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In this paper, Artificial Particle Swarm Optimization (PSO) inspired by 
real Swarm social–psychological tendency is used to solve time constraint 
prioritization problem-the techniques to prioritize the test cases that finds 
faults as early as possible, or maximize the rate of fault detection in the suite. 
The proposed technique is compared with three searches based metaheuristic 
approaches–(1) an ant-colony optimization approach, (2) Cuscuta search 
algorithm and (3) Hybrid Particle Swarm Optimization algorithm and two 
evolutionary metaheuristic- (1) Multi-Criteria Genetic algorithm technique 
which the fitness is APFD and (2) Multi-Criteria Genetic algorithm technique 
which the fitness is the proposed fitness multiplied by APFD and with five 
other non-search based prioritization techniques- (1) optimal, (2) random, (3) 
reverse, (4) untreated and (5) average faults found per minute algorithm based 
ordering. We investigate whether the proposed PSO metaheuristic outperforms 
existing prioritizing techniques in terms of APFD Score.

في هذه الورقة، تستخدم  تهيئة سرب الجسيمات الاصطناعي  المستوحاة من النزعة 
الاجتماعية والنفسية للسرب الحقيقي لحل مشكلة تحديد أولويات القيد للوقت. تستعمل 
أو  أقرب وقت ممكن،  التي تجد أخطاء في  أولويات حالات الاختبار  لتحديد  التقنيات 
تعظيم معدل الكشف عن خطأ في المجموعة.  قورنت التقنية المقترحة مع ثلاث عمليات 
بحث تعتمد على مقاربات ميتاهوريستيك: (1) نهج التهيئة الأمثل لمستعمرة النمل، (2) 
خوارزمية البحث كوزكوتا و (3) خوارزمية تحسين سرب الجسيمات الهجين بالإضافة 
الى خوارزميتين متطورتين (1) متعددة المعايير الجينية (2) تقنية الخوارزمية الجينية 
المتعددة المعايير وفيهاتكون النمذجة ا لرياضية مضروبة في .. بالإضافة الى خمسة 
تقنيات ترتيب الأولويات أخرى غير القائمة على البحث: (1) الأمثل، (2) عشوائي، 
خوارزمية  في  وجدت  التي  الأخطاء  معدل   (5) و  المعالجة  غير   (4) عكس،   (3)
الترتيب.في هذه الورقة نحقق في ما إذا كان الميتاميولوجي PSO المقترح يتفوق على 

.AFPD تقنيات تحديد الأولويات الحالية من حيث نقاط
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Introduction

Life cycle models are used to develop a 
software system from scratch and to assure that 
the developed software works efficiently as per 
requirement, SDLC include various stages that 
vary from one SDLC model to other SDLC model, 
but the most common phase in all models is of 
testing which assures that the developed software 
is error free. Software testing tries to detect errors 
as early as possible because the cost of removing 
an error  become high if  detected in later stages 
of development. The test suites which are used to 
uncover errors in software undergo frequent reuse 
and updation as the software evolves with time. 
This results in large size test suites that may contain 
redundant test cases. The time and resources 
required to execute these ever increasing test suite 
is a critical factor in deciding the cost of a software 
system. Thus it becomes necessary to minimize the 
test suite by eliminating the redundant test cases. 
i.e. test case minimization, to develop techniques 
to select test cases which are important to identify 
the parts of the system under test(suite) that have 
been modified, and the techniques to prioritize the 
test cases that finds faults as early as possible, or 
maximize the rate of fault detection in the suite.

A Software system undergoes different changes 
while fixing a detected/known fault or adding or 
deleting a new requirement(s). These changes 
must be validated i.e. software must be retested 
in order to accomplish the changes. Thus the 
validation aims: (1) that the new added/ deleted 
requirement have been implemented correctly; 
(2) to ensure that the reflection of the new added/ 
deleted requirement does not affect the previous 
functionalities (3) checking of those parts of the 
software that have not been checked before.

The process of retesting the software system 
to ensure that the modified program still works 
correctly with all previous and new test cases used 
to test original program and new modified program 
respectively so that the modified software still 
meets its requirements is called regression testing. 

