2 Dimension)
1.7 1.7
2.1 1.8
1.6 2.1
3.5 2.7
3.5 5.1
3.1 5.2
33 4.7
7.7 4.6
7.8 5.2
8.2 4.7

For rough clustering, we set k = 3 and wlow=
0:8. We also adjust the threshold to obtain the
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results presented in figure 1. In the figure, the small
circle represents the lower approximation and large
circle represents the upper approximation of each
cluster. Since fourth object is closer to both c1 and
c2, it belongs to upper approximation of both the
clusters.

6

5 e m
[ (k)
4
/_&_\CZ / # Object
3 centroidl
*

5 /. \—>§ M centroid2

w c1 > centroid3
1
0 T

0 2 4 6 8 10

Figure 1: Rough Clustering

For rough fuzzy clustering, we set k = 3 and wlow=
0:8. We also adjust the threshold to obtain the results
presented in figure 2. In the figure, the small circle
represents the lower approximation and large circle
represents the upper approximation of each cluster.
Since fourth object is closer to both c1 and c2, it belongs
to upper approximation of both the clusters. According
to rough fuzzy clustering fourth object is having certain
membership value in both the clusters.

6

; ZI 7o
AT

4
/_&_\CZ / 4 Object

3 centroidl

¢ C1:0561

5 /’_ \x\ C2:0.379 M centroid2
*v /) * centroid3

1

0 T T T T 1

0 2 4 6 8 10

Figure 2: Rough Fuzzy Clustering

Table 2 shows centroid and risk for each cluster under
rough clustering. Hence risk for clustering structure can
be calculated by adding risk of all the clusters.
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Table 2: Risk for Rough Clustering

Object . .
(2 Dimension) Risk | Centroid | Cluster
7] 17 | 0044
2.1 1.8 0.474 Cl
e 21 Tonar ] 2:05.1.99
3.5 2.7 0.409 C1,C2
3.5 5.1 0.519
3.0 52 | 0.504 ©
7.7 4.6 0.393
7.8 5.2 0.374 C3
Sy T4 To3sa | 19483

Table 3 shows centroid and risk for each cluster under
rough fuzzy clustering. Hence risk for clustering
structure can be calculated by adding risk of all the
clusters.

Table 3: Risk for Rough Fuzzy Clustering

Object . .

(2 Dimension) Risk | Centroid | Cluster
1.7 1.7 | 0.451
2.1 1.8 | 0.477 Cl
1.6 | 2.1 | 0483 | 205199
35 27 | 0327 CL.C2
35 51 | 0.535
3.1 52 | 0.528 2
33 47 | 0553 | 33465
77 46 | 0393
78 52 | 0378 C3
82 | 47 | 0357 | /9483

Figure 3 shows risk for rough clustering
with respect to the number of clusters. It shows
minimum risk value the cluster number c=3.Hence
we can visually verify the results.

Risk for Rough Clustering

30
—9—5@1@1

25
Riskt?
15
10

5 i k i i

2 3 4 5 5 7

noof clusters

Figure 3: Risk for Rough Clustering with Respect to
Number of Clusters
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Figure 4 shows risk for rough fuzzy clustering with
respect to the number of clusters. It shows minimum
risk value the cluster number ¢=3.It shows that rough
fuzzy clustering provides minimum risk value than

rough clustering

Risk for Rough Fuzzy Clustening
3G

25
24
Risk
15

10

o L 1 1 I
2 2.5 3 35 4

i 1 i i L i
4.5 5 bh & 8.5 T

no ofclusters

Figure 4: Risk for Rough Clustering with Respect to
Number of Clusters

Figure 5 and Figure 6 shows change in risk with
threshold for rough and rough fuzzy clustering. Rough
Clustering gives minimum risk value for the threshold
1.5 and rough fuzzy clustering gives minimum risk
value for the threshold 1.4.

Changs in risk for roungh clusterning with thres hold

1.2 1.3 1.4 1.5 1.6 1.7 1.8
Threshold

Figure 5: Risk Vs Threshold

Change in risk with Threshold for Rough Fuzzy Clustering

105§

]
W

1.4 1.5 1.6 1.7 1.8
Thires heobd

Figure 6: Risk Vs Threshold
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(2) Wisconsin Breast Cancer Data

The previous section used synthetic data that was
designed to highlight and test salient features of the
proposed risk based measure. In this section, we use
a standard real-world data set .The testing for such
a standard data set makes it possible to compare
the proposed approach with some of the previous
clustering results. Wisconsin breast cancer databases
were obtained from the University of Wisconsin
Hospitals. This data set contains 699 instances that fall
into two classes: benign (458 instances) and malignant
(241 instances). Each instance is represented by nine
attributes, all of which are scaled to a 1:10 range. The
variation in risk for different values of threshold is
shown in figure7 and figure 8. The risk seems to decline
from threshold value of 1.1 to 1.7. However, there is a
sharp drop in risk when the threshold is reduced from
1.3 to 1.4. Therefore, Threshold of 1.4 can again be
used as an appropriate value.

Figure 8: Breast Cancer Data: Rough Fuzzy Clustering
It can be seen from both figure 9 and figurel0,
that the risk of clustering is minimum for two clusters
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and then continuously rises. Since we want to group the
objects into two categories: benign and malignant, this
risk measure provides appropriate number of clusters.

13 3 : 5 § 7

Mo Clustars

Figure 10: Breast Cancer Data: Rough Fuzzy Clustering
Table 4 shows risk for rough and rough fuzzy

clustering for both (when c=2 & when c=3) synthetic

data set and breast cancer data set.

Table 4: Risk Values When c=2 & When c=3

. Synthetic Data | Breast Cancer

Clustering

Set Data set
Scheme

When When | When [When

c=2 c=3 c=2 c=3
Rough 532 #4.49 252.67 [140.51
Rough 521 W48 | 22579 [134.64
Fuzzy
Conclusion

This paper proposed a rough fuzzy cluster validity
index based on decision theory. The proposal uses a
risk measure to construct the validity index. Therefore,
the cluster quality is evaluated by considering the total
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risk of categorizing all the objects. Such a decision-
theoretic representation of cluster quality may be more
useful in business-oriented data mining than traditional
geometry-based cluster quality measures. Rough fuzzy
clustering provides lesser risk than rough clustering.
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