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  Clustering is the process of organizing dissimilar objects into natural
 groups in such a way objects in the same group is more similar than objects
 in the different groups. Since we know clustering is an unsupervised
 learning problem, typical clustering algorithms not achieving its end
 to handle uncertainty that exists in the real life experience. Though
 fuzzy clustering handles incompleteness and vagueness in the data set
 efficiently, it is highly descriptive than hard clustering algorithm. Rough
 clustering algorithm is the popular soft clustering technique which
 uses rough set to handle uncertainty. In Rough Fuzzy clustering, each
 cluster is represented by centroid, crisp lower approximation and fuzzy
 boundary. Clustering undergoes sequence of partitions where cluster
 evaluation is the final step in clustering process. Efficient clustering
 structure can be obtained through validity measures. Various validity
 measures have been proposed to evaluate rough fuzzy clustering. Since
 those measures are Geometric measures, this paper proposes decision
theoretic measure for validating rough fuzzy clustering structure.

قرار التقييم النظري للتجميع الضبابي الاستقرابي
1ريفاثي سوبرامانيون، و 2بارفاثافرثيني بالاسوبرامانيون

1جامعة ساثيابما، تشيناي، الهند 

2كلية سان جوزيف للهندسة، جامعة آنا، تشيناي، الهند 

إن التجميع العنقودي هو عملية تنظيم لأشياء مختلفة في مجموعات طبيعية بطريقة تبدو فيها 
نعلم  المختلفة. وحيث  المجموعات  في  تشابهًا من غيرها  أكثر  المجموعة  نفس  الأشياء من 
العنقودي  التجميع  خوارزميات  فإن  تخضع لإشراف،  لم  تعلم  مشكلة  العنقودي  التجميع  أن 
النموذجية لا تحقق المراد منها لإدارة الريبة الموجودة في تجارب الحياة الحقيقية. مع ذلك، 
فإن التجميع العنقودي الضبابي يتناول عدم اكتمال وغموض مجموعات البيانات بكفاءة، إذ 
يتميز بالوصفية الشديدة أكثرمن خوارزمية التجميع العنقودي المتشدد. إن خوارزمية التجميع 
العنقودي الاستقرابي طريقة تجميع مرنة وشهيرة تستخدم مجموعات استقراب لإدارة الريبة. 
نقطة وسطى وتقريب سفلي  يمثله  الاستقرابي، كل عنقود  الضبابي  العنقودي  التجميع  وفي 
تقييم  الحواجز حيث يكون  إلى سلسلة من  العنقودي  التجميع  متموج، وحد ضبابي. يخضع 
العنقود هو الخطوة الأخيرة في عملية التجميع العنقودي. يمكن الحصول على هيكل عنقودي 
تقييم  إمكانية  الصلاحية  معايير  من  العديد  طرحت  الصلاحية.  إجراءات  خلال  مع  كفء 
التجميع العنقودي الضبابي الاستقرابي. وحيث إن هذه المعايير هندسية، يتناول هذا البحث 

قرار بشأن المعيار النظري لصلاحية هيكل التجميع العنقودي الضبابي الاستقرابي.
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Introduction

Cluster analysis (Mirkin, 1996) organizes a set 
of unlabeled objects into subsets, such that the 
objects belonging to the same group of cluster 
are more similar than those belonging to different 
group of clusters. It is a main task of exploratory 
data mining and a common technique for statistical 
data analysis, widely applied in many areas such 
as pattern recognition, Marketing, information 
retrieval, bioinformatics and so on.

In real life, a data point should belong to 
multiple clusters. This problem can be brought to a 
solution based on different soft computing approaches. 
For instance, Fuzzy c-means (FCM) algorithm 
(Bezdek, 1981) uses Fuzzy set representation of 
clusters. As an important approach for uncertain and 
vague data analysis, the theory of Rough sets was also 
incorporated in HCM framework to develop the Rough 
c-means (RCM) algorithm (Lingras, 2004). Like HCM, 
RCM can be classified into the partitional clustering 
methods where RCM can also assign a data point to 
more than one clusters, but uses different restrictions. 
Representing cluster in RCM includes lower and upper 
approximations. Based on the distance between a 
datapoint and cluster centroid, each data point may be 
assigned to the lower approximation of a certain cluster 
(and hence in the upper approximation of this cluster) or 
the boundary areas of two or more clusters (and hence 
in the upper approximations of the clusters). (Mitra, et 
al, 2006) proposed a Rough Fuzzy c-means clustering 
algorithm (RFCM) with fuzzy lower approximations 
and fuzzy boundaries and (Maji and Pal,2007  ) 
proposed Rough Fuzzy Possibilistic c-means clustering 
algorithm (RFPCM).
      To determine the number of clusters, good cluster 
validity checking method is helpful. Clustering 
validity evaluation is concerned with “assessing the 
validity of clustering that has been obtained from 
the application of clustering procedure”. In general, 
a cluster validation checking method includes a 
measure of cluster quality and the optimal number 
of clusters for some kind of clustering algorithms.
        Cluster Validity Index (CVI) is a helpful 
criterion used to assess the quality of clustering 
and are based on external criteria, internal criteria 