A timeline example in figure1 describes the life 
of a software system. Although the execution time 
of regression testing is a considerable fraction of 

the timeline but unfortunately the regression testing 
cannot always be completed because of the frequent 
changes and updates to a system. When a program 
is modified/updated, it is almost impossible to 
guarantee that the changes work correctly and 
that the unmodified modules of the program have 
not been affected by the modification(s). Still 
it is extremely necessary to perform exhaustive 
regression testing as a small change in one module 
can reflect a bigger change(s) in other module(s).
Thus Regression testing has emerged as a great 
subject of research among software testing 
community. Three core areas in regression testing 
that attracts most researchers are: (1) test case 
minimization; (2) test case selection; (3) test case 
Prioritization.

In this paper we primarily focus on test case 
prioritization which is to identify the best order 
in which a given test cases under some test suite 
must be executed so as to maximize the rate of 
fault detection. Different Artificial intelligence 
techniques are available to solve optimization 
problems [25, 27, 14, 26, 45]. We proposed 
Particle Swarm optimization as an effective 
method to obtain best test case execution order and 
to maximize the rate of fault detection.

ammonia and nitrite exposure atvarious 
salinities.

Related Works

Various approaches and techniques have 
been proposed during the last few years which 
use different techniques and criteria to prioritize 
given test cases [9, 16, 6, 12, 19, 39]. The most 
popular unit framework called JUnit is applied to 
coverage-based prioritization techniques [16]. The 
prioritized execution of JUnit test cases results in 
a higher value of APFD than untreated ordering. 
In Controlled environment, the effectiveness of the 
prioritization can be measured by executing the 
test cases according to the fault detection rate [35].
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The hybrid approach [6] that integrates coverage 
based prioritization with distribution based 
prioritization is based on the observation that basic 
coverage maximization performs much better than 
repeated coverage maximization. With repeated 
coverage maximization there has been a repetition 
of prioritized test case as it starts again from zero 
percent after reaching 100% whereas basic coverage 
maximization stops prioritizing the test cases once 
100% coverage is reached.

History based approach [20] is used to prioritize 
test cases that are prior selected by RTS technique(s).
The execution history of each test cases is carefully 
noted and last recently used (LRU) prioritization 
called HTC with a value close to zero is used for 
prioritization that acts as competitive in several 
constrained testing environment. If number of test 
cases selected by RTS technique is too high than test 
cases may undergo an additional prioritization.

Mirarab and Tahvildari [39] introduced a 
probabilistic approach to prioritization problem 
which utilizes Bayesian Networks (BN) and a 
feedback mechanism. The fault finding probability 
of each test case is predicted using BN and 
the performance of BN under several different 
realizations and under mutation technique which can 
provide a large number of faults is evaluated. The 
study concluded that most of the other prioritization 
techniques significantly outperforms well when 
used in conjunction with feedback [37].

During last few years artificial intelligence 
emerged as a great subject of interest in software 
testing [4, 32, 33, 29]. Different AI techniques are 
emerging as a tool to solve various optimization 
problems in software testing, such as Ant colony 
optimization (ACO) [28, 20] which is inspired by 
foraging behavior of ant colonies, and target discrete 
optimization problems [28] and combinatorial 
optimization problems like classic travelling 
salesman problem, data mining, telecommunication 
networks, vehicle routing [20, 5, 8, 10, 15, 23, 31, 
44], Artificial Bee Colony Optimization ( ABC) 
based on reaction–diffusion equations which results 
in collective exploration and exploitation of food 
source (i.e. candidate solutions) by swarm  [22], 
Genetic Algorithms (GA) which is a heuristic 
search algorithms that is inspired by natural 

biological evolution of species and solve a variety 
of optimization problems to  improve the quality of 
the search.

Various NP-hard combinatorial problems such 
as NP Knapsack [25] and Traveling Salesman 
Problem [27] in which optimal path to reach from 
source to destination with less time and cost have 
been solved successfully using PSO. It has been 
classified as an optimization approach and used to 
solve routing optimization [26] problems where the 
optimal paths for traffic/ packets are searched. PSO 
has been successfully implemented to solve various 
Scheduling problems such as job-scheduling [45], 
task scheduling problems in distributed systems [22], 
Test pattern generation for circuits [14] and software 
faults detection [38] are some other applications 
which are solved using PSO.

