
157

Test Case Prioritization Using Metaheuristic Search Techniques
*Mukesh Mann1, Pradeep Tomar2, Om Prakash Sangwan3

1 Department of Computer Science and Engineering, School of Engineering and Technology, BML Munjal
University, Gurgaon, Haryana, India
2 Department of Computer Science & Engineering, Schools of Information & Communication Technology, Gautam
Buddha University, India
3 Department of Computer Science & Engineering, Guru Jambheshwar University of Science and Technology,
India

تقنية تحديد أولويات حالة الاختبار بإستعمال تقنيات الميتاهوريستيك
موكيش مان 1، براديب تومار 2، أوم براكاش سانغوان 3 .

1 قسم علوم الحاسوب والهندسة، كلية الهندسة والتكنولوجيا، جامعة BML منجال، جورجاون، هاريانا، الهند
2 قسم علوم الحاسوب والهندسة، مدارس تكنولوجيا المعلومات والاتصالات، جامعة غوتام بوذا، الهند

3 قسم علوم الحاسوب والهندسة، جامعة جورو جامبشوار للعلوم والتكنولوجيا، الهند

ABSTRACT

KEYWORDS
Particle Swarm Optimization
(PSO); Cuscuta Search Algorithm
(CSA); Genetic Algorithm (GA);
The Prioritized order by average
faults found per minute algorithm
(AF/M); Software Design Life
Cycle (SDLC).

In this paper, Artificial Particle Swarm Optimization (PSO) inspired by
real Swarm social–psychological tendency is used to solve time constraint
prioritization problem-the techniques to prioritize the test cases that finds
faults as early as possible, or maximize the rate of fault detection in the suite.
The proposed technique is compared with three searches based metaheuristic
approaches–(1) an ant-colony optimization approach, (2) Cuscuta search
algorithm and (3) Hybrid Particle Swarm Optimization algorithm and two
evolutionary metaheuristic- (1) Multi-Criteria Genetic algorithm technique
which the fitness is APFD and (2) Multi-Criteria Genetic algorithm technique
which the fitness is the proposed fitness multiplied by APFD and with five
other non-search based prioritization techniques- (1) optimal, (2) random, (3)
reverse, (4) untreated and (5) average faults found per minute algorithm based
ordering. We investigate whether the proposed PSO metaheuristic outperforms
existing prioritizing techniques in terms of APFD Score.

في هذه الورقة، تستخدم تهيئة سرب الجسيمات الاصطناعي المستوحاة من النزعة
الاجتماعية والنفسية للسرب الحقيقي لحل مشكلة تحديد أولويات القيد للوقت. تستعمل
أو أقرب وقت ممكن، التي تجد أخطاء في أولويات حالات الاختبار لتحديد التقنيات
تعظيم معدل الكشف عن خطأ في المجموعة. قورنت التقنية المقترحة مع ثلاث عمليات
بحث تعتمد على مقاربات ميتاهوريستيك: (1) نهج التهيئة الأمثل لمستعمرة النمل، (2)
خوارزمية البحث كوزكوتا و (3) خوارزمية تحسين سرب الجسيمات الهجين بالإضافة
الى خوارزميتين متطورتين (1) متعددة المعايير الجينية (2) تقنية الخوارزمية الجينية
المتعددة المعايير وفيهاتكون النمذجة ا لرياضية مضروبة في .. بالإضافة الى خمسة
تقنيات ترتيب الأولويات أخرى غير القائمة على البحث: (1) الأمثل، (2) عشوائي،
خوارزمية في وجدت التي الأخطاء معدل (5) و المعالجة غير (4) عكس، (3)
الترتيب.في هذه الورقة نحقق في ما إذا كان الميتاميولوجي PSO المقترح يتفوق على

.AFPD تقنيات تحديد الأولويات الحالية من حيث نقاط

رقم المسودة: (2858)
تاريخ استلام المسودة: 2016/12/27
تاريخ المسودة المُعَدَلة: 2017/04/06

الباحث المُرَاسِل: موكيش مان
mukesh.gbu@gmail.com :بريد الكتروني

المُستلخص

الكلمات الدالة
Particle Swarm Optimization);

(CSA); Genetic Algorithm
(GA); The Prioritized order by

average faults found per minute
algorithm (AF/M); Software
Design Life Cycle (SDLC).

ID # (2858)
Received: 27/12/2016
In-revised: 06/04/2017
Correspondent Author:
Mukesh Mann
E-mail: mukesh.gbu@gmail.com

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

158

Introduction

Life cycle models are used to develop a
software system from scratch and to assure that
the developed software works efficiently as per
requirement, SDLC include various stages that
vary from one SDLC model to other SDLC model,
but the most common phase in all models is of
testing which assures that the developed software
is error free. Software testing tries to detect errors
as early as possible because the cost of removing
an error become high if detected in later stages
of development. The test suites which are used to
uncover errors in software undergo frequent reuse
and updation as the software evolves with time.
This results in large size test suites that may contain
redundant test cases. The time and resources
required to execute these ever increasing test suite
is a critical factor in deciding the cost of a software
system. Thus it becomes necessary to minimize the
test suite by eliminating the redundant test cases.
i.e. test case minimization, to develop techniques
to select test cases which are important to identify
the parts of the system under test(suite) that have
been modified, and the techniques to prioritize the
test cases that finds faults as early as possible, or
maximize the rate of fault detection in the suite.