and relative criteria (Gardon, 1999). For example, 
some indices are based on considering the 
compactness within each cluster or the separation 
between clusters (Bouguessa, et al, 2006), some 
on the information entropy (Liang, et al, 2012). 
Xie–Beni Index and its derivations need to assign 
a membership uit for an object xt to a cluster, 
(Beni,1991).  On the other side, the decision-
theoretic rough set (DTRS) model introduced by 
(Yao, et al,2007) has been verified to be helpful 
in providing a better understanding of clustering, 
which inspires us to determine the number of 
clusters through the DTRS model.. This paper 
proposes the new cluster validity index for rough 
fuzzy clustering which utilizes this DTRS model.

Materials and Methods 
(1) Related Work
(1.1) Rough Fuzzy C Means Clustering
This allows one to incorporate fuzzy membership 
value  of a sample  to a cluster mean  relative 
to all other means  = i, instead of the absolute 
individual distance  from the centroid. The 
major steps of the algorithm are provided below.
(i)   Assign initial means  for the c clusters.
(ii)  Compute  by (3) for c clusters and N data 
objects.
(iii) Assign each data object (pattern)  to the 
lower approximation   or upper approximation 

,    of cluster pairs  and   by computing 
the difference in its  membership   −    to 
cluster centroid pairs    and  .
(iv)  Let   be maximum and    be the next to 
maximum.
If   −   is less than some threshold,  then 

  and    and  cannot be a member 
of any lower approximation,  else   such 
that membership    is maximum   over the c 
clusters.
(v) Compute new mean for each cluster , 
incorporating (2) and (3) into (4), as in (9), shown 
at the bottom of the page.
(vi) Repeat Steps 2)–5) until convergence, i.e., 
there are no more new assignments. 
We use  = 1 −  , 0.5 <   <1, m = 2, and 
0 < threshold < 0.5
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(1)             

(1.2) Cluster Validity
Although cluster evaluation is the final for clustering 
process, yet in order to obtain good clustering structure, 
typical objective functions formalize the goal of 
attaining high intra-cluster similarity and low inter-
cluster similarity which uses cluster validity indices to 
evaluate the resulting clusters. Following are some of 
the cluster validity indices used to evaluate rough fuzzy 
clustering structure.
(1.3)Rough Fuzzy Cluster Quality measures
 (i)   Index:    α  index =    (2)
   where =  = ;and
              =    (2)                                       

μij constitutes the probabilistic memberships of 
object xj in cluster . The parameters w and  correspond 
to the relative importance of lower and boundary 
region. The α index provides the average accuracy of 
c clusters. It is the average of the ratio of the number 
of elements in lower approximation to that in upper 
approximation of each cluster. In effect, it captures the 
average degree of completeness of knowledge about 
all clusters. A good clustering procedure should make 
all objects as similar to their centroids as possible.The 
α index increases with increase in similarity within 
a cluster. Therefore, for a given data set and c value, 
the higher the similarity values within the clusters, the 
higher would be the α value. Thus similarity value is 
directly proportional to the α  value. The value  of α 
also increases with c.
(ii) η Index:  η  index = 1-α =1-   (3)                                      

The η index corresponds to the average roughness 
of c clusters and is described by subtracting the average 
accuracy α from 1, where Ai and Bi are given by Equation 
3. Note that the lower the value of η, the better is the 
overall clusters approximations. Thus η is inversely 
proportional to the overall cluster approximations. Also, 
0 ≤η≤ 1. Basically, η index states the average degree of 
incompleteness of knowledge about all clusters.
(iii)  α*Index:  α*= ; where C = ; and D = 

  (4)                                                                  

The α* index constitutes the accuracy of approximation 
of all clusters. It captures the exactness of approximate 
clustering. The value of α* being as high as possible 
makes it a best clustering procedure. The exactness of 
approximate clustering is maximized by  α* index.
(iv)  Index: =   ; where R = ; and S = 
= n  (5)  
It is the proportion of the total number of objects in 
lower approximations of all clusters to the cardinality 
of the universe of discourse U. The index primarily 
symbolizes the quality of approximation of clustering 
algorithm.

