
377

Sp. Issue 2013/ # Paper 9
Corresponding author:
Haibin Li
Mailing address: No. 49, Aimin
Street, Hohhot City, Inner
Mongolia, 010051, P. R. China
E-mail: lhbnm2002@163.com
Tel: +86-13674786672
Fax: +86-471-6575713

Implementation of Finite Element Neural Network Computing Method Based on
FPGA

Zhendong Liang1; and Haibin Li1

1School of Sciences, Inner Mongolia University of Technology, Hohhot, China

ABSTRACT

KEYWORDS

 Based on the research of neural network (NN) computing method
 of finite element equations for the structure of the discrete model, a
 complete implementation of the various parts of the computing method
 is presented. The computation module was described with hardware
 description language (Verilog HDL) at the RTL level, and functional
 simulation was executed by Quartus II 11.0 and ModelSim 6.5.
 Simulation results show that the implementation of neural network
 computing method based on field programmable gate array (FPGA) can
 satisfy the requirement of the parallel computing, which could further
 improve the speed of structural finite element computation, and ensure
the speed and accuracy of the computation.

Finite element; Neural network
computing; Floating -point
operations; FPGA; Hardware
description language

Introduction
Finite element method has been developed rapidly
during the last century and has become one of
the most effective structural analysis tools today.
However, with the analysis of structural problems
becoming more and more complex and large-scale,
finite element computation method based on the
traditional serial computer with limited memory
capacity and speed becomes inefficient (Liu, et
al., 2005; Zhang, et al., 2010; Wang, et al., 2010;
Liu, et al., 2010). To overcome the drawbacks,
many structural analysts and mathematicians have
committed themselves to develop more efficient
finite element analysis methods. Hence the
theory based on the parallelism of many practical
application procedures was proposed.

Neural network is a complex nonlinear system
with highly parallel computational capability,
and its application domain has been expanded to
structural finite element analysis. In the past, the
analog circuits were often used in implementation
hardware, but it possesses low accuracy and
complex structure design. Based on structural
finite element analysis of discrete models, a neuro-
computing strategy is introduced in this paper,
while dynamic iterative equations are constructed

in terms of neural networks of discrete models.
Determination of the iterative step size, which is
important for convergence, is investigated based
on the positive definiteness of the finite element
stiffness matrix. Consequently, a method of
choosing the step size of dynamic equations is
proposed and the computational formula of the best
step size is derived (Li, et al., 2004; Gao, et al.,
2008). The analysis of the computing model shows
that the solution of finite element system equations
can be obtained with the method of neural network
computation efficiently. Thus the proposed method
can be used for parallel computation of structural
finite element in a large-scale integrated circuit.

In order to ensure the speed and accuracy of
the finite element parallel computing, we use the
hardware of field-programmable gate array (FPGA)
for configuration and simulation of the neural
network of the finite element in this paper.

Neurocomputing Method of Structural
Finite Element Analysis of Discrete
Models
Digital circuits process numerical information. The
characteristic of the digital signal in the time scale or
size scale is discrete. Therefore, the corresponding

AGJSR 31 (Special Issue) 2013: 377-382 Zhendong Liang et al

378

neural network system is also a discrete system.
Because the finite elements are assembled by the
unit combination, the total potential energy and
the restraint of the system can be written in the
following from (Consolazio, 2000):

(1)

where K is the global stiffness matrix; is
the solution vector; q is the nodal loading array;
A is the constraint matrix; is the displacement
constraint array and is the constrained surface.

If the constraint is not considered , Eq. (1) can
be transformed into the following unconstrained
optimization problem (Li, et al., 2004):

 (2)
where is the global stiffness matrix, and is
the loading matrix. As the finite element theory,

 is a symmetric positive definite matrix, and the
superscript T denotes the transpose operator.

Taking the right-hand side of Eq. (2) as the
neural network energy function, the finite element
solution could be obtained by constructing the
following discrete dynamic equation of neural
networks.

 (3)
where k indicates the k th iteration and is the step
size.

Implementation of FPGA
The discrete NN computational model shows that
NN computing structure is composed of many adders
and multipliers. Since the computation needs a large
number of floating-point arithmetic calculations,
the implementation of the floating-point adders and
multipliers are flowing in the first. According to the
floating-point number format standard IEEE-754,
the design of the single-precision 32-bit format (Li,
et al., 2010) is achieved, shown in Table 1.