A Software system undergoes different changes
while fixing a detected/known fault or adding or
deleting a new requirement(s). These changes
must be validated i.e. software must be retested
in order to accomplish the changes. Thus the
validation aims: (1) that the new added/ deleted
requirement have been implemented correctly;
(2) to ensure that the reflection of the new added/
deleted requirement does not affect the previous
functionalities (3) checking of those parts of the
software that have not been checked before.

The process of retesting the software system
to ensure that the modified program still works
correctly with all previous and new test cases used
to test original program and new modified program
respectively so that the modified software still
meets its requirements is called regression testing.

A timeline example in figure1 describes the life
of a software system. Although the execution time
of regression testing is a considerable fraction of

the timeline but unfortunately the regression testing
cannot always be completed because of the frequent
changes and updates to a system. When a program
is modified/updated, it is almost impossible to
guarantee that the changes work correctly and
that the unmodified modules of the program have
not been affected by the modification(s). Still
it is extremely necessary to perform exhaustive
regression testing as a small change in one module
can reflect a bigger change(s) in other module(s).
Thus Regression testing has emerged as a great
subject of research among software testing
community. Three core areas in regression testing
that attracts most researchers are: (1) test case
minimization; (2) test case selection; (3) test case
Prioritization.

In this paper we primarily focus on test case
prioritization which is to identify the best order
in which a given test cases under some test suite
must be executed so as to maximize the rate of
fault detection. Different Artificial intelligence
techniques are available to solve optimization
problems [25, 27, 14, 26, 45]. We proposed
Particle Swarm optimization as an effective
method to obtain best test case execution order and
to maximize the rate of fault detection.

ammonia and nitrite exposure atvarious
salinities.

Related Works

Various approaches and techniques have
been proposed during the last few years which
use different techniques and criteria to prioritize
given test cases [9, 16, 6, 12, 19, 39]. The most
popular unit framework called JUnit is applied to
coverage-based prioritization techniques [16]. The
prioritized execution of JUnit test cases results in
a higher value of APFD than untreated ordering.
In Controlled environment, the effectiveness of the
prioritization can be measured by executing the
test cases according to the fault detection rate [35].

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

159

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

The hybrid approach [6] that integrates coverage
based prioritization with distribution based
prioritization is based on the observation that basic
coverage maximization performs much better than
repeated coverage maximization. With repeated
coverage maximization there has been a repetition
of prioritized test case as it starts again from zero
percent after reaching 100% whereas basic coverage
maximization stops prioritizing the test cases once
100% coverage is reached.

History based approach [20] is used to prioritize
test cases that are prior selected by RTS technique(s).
The execution history of each test cases is carefully
noted and last recently used (LRU) prioritization
called HTC with a value close to zero is used for
prioritization that acts as competitive in several
constrained testing environment. If number of test
cases selected by RTS technique is too high than test
cases may undergo an additional prioritization.

Mirarab and Tahvildari [39] introduced a
probabilistic approach to prioritization problem
which utilizes Bayesian Networks (BN) and a
feedback mechanism. The fault finding probability
of each test case is predicted using BN and
the performance of BN under several different
realizations and under mutation technique which can
provide a large number of faults is evaluated. The
study concluded that most of the other prioritization
techniques significantly outperforms well when
used in conjunction with feedback [37].

During last few years artificial intelligence
emerged as a great subject of interest in software
testing [4, 32, 33, 29]. Different AI techniques are
emerging as a tool to solve various optimization
problems in software testing, such as Ant colony
optimization (ACO) [28, 20] which is inspired by
foraging behavior of ant colonies, and target discrete
optimization problems [28] and combinatorial
optimization problems like classic travelling
salesman problem, data mining, telecommunication
networks, vehicle routing [20, 5, 8, 10, 15, 23, 31,
44], Artificial Bee Colony Optimization (ABC)
based on reaction–diffusion equations which results
in collective exploration and exploitation of food
source (i.e. candidate solutions) by swarm [22],
Genetic Algorithms (GA) which is a heuristic
search algorithms that is inspired by natural

biological evolution of species and solve a variety
of optimization problems to improve the quality of
the search.

Various NP-hard combinatorial problems such
as NP Knapsack [25] and Traveling Salesman
Problem [27] in which optimal path to reach from
source to destination with less time and cost have
been solved successfully using PSO. It has been
classified as an optimization approach and used to
solve routing optimization [26] problems where the
optimal paths for traffic/ packets are searched. PSO
has been successfully implemented to solve various
Scheduling problems such as job-scheduling [45],
task scheduling problems in distributed systems [22],
Test pattern generation for circuits [14] and software
faults detection [38] are some other applications
which are solved using PSO.

In the following sections we discuss various test
case prioritization techniques. First we propose a
Particle Swarm Optimization based approach for test
case prioritization and then its result of prioritization
of test cases in a test suite is compared in terms of
average percentage of fault detected (APFD Score).
The APFD score of the proposed PSO algorithm is
compared with the existing work using two case
studies- case study 1 and case study 2. With the case
study 1, we demonstrate how the proposed algorithm
works and how it is compared with the existing work
in test case prioritization especially in genetic and
Cuscuta search algorithm metaheuristic. The case
study 2 is used to compare the proposed algorithm
with three search based algorithms- (i) Ant colony
based algorithm (ii) Cuscuta search algorithm and
(iii) proposed PSO algorithm.