(2)  Proposed  Rough  Fuzzy  Cluster  Quality  Index
(2.1) Risk for Assigning Objects under Clusters
For rough fuzzy clustering (RC), an object   may 
belong to more than one cluster. Moreover, each cluster 

  is represented by its lower approximation  
and upper approximation . There also exists the 
boundary region bnd  = . 
Let C={c1,c2,c3} Then b={{c1},{c2},{c3},{c1,c2},......}    
B={b1,b2,b3..........bj}
For rough fuzzy clustering, let  be the action 
that assigns the object   to sub clusters. The loss 
function for   can be expressed as follows:
 =0, if     (6)
 =1, if        

The risk associated with the assignment will then 
be given as R .It can be calculated by 
multiplying loss and probability. Risk measure is 
defined as,
R = *                                               
P      (7)

In Rough Fuzzy Clustering P(Ci|Xl) can be 
calculated using the following equation
    P  =   (8) 
Where 

P(Ci)    =      (9)                                        
P(Xl)    =  (10)                                        
P(Xl)    =   (11)    
(2.2)Risk for Lower Approximation
For rough clustering, let R(RC, be the risk for 
a lower approximation. 
R(RC,  =   (12) 
(2.3)Risk for Upper Approximation 
For rough clustering, let R(RC,  be the risk for 
a upper approximation. 
 (RC, )=                (13)
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(2.4)Risk for Boundary Area 
For rough clustering, let R(RC, bnd )be the risk for 
the boundary area of . 
R(RC, bnd ) =       (14)

(3)Proposed Algorithm
Input  : Rough Fuzzy clusters (Obtained thro 
Rough Fuzzy C Means Clustering).
Output: Best Rough Fuzzy Clustering Structure
1. repeat/, 2. for i=2 to n-1/, 3. for each Ci do /, 
4.for each object Xl  of Lower  Approximation   
of Ci  /, 5.  calculate risk R(bj(C,Xl))/, 6. end/, 7. 
calculate R(RC, /.  8. for each object Xl  
of Upper Approximation  of Ci /, 9. calculate risk 
R(bj(C,Xl))/, 10. end/, 11 calculate  R(RC, 
)/, 12. for each object Xl  of Boundary  of Ci/, 13.  
calculate risk R(bj(C,Xl)) /,14.  end/,  15. calculate 
R(RC, bnd )/,16. Calculate Risk R(RFC,Ci)
for Clustering  Structure Ci/, 17.end/, 18. for 
c=2 to n-1/, 19.compare risk for each clustering 
structure(CS) /, 20. end/,  and,  21. Best Clustering 
Structure(c) =Clustering structure with minimum 
risk. 

Results and Discussion
(1)Syntactic Data
Let us illustrate the proposed risk measure for two 
different clustering schemes, rough clustering and 
rough fuzzy clustering, with the following example. 
The following data set consists of 10 objects described 
by two features, table 1.
Table 1: 2- Dimension Data Set
Object
(2 Dimension)
1.7 1.7
2.1 1.8
1.6 2.1
3.5 2.7
3.5 5.1
3.1 5.2
3.3 4.7
7.7 4.6
7.8 5.2
8.2 4.7

         For rough clustering, we set k = 3 and wlow= 
0:8. We also adjust the threshold to obtain the 

results presented in figure 1. In the figure, the small 
circle represents the lower approximation and large 
circle represents the upper approximation of each 
cluster. Since fourth object is closer to both c1 and 
c2, it belongs to upper approximation of both the 
clusters. 

Figure 1: Rough Clustering
For rough fuzzy clustering, we set k = 3 and wlow= 

0:8. We also adjust the threshold to obtain the results 
presented in figure 2. In the figure, the small circle 
represents   the lower approximation and large circle 
represents the upper approximation of each cluster. 
Since fourth object is closer to both c1 and c2, it belongs 
to upper approximation of both the clusters. According 
to rough fuzzy clustering fourth object is having certain 
membership value in both the clusters.