In the following sections we discuss various test 
case prioritization techniques. First we propose a 
Particle Swarm Optimization based approach for test 
case prioritization and then its result of prioritization 
of test cases in a test suite is compared in terms of 
average percentage of fault detected (APFD Score). 
The APFD score of the proposed PSO algorithm is 
compared with the existing work using two case 
studies- case study 1 and case study 2. With the case 
study 1, we demonstrate how the proposed algorithm 
works and how it is compared with the existing work 
in test case prioritization especially in genetic and 
Cuscuta search algorithm metaheuristic. The case 
study 2 is used to compare the proposed algorithm 
with three search based algorithms- (i) Ant colony 
based algorithm (ii) Cuscuta search algorithm and 
(iii) proposed PSO algorithm.

Each algorithm is first discussed briefly and 
then compare with the proposed PSO algorithm. 
Throughout the paper we are interested in the 
following research question 

Q) Which algorithm(s)/technique(s) is/are most 
effective in solving the test case prioritization 
problem in software testing?

Particle Swarm Optimization: Swarm 
Intelligence

What is intelligence? There has been a long  
debate to find the definition of intelligence which 
is still in its premature stage. Some scholars define 
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it as the ability to learn in complex situations, to 
make thought and reason, to bring out profit from 
experience. Intelligence is more than memory or 
learning. One definition defines intelligence as 
“Adaptively variable behavior during the lifetime 
of an individual” [42].

Kennedy et al., 1995 [18] discovered a unique 
pattern that direct the ability of birds to fly 
synchronously within the space and to suddenly 
change their direction by regrouping themselves 
without breaking the pattern. This behavior reflects 
a social corporation between birds within a flock. 
With this each particle’s goal is to reach a global 
position by cooperating other particle to search 
their best position within the flock

Particle swarm optimization is a population-
based search algorithm that simulates the social 
behavior of bird, fish and other particles within a 
swarm. In PSO individuals are called as potential 
solutions which flown through a hyper-dimensional 
search space. The changes in the position of each 
particle within the search space are governed by 
social –psychological tendency of each particle to 
follow the most successful particle around them 
i.e. change in position is influenced by its own 
experience and knowledge of its neighbors within 
the swarm. The particles change its velocity while 

changing its position. The Velocity vector drives the 
optimization process and reflects the social exchange 
information.

Where xi1 (t),xi2 (t),xi3 (t),xi4 (t),,………. xin (t))  
are the coordinates of particle i at time step With this 
fundamental principle particles flown through the 
search space and swap their position until they get an 
optimal solution. Each particle keeps track of its current 
coordinates in the solution space which are associated 
with the best solution (fitness: “pfBest”) that has achieved 
so far by that particle. This value is called personal best 

fitness (pfBest) of particle at the ith position. The current 
fitness at the position i is calculated using the given 
objective function and it is compared with the pfBest i.e.

Pseudo- code for pfBest and pBest

Initialize randomly pfBest to some random value 
for each particle i
{
fitness =given objective function;
if (fitness > pfBest[i])   
{
pfBest[i]= fitness;
pBest[i]= x[i];            /* assign current position x[i] to personal 
best position “pBest” 
} 

Each particle in its neighbored keep track of the best value 
obtained so far (fitness) by any other particle. This best value 
is called global best fitness (gfbest) of the particle at the ith 
position. A simple comparison between particle current fitness 
and gfbest is as follow

Pseudo- code for gfBest and gBest

Initialize randomly gfBest to some random value 
for each particle i
{
fitness=given objective function;
if (fitness > gfBest[i])   
{ 
gfBest[i]=fitness;
gBest[i]=x[i];            /* global best position “gBest” is the 

position x[i] of  current particle  
} 

Each particle is accelerated towards its pBest and the 
gBest locations, using a random weighted (ρ1, ρ2) 
acceleration at each time step as shown in figure 2. 