Each algorithm is first discussed briefly and
then compare with the proposed PSO algorithm.
Throughout the paper we are interested in the
following research question

Q) Which algorithm(s)/technique(s) is/are most
effective in solving the test case prioritization
problem in software testing?

Particle Swarm Optimization: Swarm
Intelligence

What is intelligence? There has been a long
debate to find the definition of intelligence which
is still in its premature stage. Some scholars define

160

it as the ability to learn in complex situations, to
make thought and reason, to bring out profit from
experience. Intelligence is more than memory or
learning. One definition defines intelligence as
“Adaptively variable behavior during the lifetime
of an individual” [42].

Kennedy et al., 1995 [18] discovered a unique
pattern that direct the ability of birds to fly
synchronously within the space and to suddenly
change their direction by regrouping themselves
without breaking the pattern. This behavior reflects
a social corporation between birds within a flock.
With this each particle’s goal is to reach a global
position by cooperating other particle to search
their best position within the flock

Particle swarm optimization is a population-
based search algorithm that simulates the social
behavior of bird, fish and other particles within a
swarm. In PSO individuals are called as potential
solutions which flown through a hyper-dimensional
search space. The changes in the position of each
particle within the search space are governed by
social –psychological tendency of each particle to
follow the most successful particle around them
i.e. change in position is influenced by its own
experience and knowledge of its neighbors within
the swarm. The particles change its velocity while

changing its position. The Velocity vector drives the
optimization process and reflects the social exchange
information.

Where xi1 (t),xi2 (t),xi3 (t),xi4 (t),,………. xin (t))
are the coordinates of particle i at time step With this
fundamental principle particles flown through the
search space and swap their position until they get an
optimal solution. Each particle keeps track of its current
coordinates in the solution space which are associated
with the best solution (fitness: “pfBest”) that has achieved
so far by that particle. This value is called personal best

fitness (pfBest) of particle at the ith position. The current
fitness at the position i is calculated using the given
objective function and it is compared with the pfBest i.e.

Pseudo- code for pfBest and pBest

Initialize randomly pfBest to some random value
for each particle i
{
fitness =given objective function;
if (fitness > pfBest[i])
{
pfBest[i]= fitness;
pBest[i]= x[i]; /* assign current position x[i] to personal
best position “pBest”
}

Each particle in its neighbored keep track of the best value
obtained so far (fitness) by any other particle. This best value
is called global best fitness (gfbest) of the particle at the ith
position. A simple comparison between particle current fitness
and gfbest is as follow

Pseudo- code for gfBest and gBest

Initialize randomly gfBest to some random value
for each particle i
{
fitness=given objective function;
if (fitness > gfBest[i])
{
gfBest[i]=fitness;
gBest[i]=x[i]; /* global best position “gBest” is the

position x[i] of current particle
}

Each particle is accelerated towards its pBest and the
gBest locations, using a random weighted (ρ1, ρ2)
acceleration at each time step as shown in figure 2.

Fig. 2 Modification in position while searching by
pso: where, xik : current position, xk+1: modified
position, vk: current velocity, vk+1: modified
velocity, vpbest velocity based on pBest and vgbest
: velocity based on gBest).

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

161

The modification of the particle’s velocities
after comparing its pfBest and gfBest can be
mathematically modeled according to the following
equation.

Where
The random numbers ρ1and ρ2are defined as
ρ1= r1c1 and ρ2= r2c2, where r1, r2 U (0, 1), and c1
and c2 are acceleration constants
ρ1, ρ2 affects velocities and position of particles and
it has been asserted that

1. if c1 + c2≤ 4 avoid over the flow of velocities
position [17], whereas
2. If c1 + c2 > 4 makes velocities and positions
explode toward infinity
Each particle is moved to a new position according
to the following equation

In this way particle exchanges their position until
they get an optimal point in search space.

Defining Software Test Case
Prioritization (Tcp) Problem

Test case prioritization is a technique of ordering
given test cases based on some defined prior criteria
such that the test cases which find more number
of defects/faults are given higher priority i.e.
executed first than the others. With this the tester
gets an opportunity to prioritize test cases based
on some criteria such as maximum code coverage,
maximum defect/faults coverage with minimum test
suite execution time. In this way testers can save
precious time and budget during regression testing.
More formally, Prioritization problem is defined as
follows [11].
Definition 1. (Test Case Prioritization Problem).
Given: A test suite, T, the set permutations of T called
PT and a function from PT to real numbers.f:PT→R
Problem: To find T’ PT such that ((T^’’)(T^’’ PT)
T’’≠ T’)[F(T’)≥f(T’’)]