Table 1: IEEE-754 Floating-Point Format

Floating-point Sign Exponent Mantissa

Single-precision
32-bit

[31]
1 bit

[30:23] 8
bit

[22:0] 23
bit

According to the IEEE-754 standard, 0 indicates
a positive sign bit, and 1 indicates a negative value.
The offsets of 127 units are contained in the order
code offset, which represents the range from -127 to
128. The integer bit format is hidden in the mantissa
among which 23 units are decimal fraction.

(1) Floating-point Adder Module
Implementation
A module of the floating-point adder is shown in Fig.
1, where CLK is a clock signal, Start_Sig module
activation signals for the low-level reset signal. A, B,
and RSTn input 32-bit single-precision floating-point
numbers, and the result is the output of the 32-bit
calculation result and Done_Sig is the completion of
the feedback signal (IEEE Std 754-2008).

Figure 1: Floating-point Adder Module

The following steps are required to achieve
floating point addition.
(1) The preprocessing of input operand. The standard
format of the operand sign bits, the exponent bits
and the mantissa bit have to be separated. In order to
ensure the accuracy of the calculation result, we fill
the 23 bits “0” behind the mantissa, two “01” ahead
of mantissa, and two “00” before the exponent.
(2) Exponent operation. Obtaining ​​ a difference
between the two exponents, determining the size
and selecting the large one and shifting mantissa
alignment according to the difference.
(3) The mantissa Operation processing. According
to the sign bit of the operand, and then proceed to
the adder.
(4) Calculation results processing. The size of
the symbol bits of the operand is determined by
exponent. To ensure that the first bit of the mantissa
is 1, then to shift operation, and to change the value
of the exponent by the shift in the calculation result
of the mantissa.
(5) The output results with normalized processing.
According to the IEEE-754, it is obtained that the
result is standardized, and the output of a 32-bit result
is ensured. Done_Sig is a high continuous output
before 32-bit output.

AGJSR 31 (Special Issue) 2013: 377-382 Zhendong Liang et al

379

Figure 2: Floating-point Multiplier Module

(2) Floating-point Multiplier Module
Implementation
A module of the establishment of floating-point
multiplier is shown in Figure 2, where CLK is a
clock signal. While Start_Sig module activate
signals for the low-level reset signal, and A,
B, RSTn input 32-bit single-precision floating-
point number. Result is the output of the 32-bit
calculation result and Done_Sig is the completion
of the feedback signal. In order to ensure
consistency feedback of calculation completion
in neural network implementation of the finite
element, the computer clock of the multiplier and
adder 8 is set, and then Done_Sig outputs the high
level information [Wang and Dai, 2009].

The following steps are required to achieve
Floating point multiplier.
(1) The preprocessing of input operand. The standard
format of the operand sign bits, the exponent bits
and the mantissa bit have to be separated. In order
to ensure the accuracy of the calculation result, the
23 bits “0” behind the mantissa, two “01” ahead
of mantissa are filled, and two “00” is before the
exponent.
(2) Operands operations. XOR operation of the

sign bit, the exponent adder and the multiplication
of the mantissa are used.
(3) Calculation results processing. The calculation
result of the sign bit is the sign bit of the result.
Ensure the first mantissa to be 1, according to the
calculation result of the mantissa. The decimal
point position is shifted on the basis of the shift to
determine the order of code bits.
(4) The output results with normalized processing.
According to the IEEE-754, it is obtained that the
result is standardized, and the output of a 32-bit
result is ensured. Done_Sig is a high continuous
output before 32-bit output.

(3) The Module of Floating-point Multiplier-
Adder Implementation
In the algorithm, the extensive use of A*B+C*D
computing modules, and in order to ensure parallel
computing, the mul_add_module.v module are
designed and implemented.

This is connected with two floating point
multiplier and a floating point adder. Operands
which are inputs for the A, B, C, D in four 32-bit
wide are operated by inputting to the multiplier
module in pairwise respectively, and then parallel
computing of multiplier is realized. After the
output, the outputted procedure of the multipliers
is used to complete the feedback signal Done_
Sigthe and operating as a module of the floating-
point adder to start signal Start_Sig, the result of
the multiplier as the operand input of the adder
operation. The output result signal is Done_Sig.
Module instantiated is shown in Figure 3.

