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ABSTRACT

KEYWORDS

 Based on the research of neural network (NN) computing method
 of finite element equations for the structure of the discrete model, a
 complete implementation of the various parts of the computing method
 is presented. The computation module was described with hardware
 description language (Verilog HDL) at the RTL level, and functional
 simulation was executed by Quartus II 11.0 and ModelSim 6.5.
 Simulation results show that the implementation of neural network
 computing method based on field programmable gate array (FPGA) can
 satisfy the requirement of the parallel computing, which could further
 improve the speed of structural finite element computation, and ensure
the speed and accuracy of the computation.
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Introduction
Finite element method has been developed rapidly 
during the last century and has become one of 
the most effective structural analysis tools today. 
However, with the analysis of structural problems 
becoming more and more complex and large-scale, 
finite element computation method based on the 
traditional serial computer with limited memory 
capacity and speed becomes inefficient (Liu, et 
al., 2005; Zhang, et al., 2010; Wang, et al., 2010; 
Liu, et al., 2010). To overcome the drawbacks, 
many structural analysts and mathematicians have 
committed themselves to develop more efficient 
finite element analysis methods. Hence the 
theory based on the parallelism of many practical 
application procedures was proposed. 

Neural network is a complex nonlinear system 
with highly parallel computational capability, 
and its application domain has been expanded to 
structural finite element analysis. In the past, the 
analog circuits were often used in implementation 
hardware, but it possesses low accuracy and 
complex structure design. Based on structural 
finite element analysis of discrete models, a neuro-
computing strategy is introduced in this paper, 
while dynamic iterative equations are constructed 

in terms of neural networks of discrete models. 
Determination of the iterative step size, which is 
important for convergence, is investigated based 
on the positive definiteness of the finite element 
stiffness matrix. Consequently, a method of 
choosing the step size of dynamic equations is 
proposed and the computational formula of the best 
step size is derived (Li, et al.,  2004; Gao, et al.,  
2008). The analysis of the computing model shows 
that the solution of finite element system equations 
can be obtained with the method of neural network 
computation efficiently. Thus the proposed method 
can be used for parallel computation of structural 
finite element in a large-scale integrated circuit.

In order to ensure the speed and accuracy of 
the finite element parallel computing, we use the 
hardware of field-programmable gate array (FPGA) 
for configuration and simulation of the neural 
network of the finite element in this paper.

Neurocomputing Method of Structural 
Finite Element Analysis of Discrete 
Models
Digital circuits process numerical information. The 
characteristic of the digital signal in the time scale or 
size scale is discrete. Therefore, the corresponding 
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neural network system is also a discrete system. 
Because the finite elements are assembled by the 
unit combination, the total potential energy and 
the restraint of the system can be written in the 
following from (Consolazio, 2000):

     
(1)

where K is the global stiffness matrix;  is 
the solution vector; q is the nodal loading array; 
A is the constraint matrix;  is the displacement 
constraint array and  is the constrained surface.

If the constraint is not considered , Eq. (1) can 
be transformed into the following unconstrained 
optimization problem (Li, et al.,  2004):

   (2)
where  is the global stiffness matrix, and  is 
the loading matrix. As the finite element theory, 

 is a symmetric positive definite matrix, and the 
superscript T denotes the transpose operator.

Taking the right-hand side of Eq. (2) as the 
neural network energy function, the finite element 
solution could be obtained by constructing the 
following discrete dynamic equation of neural 
networks.

      (3)
where k indicates the k th iteration and  is the step 
size.

Implementation of FPGA
The discrete NN computational model shows that 
NN computing structure is composed of many adders 
and multipliers. Since the computation needs a large 
number of floating-point arithmetic calculations, 
the implementation of the floating-point adders and 
multipliers are flowing in the first. According to the 
floating-point number format standard IEEE-754, 
the design of the single-precision 32-bit format (Li, 
et al.,  2010) is achieved, shown in Table 1.

Table 1: IEEE-754 Floating-Point Format

Floating-point Sign Exponent Mantissa

Single-precision
32-bit

[31] 
1 bit

[30:23] 8 
bit

[22:0] 23 
bit

According to the IEEE-754 standard, 0 indicates 
a positive sign bit, and 1 indicates a negative value. 
The offsets of 127 units are contained in the order 
code offset, which represents the range from -127 to 
128. The integer bit format is hidden in the mantissa 
among which 23 units are decimal fraction.