Ideally, the function f should be a mapping from
tests to their fault detection capability. But one can
know the defect finding capability of a test only
after its execution. In practice, a function f is taken,
which can substitute fault detection capability of
tests. Thus a good choice is of structural coverage.
 Informally, Prioritization is the process of scheduling
test cases in order to meet some performance goal.
We define a test suite T as a tuple of test cases Ti from
i=1 to n as (T1, T,.…..Tn). The goal is to execute
Ti in order to meet some performance goal. With
Knapsack problem, the minimum time in which we
can prioritize the test cases is the maximum output
of knapsack, i.e. Test cases are knapsack items,
having a total maximum capacity equal to a total
number of faults to be covered. The numbers of
faults covered by each test case represent its weight
and the total time to execute a test case to find the
particular number of faults represents the time to put
the item (test case) into the knapsack. The knapsack
0/1 algorithm outputs prioritized list in minimum
ejection time [30].
0/1 knapsack in terms of test suite prioritization is
defined as [1]
Definition 2 (Test Case Prioritization Problem):
Maximize: ci xi
 Subject to: min (ti, xi), xi = 0 or 1
Where, ci is fault coverage, ti is execution time
of test case Ti. Thus, the 0/1 knapsack problem is
an NP-complete problem [9]. All NP-complete
problems are NP-hard. In this paper, we use particle
swarm optimization metaheuristic for solving this
hard combinatorial optimization problem.

Modeling Tcp Using Particle Swarm
Optimization (Pso)

In order to model the intelligent behavior of
proposed PSO algorithm (Algorithm 1), we make
the following assumption.
1. The position of each particle (test case) is
equivalent to its fault finding capacity.
2. The velocity of each particle is equivalent to the
execution time of each test case.
3. Each particle is in search of global maxima/
position in search space and once this global position
is found, it stops its search process. Here the global

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

162

position is achieved when a particle by exchanging
its position covers all the faults in the program.
4. A particle exchanges its position only if shifting to
the new position makes the current fitness of particle
more fit.
5. When a particle has to choose between two
positions, the particle will choose that position
which is having more current fitness in search space.
 Where fitness in search space is calculated as
Fitness[i] = number of faults found/ total execution
time.

Experimental Design

In order to explain and compare the proposed PSO
algorithm we have taken two case studies. Case
study 1 [2] and case Study 2 [40]. Case study 1 helps
us to understand how the proposed PSO algorithm
works and is compared with the work done by other
researchers on test case prioritization problem.
Case study 2 is used to compare the effectiveness
of proposed algorithm w.r.t three search based
algorithms- (i) ant colony based algorithm (ii)
Cuscuta search algorithm, (iii) proposed PSO
algorithm and with other traditional techniques such
as Random, Reverse and Untreated.
In order to evaluate the performance of various test
case prioritization schemes, prior knowledge of
faults within the given program is assumed along
with execution time to run the test cases. Test suite
can be evaluated empirically based on average
percentage of fault detected (APFD, for short) over
the life time of the test suite. A higher preference
will be given to the prioritization scheme having
higher APFD value. APFD [24] is defined as

APFD = [1- Σgi=1 reveal(i,T)/ng] + 1/2n (1)

Where, T = test suite, g = number of faults in the
program under test, n = number of test cases, reveal(i,
T) = position of the first test in T that exposes fault i.
Another method to calculate APFD is to find
the area under the curve that represents the
weighted percentage of faults undetected over the
corresponding fraction of the test suite [11].

Validation Of Proposed Pso Algorithm
Using Case Study 1

We have taken case study 1 that depend on table 1
which shows the test cases as the test cases represent
the possible paths in control flow graph of the source
code. Each test case covers a number of conditions,
multiple conditions and statement conditions [2].
The test case fault matrix for case study 1 is
represented in table 2. The test case fault matrix
represents the number of faults identified by a test
case and the execution time taken by a test case.
The APFD metric is calculated for the proposed
PSO approach and compared with other related
approaches.
The following mapping is considered between
the proposed algorithm’s variables and given
prioritization problem.
1. We assume that we had prior information
about the original test suite T= {t1,t2……tn}and
corresponding fault coverage and the total execution
time of each test case as shown in table 1 & table 2.
2. A number of particles in search space are
equal to a number of test cases.
 Let us consider case study 1, we start with test case1
(T1) out of nine available test cases. T1 is positioned
at its corresponding fault suite i.e. T1 is positioned
at (f1, f2, f3, f5), T2 at positioned at (f1, f2) an so on.
The optimal point of each test case is achieved when
it found all faults i.e. gfBest is equal to one. Now the
particle (test case T1) will search in its domain (nine
test cases) the particle having best fitness to combine
with. The particle can come to the position of other
particle which is having maximum fitness as per the
current position of the particle. The current fitness of
particle (T1)= count (f1, f2, f3, f5) ÷ total faults .i.e.
pfBest (T1) = 4/5=.0.8, i.e.
Position swapped by T1 in each move is as follow
1. Move 1: T1= 2,4,7,9. I.e. pfBest(T1) = 4/5= 0.8
Search the best position to move current position of
T1 as:
2. gfBest[T1]= 0/5=0 , as there are no unique faults
other than the faults covered in T1
3. gfBest[T2]=0/5, as fault covered by T2={ f1,f2}
so there are no unique faults other than the faults
covered in T1.
4. gfBest[T3]=0/5=0; as fault covered by T3={

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

163

f1,f3,f5} so there are no unique faults other than
the faults covered in T1
5. gfBest[T4]=1/5=0.2 as fault covered by T4={
f1,f4,f5} so there is one fault(f4) that is unique
fault other than the faults covered in T1. In the
similar manner the gfBest for other particle are
6. gfBest[T5]=0/5=0;
7. gfBest[T6]=0/5=0;
8. gfBest[T7]= 0/5=0;
9. gfBest[T8]=1/5=0.2;
10. gfBest[T9]= 0/5=0;
The maximum fitness (gfBest) out all particles is
of particle T4 and T8. But as both is having the
same gfBest, so the particle T1 will choose the
particle T8 as its lBestT8> lBestT5.