Figure 3: Implementation of Mul_add_module.v Module

AGJSR 31 (Special Issue) 2013: 377-382 Zhendong Liang et al

380

Emulating Computation
Example 1 suppose that there is a triangle plate with
thickness t = 0.1 mm; elastic modulus of the material
E = 1000 Pa, the Poisson’s ratio l = 0 and F = 10 KN.
The dimension and the constrains are shown. The
triangle plate is meshed into four triangular elements,
totally six nodes in Figure 4. Without considering
the effect of the gravity, the routine method of finite
element and the computational method of the neural
network of the finite element are adopted to solve
the displacement of every node separately.

First, the element stiffness matrix of every
triangular element are calculated, and then the
general manipulative equations are obtained after
combining the element, introducing the boundary
conditions and correcting the general stiffness
matrix.

Figure 4: Loading and Finite Element of Triangle
Sheet

According to Eq. (3) and the construction of

neural network as shown in Figure 5, the system of
neural network could be obtained.

 In Figure 5, (variables to be obtained) is
the output, and (load vector) is the input. In one
iteration, are fed back parallel to computing
elements laid in the ith row, and then 22 multiply
operations are processed. Here, is an element in

the ith row and the jth column of global stiffness
matrix. After doing accumulation in six elements
named (multiple input and single output), the
results can be obtained. is time delay [Zhou, et
al., 2005].

Figure 5: Neural Computation Block Diagram

First of all, the value of the step size should
be considered. According to Table 2, the time step

 The value of step size can be calculated.
Corresponding to the different (the neuro-
computation can be operated), after taking the
origin of coordinate as the initial point of iterative
computation, (is the error) is taken as
the condition of convergence.

Table 2: The Relationship Between Convergence
Time (number of iterations) and Iterative Step
Length ().
Iterative
Step() 0.1 0.3 2/3 0.75 Steepest

Descent 0.80

Iterations 235 77 33 31 29 Divergent
And then, digital experiments could be

conducted by choosing different initial points. Six
groups of initial points are given to make them
typical. The vectors, which are formed by initial
points and origin of coordinates, are orthogonal.
The six groups of initial points are:
x1=(-3.3346, 5.3281, 0.1176, -0.7961, 5.4552, -5.4850)
x2=(-2.7896, -3.1493, -7.2920, -5.1820, 1.3809, 0.6059)
x3=(-5.0548, 3.2908, 0.2993, -1.8711, -7.6719, -1.0826)
x4=(-4.6158, -5.4101, 6.2856, -2.6640, 1.6553, -0.2815)
x5=(-3.6230, -3.7163, -2.6794, 7.4256, -0.6697, -3.2088)
x6=(-4.5953, 2.7899, -0.1892, 2.6031, 2.5075, 7.6158)

AGJSR 31 (Special Issue) 2013: 377-382 Zhendong Liang et al

381

With point of the six sets of orthogonal neural
network being the initial input, and the time step

, the neural network operation of step 100
of the results are listed in Table 3 by running the
neural network.

Table 3: Iteration of Step 100 of Neural Network
Output Values ​​With the Theoretical Value
Initial
points u1 u2 u3 u4 u5 u6

x1 -3.2525 -1.2539 -0.0868 -0.3725 0.1747 0.1761

x2 -3.2525 -1.2536 -0.0871 -0.3728 0.1749 0.1760

x3 -3.2528 -1.2526 -0.0880 -0.3737 0.1760 0.1758

x4 -3.2529 -1.2522 -0.0884 -0.3741 0.1763 0.1757

x5 -3.2529 -1.2521 -0.0885 -0.3742 0.1765 0.1757

x6 -3.2527 -1.2529 -0.0877 -0.3734 0.1756 0.1759

Theo-
retical
value

-3.2527 -1.2527 -0.0879 -0.3736 0.1758 0.1758

Computation of FPGA
According to the calculation example, it is the
calculation of FPGA design. The use of the basic
modules float_a-dd_modu-le.v, float_multi_
module.v and mul_add_m-odule.v are designed.
According to neural network structure in Figure
5, we design synthesis in the Quartus II, and carry
out the functional simulation under the Modelsim.
Results are shown in Figure 6.
where Counter_reg is the number of iterations;

Sig_done_reg feedback is the signal after the
completion of the one iteration; Sig_start_reg is a
start signal for the next iterated calculation. Through
the procedure of the normalization process of the
result, intercepting the 23 mantissa, the precision
of the floating point arithmetic has been improved
by the law of Roundup. Because of the regulatory
function of self-accuracy of the neural network
computation, Table 4 shows that there are small
errors between the FPGA simulation results and the
theoretical values of calculations, but the range is
acceptable.