Fig. 2 Modification in position while searching by 
pso: where, xik : current position, xk+1: modified 
position, vk: current velocity, vk+1: modified 
velocity, vpbest velocity based on pBest and vgbest 
: velocity based on gBest).
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The modification of the particle’s velocities 
after comparing its pfBest and gfBest can be 
mathematically modeled according to the following 
equation.

Where 
The random numbers ρ1and ρ2are defined as 
ρ1= r1c1 and ρ2= r2c2, where r1, r2 U (0, 1), and c1 
and c2 are acceleration constants
ρ1, ρ2 affects velocities and position of particles and 
it has been asserted that 

1. if c1 + c2≤ 4 avoid over the flow of velocities 
position  [17], whereas
2. If c1 + c2 > 4 makes velocities and positions 
explode toward infinity
Each particle is moved to a new position according 
to the following equation

In this way particle exchanges their position until 
they get an optimal point in search space.

Defining Software Test Case 
Prioritization (Tcp) Problem

Test case prioritization is a technique of ordering 
given test cases based on some defined prior criteria 
such that the test cases which find more number 
of defects/faults are given higher priority i.e. 
executed first than the others. With this the tester 
gets an opportunity to prioritize test cases based 
on some criteria such as maximum code coverage, 
maximum defect/faults coverage with minimum test 
suite execution time. In this way testers can save 
precious time and budget during regression testing. 
More formally, Prioritization problem is defined as 
follows [11].
Definition 1. (Test Case Prioritization Problem). 
Given: A test suite, T, the set permutations of T called 
PT and a function from PT to real numbers.f:PT→R 
Problem: To find T’ PT such that ( (T^’’)(T^’’ PT)
T’’≠ T’ )[F(T’ )≥f(T’’ )] 

Ideally, the function f should be a mapping from 
tests to their fault detection capability. But one can 
know the defect finding capability of a test only 
after its execution. In practice, a function f is taken, 
which can substitute fault detection capability of 
tests. Thus a good choice is of structural coverage.
 Informally, Prioritization is the process of scheduling 
test cases in order to meet some performance goal. 
We define a test suite T as a tuple of test cases Ti from 
i=1 to n as (T1, T,.…..Tn). The goal is to execute 
Ti in order to meet some performance goal. With 
Knapsack problem, the minimum time in which we 
can prioritize the test cases is the maximum output 
of knapsack, i.e. Test cases are knapsack items, 
having a total maximum capacity equal to a total 
number of faults to be covered. The numbers of 
faults covered by each test case represent its weight 
and the total time to execute a test case to find the 
particular number of faults represents the time to put 
the item (test case) into the knapsack. The knapsack 
0/1 algorithm outputs prioritized list in minimum 
ejection time [30].
0/1 knapsack in terms of test suite prioritization is 
defined as [1]
Definition 2 (Test Case Prioritization Problem): 
Maximize: ci xi 
        Subject to: min (ti, xi), xi = 0 or 1 
Where, ci is fault coverage, ti is execution time 
of test case Ti. Thus, the 0/1 knapsack problem is 
an NP-complete problem [9]. All NP-complete 
problems are NP-hard. In this paper, we use particle 
swarm optimization metaheuristic for solving this 
hard combinatorial optimization problem.

Modeling Tcp Using Particle Swarm 
Optimization (Pso)

In order to model the intelligent behavior of 
proposed PSO algorithm (Algorithm 1), we make 
the following assumption.
1. The position of each particle (test case) is 
equivalent to its fault finding capacity.
2. The velocity of each particle is equivalent to the 
execution time of each test case.
3. Each particle is in search of global maxima/
position in search space and once this global position 
is found, it stops its search process. Here the global 
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position is achieved when a particle by exchanging 
its position covers all the faults in the program.
4. A particle exchanges its position only if shifting to 
the new position makes the current fitness of particle 
more fit.
5. When a particle has to choose between two 
positions, the particle will choose that position 
which is having more current fitness in search space. 
 Where fitness in search space is calculated as 
Fitness[i] = number of faults found/ total execution 
time.