 The final move sequence is shown in figure 3.

Thus the new position of particle become equal to
{f1, f2, f3, f4, f5} i.e. the new pfBest [new] =5/5=1;
which is equal to gfbest. When pfBest [new] =
gfbest, the algorithm stops otherwise it continues
to repeat the same process for each particle.
In a similar manner the different moves by all
particles are presented in table 3.
The PSO ordering is obtained from the table 3 on
the basis of execution time. The test case having
minimum execution time is set at higher priority
followed by next higher execution time.
Thus we obtained the PSO order for case study 1 as
T6,T8,T1,T4,T3,T2,T9,T5,T7.

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

164

Calculating Average Percentage Of
Faults Detected (Apfd)

APFD depends on two things (i) calculation of
the total percentage of test suite executed and (ii)
number of fault detected by each percentage of test
suite executed. In this example we elaborate this
calculation w.r.t proposed PSO Algorithm
The PSO ordering is TC
={T6,T8,T1,T4,T3,T2,T9,T5,T7} i.e. a total of 9
test cases in test suite TC. Thus if we execute this
sequence then percentage of test suite executed is
calculated as
(i) T6= (1/9)*100= 11.11%. Also, for execution of
T8 it is necessary to execute T6 first i.e.
(ii) T6, T8= (2/9)*100= 22.22%. Also, for execution
of T1 it is necessary to execute T6, T8 first.
(iii) T6, T8, T1 = (3/9)*100= 33.33%. The rest are
calculated in similar manner as
(iv) T6, T8, T1, T4= (4/9)*100= 44.44%.
(v) T6, T8, T1, T4, T3= (5/9)*100= 55.55%.
(vi) T6, T8, T1, T4, T3, T2= (6/9)*100= 66.66%.
(vii) T6, T8, T1, T4, T3, T2, T9 = (7/9)*100=
77.77%.
(viii) T6, T8, T1, T4, T3, T2, T9, T5=
(8/9)*100=88.88%.
(ix) T6, T8, T1, T4, T3, T2, T9, T5, T7=
(9/9)*100=100.00%.
Now we calculate a number of faults detected for
each percentage of test suite execution. In the case
of PSO, For 11.11% test suite execution, a number
of participating test cases are {T6} only, which
covers {f1,f3, f5 } faults out of total five faults, Thus
the number of faults detected by executing 11.11%

of test suite in case of PSO is 3/5= 0.6. For 22.22
% test suite execution, number of participating test
cases are {T6,T8} only, which covers {f1,f2,f3,f4,
f5 } faults out of total five faults. Thus a number
of faults detected by executing 22.22% of test
suite in case of PSO are 5/5= 1. In similar manner
number of fault detected for 33.33%, 44.44%,
55.55%, 66.66%, 77.77%, 88.88% and 100% are
1,1,1,1,1,1,1 respectively
The proposed PSO Ordering is shown using the
figure 4.
Thus if we consider the case of PSO ordering the
APFD is calculated by finding the area under the
curve given in figure 4, which comes out 89.99%
(APFD).

Fig. 4 APFD Score for Proposed PSO
[case study 1].

The APFD score can also be calculated using the
formula 1 as discussed above
APFD (PSO ordering) = [(1-((1+2+1+2+1)/9*5))+
(1/2*9)]*100 = 89.99%
Both methods results in same APFD.

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

165

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

166

Comparison With Different Ordering

We compare the result of proposed PSO algorithm with No order, Random order, Reverse order, optimal
order and various other existing work as shown in table 4.
The various approaches and their prioritization order as mentioned in table 4 are compared by calculating
their average percentage of faults detected (APFD).
The proposed algorithm show better APFD score for six techniques and it has near optimal score (89.99%),
which has slightly lower AFFD (2.22% lower) than the optimal (92.22%) and M-C- GA- FF*APFD
(92.22%) score. Thus we are close to the optimal value and the algorithm itself shows a different approach
for test case prioritization.

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

167

Comparison Of Proposed Pso Algorithm With Search Based Algorithms Using Case
Study 2

In this section we compare proposed PSO algorithm with three different searches based algorithm namely
Ant colony based algorithm, Cuscuta search algorithm and Proposed PSO algorithm. Beside the mentioned
search algorithms we also compare the effectiveness of these search based algorithms w.r.t Optimal,
Random, Reverse and original ordering. Table 5 & Table 6 shows case study 2 which is similar to case study
1 except that here we do not know about Condition Coverage (CC), Multiple Condition Coverage (MC),
Statement Coverage (SC) and the Severity Value (si). We are given only the test case, its corresponding
revealed fault(s) and execution time for each test case.
First we briefly introduce the fundamental of all search based algorithms taken in this case study and then
one by one we search for the following research questions

 1) Are search based techniques more effective than traditional techniques for test case prioritization (in
terms of APFD)?

2) Which search based technique among (a) Ant colony based algorithm (b) Cuscuta Search algorithm, and
(c) Proposed PSO algorithm is more effective in terms of APFD for test case prioritization problem?