(1) Floating-point Adder Module 
Implementation
A module of the floating-point adder is shown in Fig. 
1, where CLK is a clock signal, Start_Sig module 
activation signals for the low-level reset signal. A, B, 
and RSTn input 32-bit single-precision floating-point 
numbers, and the result is the output of the 32-bit 
calculation result and Done_Sig is the completion of 
the feedback signal (IEEE Std 754-2008).

Figure 1: Floating-point Adder Module

The following steps are required to achieve 
floating point addition.
(1) The preprocessing of input operand. The standard 
format of the operand sign bits, the exponent bits 
and the mantissa bit have to be separated. In order to 
ensure the accuracy of the calculation result, we fill 
the 23 bits “0” behind the mantissa, two “01” ahead 
of mantissa, and two “00” before the exponent.
(2) Exponent operation. Obtaining ​​ a difference 
between the two exponents, determining the size 
and selecting the large one and shifting mantissa 
alignment according to the difference.
(3) The mantissa Operation processing. According 
to the sign bit of the operand, and then proceed to 
the adder.
(4) Calculation results processing. The size of 
the symbol bits of the operand is determined by 
exponent. To ensure that the first bit of the mantissa 
is 1, then to shift operation, and to change the value 
of the exponent by the shift in the calculation result 
of the mantissa.
(5) The output results with normalized processing. 
According to the IEEE-754, it is obtained that the 
result is standardized, and the output of a 32-bit result 
is ensured. Done_Sig is a high continuous output 
before 32-bit output.
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Figure 2: Floating-point Multiplier Module

(2) Floating-point Multiplier Module 
Implementation
A module of the establishment of floating-point 
multiplier is shown in Figure 2, where CLK is a 
clock signal. While Start_Sig module activate 
signals for the low-level reset signal, and A, 
B, RSTn input 32-bit single-precision floating-
point number. Result is the output of the 32-bit 
calculation result and Done_Sig is the completion 
of the feedback signal. In order to ensure 
consistency feedback of calculation completion 
in neural network implementation of the finite 
element, the computer clock of the multiplier and 
adder 8 is set, and then Done_Sig outputs the high 
level information [Wang and Dai, 2009]. 

The following steps are required to achieve 
Floating point multiplier.
(1) The preprocessing of input operand. The standard 
format of the operand sign bits, the exponent bits 
and the mantissa bit have to be separated. In order 
to ensure the accuracy of the calculation result, the 
23 bits “0” behind the mantissa, two “01” ahead 
of mantissa are filled, and two “00” is before the 
exponent.
(2) Operands operations. XOR operation of the 

sign bit, the exponent adder and the multiplication 
of the mantissa are used.
(3) Calculation results processing. The calculation 
result of the sign bit is the sign bit of the result. 
Ensure the first mantissa to be 1, according to the 
calculation result of the mantissa.  The decimal 
point position is shifted on the basis of the shift to 
determine the order of code bits.
(4) The output results with normalized processing. 
According to the IEEE-754, it is obtained that the 
result is standardized, and the output of a 32-bit 
result is ensured. Done_Sig is a high continuous 
output before 32-bit output.

(3) The Module of Floating-point Multiplier-
Adder Implementation
In the algorithm, the extensive use of A*B+C*D 
computing modules, and in order to ensure parallel 
computing, the mul_add_module.v module are 
designed and implemented.

This is connected with two floating point 
multiplier and a floating point adder. Operands 
which are inputs for the A, B, C, D in four 32-bit 
wide are operated by inputting to the multiplier 
module in pairwise respectively, and then parallel 
computing of multiplier is realized. After the 
output, the outputted procedure of the multipliers 
is used to complete the feedback signal Done_
Sigthe and operating as a module of the floating-
point adder to start signal Start_Sig, the result of 
the multiplier as the operand input of the adder 
operation. The output result signal is Done_Sig. 
Module instantiated is shown in Figure 3.

Figure 3: Implementation of  Mul_add_module.v Module
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Emulating Computation
Example 1 suppose that there is a triangle plate with 
thickness t = 0.1 mm; elastic modulus of the material 
E = 1000 Pa, the Poisson’s ratio l = 0 and F = 10 KN. 
The dimension and the constrains are shown. The 
triangle plate is meshed into four triangular elements, 
totally six nodes in Figure 4. Without considering 
the effect of the gravity, the routine method of finite 
element and the computational method of the neural 
network of the finite element are adopted to solve 
the displacement of every node separately. 

First, the element stiffness matrix of every 
triangular element are calculated, and then the 
general manipulative equations are obtained after 
combining the element, introducing the boundary 
conditions and correcting the general stiffness 
matrix.

Figure 4: Loading and Finite Element of Triangle 
Sheet

      
According to Eq. (3) and the construction of 

neural network as shown in Figure 5, the system of 
neural network could be obtained.