Experimental Design

In order to explain and compare the proposed PSO 
algorithm we have taken two case studies. Case 
study 1 [2] and case Study 2 [40]. Case study 1 helps 
us to understand how the proposed PSO algorithm 
works and is compared with the work done by other 
researchers on test case prioritization problem. 
Case study 2 is used to compare the effectiveness 
of proposed algorithm w.r.t three search based 
algorithms- (i) ant colony based algorithm (ii) 
Cuscuta search algorithm, (iii) proposed PSO 
algorithm and with other traditional techniques such 
as Random, Reverse and Untreated.
In order to evaluate the performance of various test 
case prioritization schemes, prior knowledge of 
faults within the given program is assumed along 
with execution time to run the test cases. Test suite 
can be evaluated empirically based on average 
percentage of fault detected (APFD, for short) over 
the life time of the test suite. A higher preference 
will be given to the prioritization scheme having 
higher APFD value. APFD [24] is defined as 

APFD = [1- Σgi=1 reveal(i,T)/ng ]  +   1/2n        (1)

Where, T = test suite, g = number of faults in the 
program under test, n = number of test cases, reveal(i, 
T) = position of the first test in T that exposes fault i.
Another method to calculate APFD is to find 
the area under the curve that represents the 
weighted percentage of faults undetected over the 
corresponding fraction of the test suite [11].

Validation Of Proposed Pso Algorithm 
Using Case Study 1

We have taken case study 1 that depend on table 1 
which shows the test cases as the test cases represent 
the possible paths in control flow graph of the source 
code. Each test case covers a number of conditions, 
multiple conditions and statement conditions [2].
The test case fault matrix for case study 1 is 
represented in table 2. The test case fault matrix 
represents the number of faults identified by a test 
case and the execution time taken by a test case. 
The APFD metric is calculated for the proposed 
PSO approach and compared with other related 
approaches.
The following mapping is considered between 
the proposed algorithm’s variables and given 
prioritization problem.
1. We assume that we had prior information 
about the original test suite T= {t1,t2……tn}and 
corresponding fault coverage and the total execution 
time of each test case as shown in table 1 & table 2. 
2. A number of particles in search space are 
equal to a number of test cases.
 Let us consider case study 1, we start with test case1 
(T1) out of nine available test cases. T1 is positioned 
at its corresponding fault suite i.e. T1 is positioned 
at (f1, f2, f3, f5), T2 at positioned at (f1, f2) an so on. 
The optimal point of each test case is achieved when 
it found all faults i.e. gfBest is equal to one. Now the 
particle (test case T1) will search in its domain (nine 
test cases) the particle having best fitness to combine 
with. The particle can come to the position of other 
particle which is having maximum fitness as per the 
current position of the particle. The current fitness of 
particle (T1)= count (f1, f2, f3, f5) ÷ total faults .i.e. 
pfBest (T1) = 4/5=.0.8, i.e.
Position swapped by T1 in each move is as follow
1. Move 1: T1= 2,4,7,9. I.e. pfBest( T1) = 4/5= 0.8
Search the best position to move current position of 
T1 as: 
2. gfBest[T1]= 0/5=0 , as there are no unique faults 
other than the faults covered in T1
3. gfBest[T2]=0/5, as fault covered by T2={ f1,f2} 
so there are no unique faults other than the faults 
covered in T1.
4. gfBest[T3]=0/5=0; as fault covered by T3={ 
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f1,f3,f5} so there are no unique faults other than 
the faults covered in T1 
5. gfBest[T4]=1/5=0.2 as fault covered by T4={ 
f1,f4,f5} so there is one fault( f4) that is unique 
fault other than the faults covered in T1. In the 
similar manner the gfBest for other particle are 
6. gfBest[T5]=0/5=0;
7. gfBest[T6]=0/5=0;
8. gfBest[T7]= 0/5=0;
9. gfBest[T8]=1/5=0.2;
10. gfBest[T9]= 0/5=0;
The maximum fitness (gfBest) out all particles is 
of particle T4 and T8. But as both is having the 
same gfBest,  so the particle T1 will choose the 
particle T8 as its lBestT8> lBestT5.

 The final move sequence is shown in figure 3.