For answering the first question we break it into the following sub-questions:

1.1) Is Ant colony based algorithm for test case prioritization outperforms other traditional techniques such
as optimal, random, reverse and original ordering?

1.1.2) Is Cuscuta search algorithm for test case prioritization outperforms other traditional techniques
such as optimal, random, reverse and original ordering?

1.1.3) Is Proposed PSO algorithm for test case prioritization outperforms other traditional techniques such
as optimal, random, reverse and original ordering?

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

168

Ant Colony Based Algorithm: A Wild
Metaphor

In 1959 Grasse first introduced a term know as
Stigmergy to the indirect form of communication
among multi-agents evolving as a self-organized single
system while modifying their local environment.
The studies on ant colonies Stigmergy nature has
proved an indirect communication between each ant
by depositing a chemical known as pheromone on
their path and the ant then tends to follow that path,
gradually all ants converge to the trail having a higher
concentration on pheromone deposit [7].
Let us demonstrate a simple “shortest bridge
experiment” to demonstrate forging behavior of
real ants, figure 5 shows the diagrammatic view of
setup in which two possible paths from source(nest)
to destination(food) are shown. Path A is shorter
than path B. Initially as the ant move from the nest
foraging for food, it follow a random path but as the
time passes we observed that all ants following the
path A. This is due to the fact that when initially an
ant move from her nest following path A and after
collecting its food it will reach to its nest again in
less time than an ant which had followed the path
B due to the distance parameter and in this way it
had deposited a pheromone before than the second
ant following the path B. Thus a convergence to the
shortest path is achieved.

Fig. 5 Two possible paths for foraging

The experiment shows the exploration to exploitation
due to pheromone deposition tendency of ants in the
real world.
Tour Construction
Initially, an ant is put on the initial node and by using
action choice rule, called random proportional rule,
to decide which node to visit next. In particular, the
probability with which ant k, currently at node I,
chooses to go to node j is

where ηij=1/dij is a heuristic value that is available a
priori, indicated the visibility of a path for an ant at
the current vertex, α and β are two parameters which
determine the relative influence of the pheromone
trail and the heuristic information, and l€ N_i^kis the
feasible neighborhood of ant k when being at node .
The roles of the parameters are indicated in table 7.
Some good parameters setting used in ACO algorithm
are shown in table 8. Good parameter values are
very important in order to converge algorithm at the
optimal point.

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

169

Cuscuta Search Algorithm

Till now we have strong observations and
formulation about the animal’s intelligent behavior
such as ant colony, bee colony [43]. They involve
foraging for food not by simple but by collective
intelligence behavior. The plant’s foraging has been
the least studied area in computational intelligence.
Not only animals as described above forage for
food intelligently but the same have been done by
the plants too.
One such example is the dodder (Cuscuta sp) as
shown in figure 6, which attacks its prospective
host through some host-plant clue. If the host is
found unsuitable the Cuscuta sp. continue its
search but once the selection is made the Cuscuta
sp. coil around its selected host in a specific manner
(anticlockwise) to transfer resources from the host
plant. Research has found that Cuscuta sp. seedlings
show directed growth toward tomato volatiles
experimentally released in the absence of any other
plant-derived clue [30]. Furthermore, volatile cues
(α-pinene, β-myrcene and β-phellandrene) are used
by the dodder to “choose” tomatoes, a preferred
host, over non-host wheat.

Fig 6. A Dodder (Cuscuta sp.) (Light yellow) coiling
around its host. Cuscuta sp. has the ability to assess
its prospective host before coiling around the host

plant [21] and thus it does not coil around every host
with which it comes in contact. If the prospective
host is found to be unsuitable the parasitic plant

continues its search for other hosts. Photo courtesy:
Mukesh Mann and Om Prakash Sangwan [30].

A key point of observation is that Cuscuta somehow
knows its starvation i.e. if the same cues would
have been coming from the wheat, the bend will be
towards the wheat rather than tomato. Considering
this dynamics Cuscuta search algorithm for test
case prioritization has been proposed [30].
In order to answer the research questions framed
above, we need to (i) compare the APFD Scores
of each search based algorithms as discussed

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

170

above with other traditional test case prioritization
techniques and (ii) compare the APFD Scores of
each search based algorithms with each other.
We applied the ant colony optimization [40],
Cuscuta search algorithm [30] and proposed PSO
algorithm on the case study 2 and APFD Score is
calculated. A comparative analysis of APFD Score
is shown from figure 7.

Fig. 7 APFD Comparison for different
Prioritization Techniques.

An individual comparison of each prioritizing
technique is plotted and the individual AFPD
behavior during the lifetime of total percentage
execution of test suite is observed as shown in
figure 8.

Results obtained by measuring the Average
Percentage of Faults Detected (APFD) shows
that proposed PSO algorithms show similar
results as shown by Cuscuta search, ACO and
optimal ordering and all search based algorithms

as discussed above shows better performance
w.r.t No order, Random order and Reverse order.
Figure 8 clearly shows the effectiveness of three
search based technique in detecting the average
percentage of faults.
All search based algorithms and traditional
techniques are compared w.r.t their APFD score as
shown in table 9.
The various search based approaches and their
prioritization order are compared by calculating
their average percentage of faults detected (APFD).
From the figure 8, it is clear that APFD Score of the
Proposed PSO algorithm is same as that of Cuscuta
search, Ant colony based algorithm and optimal
ordering. It has been observed that proposed
algorithm outperform random ordering, reverse
ordering and no ordering for test case prioritization.
PSO can be used in large and complex test suite
prioritization problems and thus saving the
larger amount of time and cost during software
development life cycle as compared to smaller
ones. With this approach software testers can
easily select and prioritize test cases with minimum
execution time and a higher percentage of fault
detection.