Figure 2: Rough Fuzzy Clustering
Table 2 shows centroid and risk for each cluster under 
rough clustering. Hence risk for clustering structure can 
be calculated by adding risk of all the clusters.
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Table 2: Risk for Rough Clustering
Object

(2 Dimension) Risk Centroid Cluster

1.7 1.7 00.44
2.05,1.99 C12.1 1.8 0.474

1.6 2.1 00.47
3.5 2.7 0.409

3.3,4.65

C1,C2
3.5 5.1 0.519

C23.1 5.2 0.504
3.3 4.7 0.553
7.7 4.6 0.393

7.9,4.83 C37.8 5.2 0.374
8.2 4.7 0.354

Table 3 shows centroid and risk for each cluster under 
rough fuzzy clustering. Hence risk for clustering 
structure can be calculated by adding risk of all the 
clusters.

Table 3: Risk for Rough Fuzzy Clustering
Object

(2 Dimension) Risk Centroid Cluster 

1.7 1.7 0.451 
2.05,1.99 C1 2.1 1.8 0.477 

1.6 2.1 0.483 
3.5 2.7 0.327 

3.3,4.65

C1,C2 
3.5 5.1 0.535 

C2 3.1 5.2 0.528 
3.3 4.7 0.553 
7.7 4.6 0.393 

7.9,4.83 C3 7.8 5.2 0.378 
8.2 4.7 0.357 

Figure 3 shows risk for rough clustering 
with respect to the number of clusters. It shows 
minimum risk value the cluster number c=3.Hence 
we can visually verify the results. 

Figure 3: Risk for Rough Clustering with Respect to 
Number of Clusters

Figure 4 shows risk for rough fuzzy clustering with 
respect to the number of clusters. It shows minimum 
risk value the cluster number c=3.It shows that rough 
fuzzy clustering provides minimum risk value than 
rough clustering

Figure 4: Risk for Rough Clustering with Respect to 
Number of Clusters

Figure 5 and Figure 6 shows change in risk with 
threshold for rough and rough fuzzy clustering. Rough 
Clustering gives minimum risk value for the threshold 
1.5 and rough fuzzy clustering gives minimum risk 
value for the threshold 1.4.

Figure 5: Risk Vs Threshold

Figure 6: Risk Vs Threshold
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(2) Wisconsin Breast Cancer Data
The previous section used synthetic data that was 
designed to highlight and test salient features of the 
proposed risk based measure. In this section, we use 
a standard real-world data set .The testing for such 
a standard data set makes it possible to compare 
the proposed approach with some of the previous 
clustering results. Wisconsin breast cancer databases 
were obtained from the University of Wisconsin 
Hospitals. This data set contains 699 instances that fall 
into two classes: benign (458 instances) and malignant 
(241 instances). Each instance is represented by nine 
attributes, all of which are scaled to a 1:10 range. The 
variation in risk for different values of threshold is 
shown in figure7 and figure 8. The risk seems to decline 
from threshold value of 1.1 to 1.7. However, there is a 
sharp drop in risk when the threshold is reduced from 
1.3 to 1.4. Therefore, Threshold of 1.4 can again be 
used as an appropriate value.

Figure 7: Breast Cancer Data: Rough Clustering

Figure 8: Breast Cancer Data: Rough Fuzzy Clustering
           It can be seen from both figure 9 and figure10, 
that the risk of clustering is minimum for two clusters 

and then continuously rises. Since we want to group the 
objects into two categories: benign and malignant, this 
risk measure provides appropriate number of clusters.

Figure 9: Breast Cancer Data: Rough Clustering

Figure 10: Breast Cancer Data: Rough Fuzzy Clustering
Table 4 shows risk for rough and rough fuzzy 

clustering for both (when c=2 & when c=3) synthetic 
data set and breast cancer data set.
Table 4: Risk Values When c=2 & When c=3

Clustering 
Scheme 

Synthetic Data 
Set 

Breast Cancer 
Data set 

When 
c=2

When 
c=3

When 
c=2

When 
c=3

Rough 5.32 4.49 252.67 140.51 
Rough 
Fuzzy 5.21 4.48 225.79 134.64 

Conclusion
This paper proposed a rough fuzzy cluster validity 
index based on decision theory. The proposal uses a 
risk measure to construct the validity index. Therefore, 
the cluster quality is evaluated by considering the total 
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risk of categorizing all the objects. Such a decision-
theoretic representation of cluster quality may be more 
useful in business-oriented data mining than traditional 
geometry-based cluster quality measures. Rough fuzzy 
clustering provides lesser risk than rough clustering.
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