Thus the new position of particle become equal to 
{f1, f2, f3, f4, f5} i.e. the new pfBest [new] =5/5=1; 
which is equal to gfbest. When pfBest [new] = 
gfbest, the algorithm stops otherwise it continues 
to repeat the same process for each particle.
In a similar manner the different moves by all 
particles are presented in table 3.
The PSO ordering is obtained from the table 3 on 
the basis of execution time. The test case having 
minimum execution time is set at higher priority 
followed by next higher execution time.
Thus we obtained the PSO order for case study 1 as  
T6,T8,T1,T4,T3,T2,T9,T5,T7.
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Calculating Average Percentage Of 
Faults Detected (Apfd)

APFD depends on two things (i) calculation of 
the total percentage of test suite executed and (ii) 
number of fault detected by each percentage of test 
suite executed. In this example we elaborate this 
calculation w.r.t proposed PSO Algorithm
The PSO ordering is TC 
={T6,T8,T1,T4,T3,T2,T9,T5,T7} i.e. a total of 9 
test cases in test suite TC. Thus if we execute this 
sequence then percentage of test suite executed is 
calculated as 
(i) T6= (1/9)*100= 11.11%. Also, for execution of 
T8 it is necessary to execute T6 first i.e.
(ii) T6, T8= (2/9)*100= 22.22%. Also, for execution 
of T1 it is necessary to execute T6, T8 first. 
(iii) T6, T8, T1 = (3/9)*100= 33.33%. The rest are 
calculated in similar manner as 
(iv) T6, T8, T1, T4= (4/9)*100= 44.44%.
(v) T6, T8, T1, T4, T3= (5/9)*100= 55.55%.
(vi) T6, T8, T1, T4, T3, T2= (6/9)*100= 66.66%.
(vii)  T6, T8, T1, T4, T3, T2, T9 = (7/9)*100=     
77.77%.
(viii) T6, T8, T1, T4, T3, T2, T9, T5= 
(8/9)*100=88.88%.
(ix) T6, T8, T1, T4, T3, T2, T9, T5, T7= 
(9/9)*100=100.00%.
Now we calculate a number of faults detected for 
each percentage of test suite execution. In the case 
of PSO, For 11.11% test suite execution, a number 
of participating test cases are {T6} only, which 
covers {f1,f3, f5 } faults out of total five faults, Thus 
the number of faults detected by executing 11.11% 

of test suite in case of PSO is 3/5= 0.6. For 22.22 
% test suite execution, number of participating test 
cases are {T6,T8} only, which covers {f1,f2,f3,f4, 
f5 } faults out of total five faults. Thus a number 
of faults detected by executing 22.22% of test 
suite in case of PSO are 5/5= 1. In similar manner 
number of fault detected for 33.33%, 44.44%, 
55.55%, 66.66%, 77.77%, 88.88% and 100% are 
1,1,1,1,1,1,1 respectively
The proposed PSO Ordering is shown using the 
figure 4. 
Thus if we consider the case of PSO ordering the 
APFD is calculated by finding the area under the 
curve given in figure 4, which comes out 89.99% 
(APFD).

Fig. 4  APFD Score for Proposed PSO 
[case study 1].

The APFD score can also be calculated using the 
formula 1 as discussed above
APFD (PSO ordering) = [(1-((1+2+1+2+1)/9*5))+    
(1/2*9)]*100 = 89.99%
Both methods results in same APFD.
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Comparison With Different Ordering

We compare the result of proposed PSO algorithm with No order, Random order, Reverse order, optimal 
order and various other existing work as shown in table 4.  
The various approaches and their prioritization order as mentioned in table 4 are compared by calculating 
their average percentage of faults detected (APFD).
The proposed algorithm show better APFD score for six techniques and it has near optimal score (89.99%), 
which has slightly lower AFFD (2.22% lower) than the optimal (92.22%) and M-C- GA- FF*APFD 
(92.22%) score. Thus we are close to the optimal value and the algorithm itself shows a different approach 
for test case prioritization. 
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Comparison Of Proposed Pso Algorithm With Search Based Algorithms Using Case 
Study 2