Table 9. Comparison between various Search
based algorithms [case study 2]

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

171

Conclusion

In this paper we have designed and implemented
an artificial particle swarm optimization algorithm
for test case prioritization problem using two
case studies. We have compared our approach
against four other metaheuristic approaches –
Multi-Criteria Genetic algorithms (with different
versions), an ant colony optimization approach,
Cuscuta search algorithm and Hybrid Particle
Swarm Optimization algorithm. Our approach has
APFD score of 89.99% which has 2.22% lower
AFFD than the optimal (92.22%) and Multi-Criteria
Genetic algorithms (92.22%). Our approach
outperforms Hybrid Particle Swarm Optimization
(75.6% APFD), whereas the APFD score of our
proposed approach is same as that of Cuscuta
search algorithm and ant-colony optimization
approach in both case studies. We have compared
our approach with four traditional methods of
prioritization- random ordering, reverse ordering,
untreated ordering and Prioritized order by average
faults found per minute algorithm. Our approach
outperforms all the traditional approaches in both
case studies.
By observing the good performance of this new
paradigm, it is expected that proposed PSO will
be used to solve problems in many areas such
as machine learning, test case generation and
optimization. As a future work, it is planned to study
on applying proposed PSO to solve real-world
problems and also on improving the performance
of the algorithm by introducing new modifications.

Acknowledgement

The authors are very grateful to the anonymous
reviewers for providing valuable and detailed
comments that have significantly improved the
paper.

References
Alspaugh S, Walcott K.R, Belanich M,

Kapfhammer G.M, and Soffa M.L(2007)
Efficient time-aware prioritization with
knapsack solvers. In Proc. Of WEASELTech,
22(1):13-1

Amr Abdel, Fatah Ahmed, Mohamed Shaheen
and Essam Kosba (2012) Software testing
suite prioritization using multicriteria fitness
function. In ICCTA, IEEE, Alexandria, Egypt,
pp. 160-166.

 Arvinder Kaur and Divya Bhatt (2011) Hybrid
Particle Swarm Optimization for regression
Testing. Int. Journal of Computer Science and
Engineering 3(5):1815-1824.

 Briand L. C (2002) On the many ways Software
Engineering can benefit from Knowledge
Engineering. Proc. 14th SEKE, Italy, 3-6.

Caro G.D, and Dorigo M (1998) AntNet: Distributed
Stigmergetic Control for Communications
Networks. Journal of Artificial Intelligence
Research, 9:317-365

David Leon and Andy Podgurski (2003)
A comparison of coverage-based and
distribution based techniques for filtering and
prioritizing test cases. In Proceedings of the
14th International Symposium on Software
Reliability Engineering, ISSRE ’03, 442–450

 Deneubourg JL, S. Aron S, Goss S and Pasteels
JM (1990) The self-organizing exploratory
pattern of the argentine ant. Journal of Insect
Behavior, 3, 159-168

Dorigo M, Maniezzo V, and Colorni A (1996) Ant
system: optimization by a colony of cooperating
agents. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 26(1):29-
41.

G. Rothermel, R.H. Untch, Chengyun Chu and
M.J. Harrold (2001) Prioritizing test cases
for regression testing. Software Engineering,
IEEE Transactions on software engineering,
27(10):929 –948

Gomez O, Baren B (2005) Omicron ACO: A New
Ant Colony Optimization Algorithm. CLEI
Electronic Journal, 8(1):1-8

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

172

Gregg Rothermel, Roland H. Untch, Chengyun
Chu and Mary Jean Harrold (1999) Test
Case Prioritization: An Empirical Study. In
Proceedings of the International Conference on
Software Maintenance, 1-10

Gregg Rothermel and Mary Jean Harrold (1996)
Analyzing regression test selection techniques.
IEEE Trans. Software Eng., 22(8):529–55.

Hiralal Agrawal, Joseph R. Horgan, Edward W.
Krauser and Saul London (1993) Incremental
regression testing. In Proceedings of the
Conference on Software Maintenance, ICSM
’93, pp 348–357

Hou,Y, Zhao C and Liao,Y (2006) A new method
of test generation for sequential circuits, in
Proceedings, (2006,International Conference
on Communications, Circuits and Systems,
2181–2185.

Huaizhong Li and C.Peng Lam (2005) Software
Test Data Generation using Ant Colony
Optimization. In Proceedings Of World
Academy of Science, Engineering And
Technology, 1:1-4.