Conclusions
In the implementation of parallel computing of
finite element neural network, we achieved it by
Stratix II EP2S130F1508C5 chip. After general
layout, results show that combinational ALUTs
are 55789, which account for 52% of the totality;
dedicated logic registers for 16460, which account
for 16% of the totality; DSP block 9-bit elements
are 336, which account for 67% of the totality.
When frequency of simulation is 250MHz, the
length of completion of one iteration is 216ns. In
the simulation, the serial computational method
was adopted by the software of MATLAB. In this
paper, parallel implementation is used by FPGA,
which greatly improves the calculation speed to
save the computing time. Meanwhile it guarantees
the accuracy, and provides a new calculation
method for improving neural network parallel finite
element calculation.

AGJSR 31 (Special Issue) 2013: 377-382 Zhendong Liang et al

Figure 6: Output of FPGA Simulation

382

References
Consolazio GR (2000) Iterative Equation Solver

for Bridge Analysis using Neural Networks.
ComputerAided Civil and Infrastructure
Engineering, Eng., 15: 107-119.

Gao HS; Zhang J; and Qin WY (2008) On
Applying CG Network to Structural Analysis.
Proceedings, 4th International Conference on
Natural Computation, ICNC, 2, 18-20 Oct.
2008, Jinan, China, pp560-563.

IEEE-754 (2008) IEEE Standard for Floating-
Point Arithmetic, IEEE Std 754-2008,
Microprocessor Standards Committee, 26 (6):
1578-1581.

Li HB; Duan W; and Huang HZ (2010)
Neurocomputing Method Based on Structural
Finite Element Analysis of Discrete Model.
Neural Computing and Applications, 19 (6):
875-882.

Li HB; Huang HZ (2004) Finite element Analysis
of Structures Based on Linear Saturated System
Model. Lecture Notes in Computer Science,
3174/2004: 820-825.

Liu Y; Yin Arendt XP; Chen W; and Huang HZ
(2010) A Hierarchical Statistical Sensitivity
Analysis Method for Multilevel Systems
with Shared Variables. Journal of Mechanical
Design,132 (3): 031006-1-031006-11.

Liu Y; Zhou W; and Liu F (2005) Parallel
Computing Analysis of Arch Dam and
Foundation System Using 3-D FEM with
Element by Element Approach. Qinghua
Daxue Xuebao/Journal of Tsinghua University,
45 (6): 772-775.

Wang S; and Dai YH (2009) Single Precision
Floating-Point Adder FPGA Realization. Chinese
Modern Electronic Technology, 8 (1): 8-10.

Wang Z; Huang HZ; and Liu Y (2010) A Unified
Framework for Integrated Optimization
under Uncertainty. Journal of Mechanical
Design,132 (5): 051008-1-051008-8.

Zhang X; Huang HZ; and Xu H (2010)
Multidisciplinary Design Optimization with
Discrete and Continuous Variables of Various
Uncertainties. Structural and Multidisciplinary
Optimization, 42 (4): 605-618.

Zhou N; Chen Y; and Li A (2005) Design and
Implementation of Floating Point Calculator
Based on FPGA Technology. Chinese Computer
Engineering and Design, 26 (6): 1578-1585.

AGJSR 31 (Special Issue) 2013: 377-382 Zhendong Liang et al

Table 4: The neural Network Simulation Results of Iteration of Step 100

Initial value u1 u2 u3 u4 u5 u6
x -3.2525 -1.2539 -0.0868 -0.3725 0.1747 0.1761

Theoretical
value -3.2527 -1.2527 -0.0879 -0.3736 0.1758 0.1758

FPGA-D -3.25294 -1.25193 -0.0886646 -0.374379 0.17664 0.175626
FPGA-H C0503040 BFA03f4b BDB595C3 BEBFAE95 3E34E115 3E33D76D