In this section we compare proposed PSO algorithm with three different searches based algorithm namely 
Ant colony based algorithm, Cuscuta search algorithm and Proposed PSO algorithm. Beside the mentioned 
search algorithms we also compare the effectiveness of these search based algorithms w.r.t Optimal, 
Random, Reverse and original ordering. Table 5 & Table 6 shows case study 2 which is similar to case study 
1 except that here we do not know about Condition Coverage (CC), Multiple Condition Coverage (MC), 
Statement Coverage (SC) and the Severity Value (si). We are given only the test case, its corresponding 
revealed fault(s) and execution time for each test case. 
First we briefly introduce the fundamental of all search based algorithms taken in this case study and then 
one by one we search for the following research questions

 1) Are search based techniques more effective than traditional techniques for test case prioritization (in 
terms of APFD)?

2) Which search based technique among (a) Ant colony based algorithm (b) Cuscuta Search algorithm, and 
(c) Proposed PSO algorithm is more effective in terms of APFD for test case prioritization problem?

For answering the first question we break it into the following sub-questions:

1.1) Is Ant colony based algorithm for test case prioritization outperforms other traditional techniques such 
as optimal, random, reverse and original ordering?

1.1.2) Is Cuscuta search algorithm for test case prioritization outperforms other traditional techniques 
such as optimal, random, reverse and original ordering?

1.1.3) Is Proposed PSO algorithm for test case prioritization outperforms other traditional techniques such 
as optimal, random, reverse and original ordering?
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Ant Colony Based Algorithm: A Wild 
Metaphor

In 1959 Grasse first introduced a term know as 
Stigmergy to the indirect form of communication 
among multi-agents evolving as a self-organized single 
system while modifying their local environment. 
The studies on ant colonies Stigmergy nature has 
proved an indirect communication between each ant 
by depositing a chemical known as pheromone on 
their path and the ant then tends to follow that path, 
gradually all ants converge to the trail having a higher 
concentration on pheromone deposit [7]. 
Let us demonstrate a simple “shortest bridge 
experiment”  to demonstrate forging behavior of 
real ants, figure 5 shows the diagrammatic view of 
setup in which two possible paths from source(nest) 
to destination( food) are shown. Path A is shorter 
than path B. Initially as the ant move from the nest 
foraging for food, it follow a random path but as the 
time passes we observed that all ants following the 
path A. This is due to the fact that when initially an 
ant move from her nest following path A and after 
collecting its food it will reach to its nest again in 
less time than an ant which had followed the path 
B due to the distance parameter and in this way it 
had deposited a pheromone before than the second 
ant following the path B. Thus a convergence to the 
shortest path is achieved.

Fig. 5  Two possible paths for foraging

The experiment shows the exploration to exploitation 
due to pheromone deposition tendency of ants in the 
real world.
Tour Construction
Initially, an ant is put on the initial node and by using 
action choice rule, called random proportional rule, 
to decide which node to visit next. In particular, the 
probability with which ant k, currently at node I, 
chooses to go to node j is

where ηij=1/dij is a heuristic value that is available a 
priori, indicated the visibility of a path for an ant at 
the current vertex, α and β are two parameters which 
determine the relative influence of the pheromone 
trail and the heuristic information, and l€ N_i^kis the 
feasible neighborhood of ant k when being at node .
The roles of the parameters are indicated in table 7. 
Some good parameters setting used in ACO algorithm 
are shown in table 8. Good parameter values are 
very important in order to converge algorithm at the 
optimal point.
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Cuscuta Search Algorithm

Till now we have strong observations and 
formulation about the animal’s intelligent behavior 
such as ant colony, bee colony [43]. They involve 
foraging for food not by simple but by collective 
intelligence behavior. The plant’s foraging has been 
the least studied area in computational intelligence. 
Not only animals as described above forage for 
food intelligently but the same have been done by 
the plants too.
One such example is the dodder (Cuscuta sp) as 
shown in figure 6, which attacks its prospective 
host through some host-plant clue. If the host is 
found unsuitable the Cuscuta sp. continue its 
search but once the selection is made the Cuscuta 
sp. coil around its selected host in a specific manner 
(anticlockwise) to transfer resources from the host 
plant. Research has found that Cuscuta sp. seedlings 
show directed growth toward tomato volatiles 
experimentally released in the absence of any other 
plant-derived clue [30]. Furthermore, volatile cues 
(α-pinene, β-myrcene and β-phellandrene) are used 
by the dodder to “choose” tomatoes, a preferred 
host, over non-host wheat.