Hyunsook Do, Gregg Rothermel and Alex
Kinneer (2004) Empirical studies of test case
prioritization in a junit testing environment. In
Proceedings of the 15th International Symposium
on Software Reliability Engineering, pp 113–
124

J. f Kennedy (1998) The Behavior of Particles,
in V.W. Porto, N. Saravana, D.Waagen
(ed.), proceedings of the 7th Conference on
Evolutionary Programming, pp. 581-589

J. Kennedy and R.C. Eberhart (1995) Particle
Swarm Optimization, Proceedings of the IEEE
International Conference on Neural Networks,
4,. 1942-1948

Jung-Min Kim and Adam Porter (2002) A history-
based test prioritization technique for regression
testing in resource constrained environments. In
Proceedings of the 24th International Conference
on Software Engineering 2:119–129

K. Ayari, S. Bouktif and G. Antoniol (2007)
Automatic Mutation Test Input Data Generation
via Ant Colony. Genetic and Evolutionary
Computation Conference, London,1074-1081

Kelly C. K (1990) Plant foraging: a marginal value
model and coiling response in Cuscuta subinclusa.
Ecology, 71: 1916 – 1925

Kong,X., and Sun, J., Xu,W (2006) Particle swarm
algorithm for tasks scheduling in distributed
heterogeneous system, In Proceedings of Sixth
International Conference on 6: 690–695.

Li L, Ju S and Zhang Y (2008) Improved ant colony
optimization for the traveling salesman problem.
In Proceedings of 1st International Conference
on Intelligent Computation Technology and
Automation, 76–80.

Krishnamoorthi R, Sahaaya S.A, andMary A
(2009). Regression Test Suite Prioritization using
Genetic Algorithms. International Journal of
Hybrid Information Technology, 2(3):35-52

Liang,Y, Liu,L.,Wang,D and WU, R (2010)
Optimizing Particle Swarm Optimization to Solve
Knapsack Problem, ICICA, CICIS, 105:437-443.

Liu, H., Sun, S., and Abraham, A (2006) Particle
swarm approach to scheduling work-flow ap p
lications in distributed data- intensive computing
environments, Proceedings of Sixth International
Conference on In Intelligent Systems Design and
Applications, 6: 661–666.

Lope, H.S., and Coelho, L.S (2005) Particle Swarm
Optimization with the fast local search for the
blind traveling salesman problem, Proceedings
of Fifth International Conference on hybrid
intelligent systems, 5: 245-250.

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

173

Marco Dorigo and Thomas Stutzle (2005) Ant
Colony Optimization. phi publishers.

Mark Harman (2007) The Current State and Future of
Search Based Software Engineering. International
Conference on Software Engineering. Future of
Software Engineering, IEEE Computer Society
press, Washington, DC, USA, 342-357.

Mann Mukesh and Sangwan Om Prakash (2014)
Test case prioritization using Cuscuta search.
Network Biology, 4(4): 179-192.

Parpinelli RS, Lopes HS and Freitas AA (2002) Data
mining with an ant colony optimization algorithm.
IEEE Transactions on Evolutionary Computation,
6(4): 321-332

 Pedrycz W and Peters, J. F (1998) Computational
Intelligence in Software Engineering”, World
Scientific Publishers.

Phil. McMinn (2004) Search-Based Software
Test Data Generation: A Survey, 14: 212-223.
Proceedings of Sixth International Conference on
Software Testing, Verification and Reliability, 6:
690–695.

Rothermel G, Untch R. H, Chu C, and Harrold M. J
(2001) Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering,
27(10):929-948

Yoo, S., and Harman, M (2012). Regression testing
minimization, selection and prioritization:
a survey. Software Testing Verification and
Reliability, 22 (2): 67-120

Runyon J.B, Mescher M.C, and De Moraes C.M
(2006) Volatile chemical cues guide host location
and host selection by parasitic plants, Science
313:1964–1967

Sebastian Elbaum and Alexey Malishevsky
(2002) Test case prioritization: A family of
empirical studies. IEEE Transactions on
Software Engineering, 28:159–182.

Sheta A (2006) Reliability growth modeling for
software fault detection using particle swarm
optimization, Proceedings of IEEE Congress on
Evolutionary Computation, 3071–3078.

Siavash Mirarab and Ladan Tahvildari (2008)
An empirical study on Bayesian network-
based approach for test case prioritization. In
Proceedings of the International Conference on
Software Testing, Verification, and Validation,
278–287

Singh Y, Kaur A, and Suri B (2010) Test Case
Prioritization using Ant Colony Optimization
ACM SIGSOFT Software Engineering Notes
35:1-7

Srivastava P.Ranjan (2008) Test case prioritization.
Journal of Theoretical and Applied Information
Technology JATIT, 178-181.

Stenhouse D (1974) The Evolution of Intelligence:
A General Theory and Some of Its Implications.
Harper & Row, USA

Tereshko V (2000) Reaction-diffusion model of
a honeybee colony’s foraging behavior. In
Schoenauer M.(ed.) Parallel Problem Solving
from Nature VI. Lecture Notes in Computer
Science, Springer, 1917: 807–816

Zhao P, Zhao P, and Zhang X (2006) New Ant
Colony Optimization for the Knapsack Problem.
In the Proceedings of the 7th International
Conference on Computer-Aided Industrial
Design and Conceptual Design,1-3

Zhao, F., Zhang, Q., and Yang, Y (2006) An
improved particle swarm optimization based
approach for production scheduling problems,
In Proceedings of the IEEE International
Conference on Mechatronics and Automation,
2279–2283.

AGJSR 33 (4) Dec 2015: 157-173 Mukesh Mann et al