 In Figure 5,  (variables to be obtained) is 
the output, and  (load vector) is the input. In one 
iteration,  are fed back parallel to computing 
elements laid in the ith row, and then 22 multiply 
operations are processed. Here,  is an element in 

the ith row and the jth column of global stiffness 
matrix. After doing accumulation in six elements 
named  (multiple input and single output), the 
results can be obtained.  is time delay [Zhou, et 
al., 2005].

Figure 5: Neural Computation Block Diagram

First of all, the value of the step size should 
be considered. According to Table 2, the time step 

 The value of step size can be calculated. 
Corresponding to the different  (the neuro-
computation can be operated ), after taking the 
origin of coordinate as the initial point of iterative 
computation,  ( is the error) is taken as 
the condition of convergence.

Table 2: The Relationship Between Convergence 
Time (number of iterations) and Iterative Step 
Length ( ).
Iterative 
Step( ) 0.1 0.3 2/3 0.75 Steepest 

Descent 0.80

Iterations 235 77 33 31 29 Divergent
And then, digital experiments could be 

conducted by choosing different initial points. Six 
groups of initial points are given to make them 
typical. The vectors, which are formed by initial 
points and origin of coordinates, are orthogonal. 
The six groups of initial points are:
x1=(-3.3346, 5.3281, 0.1176, -0.7961, 5.4552, -5.4850)
x2=(-2.7896, -3.1493, -7.2920, -5.1820, 1.3809, 0.6059)
x3=(-5.0548, 3.2908, 0.2993, -1.8711, -7.6719, -1.0826)
x4=( -4.6158, -5.4101, 6.2856, -2.6640, 1.6553, -0.2815)
x5=(-3.6230, -3.7163, -2.6794, 7.4256, -0.6697, -3.2088)
x6=( -4.5953, 2.7899, -0.1892, 2.6031, 2.5075, 7.6158)
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With point of the six sets of orthogonal neural 
network being the initial input, and the time step

, the neural network operation of step 100 
of the results are listed in Table 3 by running the 
neural network.

Table 3: Iteration of Step 100 of Neural Network 
Output Values ​​With the Theoretical Value
Initial 
points u1 u2 u3 u4 u5 u6

x1 -3.2525 -1.2539 -0.0868 -0.3725 0.1747 0.1761

x2 -3.2525 -1.2536 -0.0871 -0.3728 0.1749 0.1760

x3 -3.2528 -1.2526 -0.0880 -0.3737 0.1760 0.1758

x4 -3.2529 -1.2522 -0.0884 -0.3741 0.1763 0.1757

x5 -3.2529 -1.2521 -0.0885 -0.3742 0.1765 0.1757

x6 -3.2527 -1.2529 -0.0877 -0.3734 0.1756 0.1759

Theo-
retical 
value

-3.2527 -1.2527 -0.0879 -0.3736 0.1758 0.1758

Computation of FPGA
According to the calculation example, it is the 
calculation of FPGA design. The use of the basic 
modules float_a-dd_modu-le.v, float_multi_
module.v and mul_add_m-odule.v are designed. 
According to neural network structure in Figure 
5, we design synthesis in the Quartus II, and carry 
out the functional simulation under the Modelsim. 
Results are shown in Figure 6.
where Counter_reg is the number of iterations; 

Sig_done_reg feedback is the signal after the 
completion of the one iteration; Sig_start_reg is a 
start signal for the next iterated calculation. Through 
the procedure of the normalization process of the 
result, intercepting the 23 mantissa, the precision 
of the floating point arithmetic has been improved 
by the law of Roundup. Because of the regulatory 
function of self-accuracy of the neural network 
computation, Table 4 shows that there are small 
errors between the FPGA simulation results and the 
theoretical values of calculations, but the range is 
acceptable.

Conclusions
In the implementation of parallel computing of 
finite element neural network, we achieved it by 
Stratix II EP2S130F1508C5 chip. After general 
layout, results show that combinational ALUTs 
are 55789, which account for 52% of the totality; 
dedicated logic registers for 16460, which account 
for 16% of the totality; DSP block 9-bit elements 
are 336, which account for 67% of the totality. 
When frequency of simulation is 250MHz, the 
length of completion of one iteration is 216ns. In 
the simulation, the serial computational method 
was adopted by the software of MATLAB. In this 
paper, parallel implementation is used by FPGA, 
which greatly improves the calculation speed to 
save the computing time. Meanwhile it guarantees 
the accuracy, and provides a new calculation 
method for improving neural network parallel finite 
element calculation. 
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