Fig 6. A Dodder (Cuscuta sp.) (Light yellow) coiling 
around its host. Cuscuta sp. has the ability to assess 
its prospective host before coiling around the host 

plant [21] and thus it does not coil around every host 
with which it comes in contact. If the prospective 
host is found to be unsuitable the parasitic plant 

continues its search for other hosts. Photo courtesy: 
Mukesh Mann and Om Prakash Sangwan [30].

A key point of observation is that Cuscuta somehow 
knows its starvation i.e. if the same cues would 
have been coming from the wheat, the bend will be 
towards the wheat rather than tomato. Considering 
this dynamics Cuscuta search algorithm for test 
case prioritization has been proposed [30].
In order to answer the research questions framed 
above, we need to (i) compare the APFD Scores 
of each search based algorithms as discussed 
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above with other traditional test case prioritization 
techniques and (ii) compare the APFD Scores of 
each search based algorithms with each other.
We applied the ant colony optimization [40], 
Cuscuta search algorithm [30] and proposed PSO 
algorithm on the case study 2 and APFD Score is 
calculated. A comparative analysis of APFD Score 
is shown from figure 7.

Fig. 7 APFD Comparison for different 
Prioritization Techniques.

An individual comparison of each prioritizing 
technique is plotted and  the individual AFPD 
behavior during the lifetime of total percentage 
execution of test suite is observed as shown in 
figure 8.

Results obtained by measuring the Average 
Percentage of Faults Detected (APFD) shows 
that proposed PSO algorithms show similar 
results as shown by Cuscuta search, ACO and 
optimal ordering and all search based algorithms 

as discussed above shows better performance 
w.r.t No order, Random order and Reverse order. 
Figure 8 clearly shows the effectiveness of three 
search based technique in detecting the average 
percentage of faults.
All search based algorithms and traditional 
techniques are compared w.r.t their APFD score as 
shown in table 9.
The various search based approaches and their 
prioritization order are compared by calculating 
their average percentage of faults detected (APFD).
From the figure 8, it is clear that APFD Score of the 
Proposed PSO algorithm is same as that of Cuscuta 
search, Ant colony based algorithm and optimal 
ordering. It has been observed that proposed 
algorithm outperform random ordering, reverse 
ordering and no ordering for test case prioritization. 
PSO can be used in large and complex test suite 
prioritization problems and thus saving the 
larger amount of time and cost during software 
development life cycle as compared to smaller 
ones. With this approach software testers can 
easily select and prioritize test cases with minimum 
execution time and a higher percentage of fault 
detection.

Table 9. Comparison between various Search 
based algorithms [case study 2]
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Conclusion

In this paper we have designed and implemented 
an artificial particle swarm optimization algorithm 
for test case prioritization problem using two 
case studies. We have compared our approach 
against four other metaheuristic approaches – 
Multi-Criteria Genetic algorithms (with different 
versions), an ant colony optimization approach, 
Cuscuta search algorithm and Hybrid Particle 
Swarm Optimization algorithm. Our approach has 
APFD score of 89.99% which has 2.22% lower 
AFFD than the optimal (92.22%) and Multi-Criteria 
Genetic algorithms (92.22%). Our approach 
outperforms Hybrid Particle Swarm Optimization 
(75.6% APFD), whereas the APFD score of our 
proposed approach is same as that of Cuscuta 
search algorithm and ant-colony optimization 
approach in both case studies. We have compared 
our approach with four traditional methods of 
prioritization- random ordering, reverse ordering, 
untreated ordering and Prioritized order by average 
faults found per minute algorithm. Our approach 
outperforms all the traditional approaches in both 
case studies. 
By observing the good performance of this new 
paradigm, it is expected that proposed PSO will 
be used to solve problems in many areas such 
as machine learning, test case generation and 
optimization. As a future work, it is planned to study 
on applying proposed PSO to solve real-world 
problems and also on improving the performance 
of the algorithm by introducing new modifications.
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