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ABSTRACT

KEYWORDS

Online and offline adaptive maintenance policies are presented for 
the systems with non-stationary Wiener degradation processes. In 
the policies, preventive maintenance threshold will change with the 
degradation indicator adaptively. The cumulative sum algorithm is 
used in the online model to detect the change point of the degradation 
process. On this basis, an analytical model of the offline model is 
developed. A gearbox case based on the vibration-based degradation 
signals is studied to show the performance of the maintenance policy. It 
shows that it is important to consider the change point and to be of high 
effectiveness using the adaptive maintenance model.Non-stationary degradation; 

Change point; Wiener process; 
Online detection; Offline

Introduction
In reality, the degradation processes for many 
systems are non-stationary, such as the two-
stage degradation process (Wang, 2010; Jiang, 
2011; Wang et al., 2011; Liu and Huang, 2010; 
Liu and Huang, 2010), the degradation rate is 
small in the first stage and large in the second 
stage. The modeling of degradation process is 
important to the condition-based maintenance 
(CBM). However, much less efforts are devoted 
to consider the existence of change point, and 
this may cause the maintenance optimization 
results not credible. Therefore, it is beneficial to 
consider the degradation change point for the 
maintenance program to maintain the system with 
high availability.

Many researchers have mainly investigated 
the maintenance optimization problem based on 
stationary degradation processes (Noortwijk and 
Frangopol, 2004; Mohamed, 1987; Grall et al., 
2002; Noortwijk and Kallen, 2006; Wang, 2002). 
However, the degradation processes for many 
systems are non-stationary due to environment 
influences or ageing factors etc. (Mitra et al., 
2008). To identify the degradation change point 

is very significant for the maintenance planning, 
including the development of the degradation 
model, the inspection scheme, and the preventive 
maintenance threshold. Some researchers have 
considered the change point detection in the CBM 
settings. (Fouladirad and Grall, 2011) proposed an 
adaptive PM threshold model for a system with a 
wear rate transition. The cumulative sum (CUSUM) 
algorithm is used to detect the abrupt change time. 
Saassouh (Saassouh et al., 2007) proposed an 
activation zone to plan the maintenance action for a 
deteriorating system with random change of mode 
and the deteriorating level and the change mode can 
be continuously and perfectly monitored. Ponchet 
(Ponchet et al., 2010) developed two condition-
based maintenance optimization models with and 
without considering the sudden changes in their 
degradation processes, respectively. The numerical 
results show that the change of degradation mode 
strongly influences the choice of the best decision 
rule structure. Zhao (Zhao et al., 2010) presented 
a predictive maintenance method considering 
the system with two degradation modes, and the 
maintenance actions were scheduled based on two 
reliability thresholds.
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In this paper, online and offline adaptive 
maintenance optimization models considering the 
non-stationary Wiener degradation process will 
be investigated. The online model is adapted to 
the situation that the time of change point is non-
informative, and the offline model can be used 
when the change time can be known instantly. The 
main contributions of this study are: (a) considering 
the non-stationary Wiener degradation process 
in the maintenance optimization; (b) developing 
two adaptive maintenance models for the Wiener 
degradation process with change point.

This paper is organized as follows. Section 
2 is devoted to model the non-stationary Wiener 
degradation process. Section 3 describes an 
online change detection algorithm. The detailed 
maintenance policy is presented in Section 4. In 
Section 5, the evaluations of the two adaptive 
maintenance models are presented. A numerical 
example is used to illustrate and analyze the 
proposed maintenance policies in Section 6. 
Conclusions are made in Section 7.

Reliability Analysis
(1) Degradation Model
The system degradation process is assumed to be 
non-stationary Wiener processes. At each time t, the 
deterioration level of the system can be summarized 
by a random variable X(t). The degradation process 
{X(t)}t≥0 is an non-monotone process with initial 
state X(0)=0. Define the failure time as TL := 
inf{t: X(t)≥L, t≥0}, which means that the system 
will be declared as failed when X(t) exceeds a 
critical level L. The system in degradation failure 
state does not mean that the system cannot be in 
operation, but means that it is unacceptable for 
economic and safety reasons. Due to the internal 
mechanism or the external environment influences, 
the deterioration rate can undergo a sudden change 
at an unknown time Tc during the system life cycle. 
Tc is a random variable with probability density 
function fc. Before Tc, the system is evolving with 
a nominal mode M1. The deterioration rate after 
Tc suddenly increases from a nominal mode to an 
accelerated mode M2, see figure 1. Wiener process 
is used to describe the deterioration process for 
its flexible characteristics to describe the non-

monotone degradation processes and its explicit 
mathematical properties (Noortwijk, 2009).

Figure 1: Degradation Path with Change Point
Assume the deteriorating process  in 

mode Mi (i=1,2), can be expressed by a non-
stationary Wiener process:

   
(1)

where W(t) is a standard Brownian motion; µi≥0 is 
the slope of the linear drift in mode Mi and σi>0 is 
the diffusion coefficient in mode Mi.

The increment  follows a 
normal probability density function (pdf),

   
 (2)

The average of deterioration rate in Mi is µi 
and the variance is (σi)2/t. For the sudden change 
in the deterioration process, the mean deterioration 
rate in the accelerated mode M2 is larger than 
the mean deterioration rate in nominal mode M1, 
that is µ2>µ1. According to the definition of the 
deterioration rate transition, the system state at 
time t can be represented as

  (3)
where І{E}=1 if E is true and 0 otherwise.

The increment X(t)-X(s) depends not only on the 
time interval t-s but also on the deterioration mode. 

(2) Time to Failure Distribution
According to the properties of Wiener process, 
TL for single mode Mi has an inverse Gaussian 
distribution with probability density function 
(Whitmore and Schenkelberg, 1997) 
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(4)

The corresponding cumulative distribution function 
(cdf) is

 
(5)

Denote the distribution of TL by FL(t), which has 
the following form

	
                                                                            

(6)

where Fc (resp. fc) denotes the distribution (resp. 
density) function of Tc,
The probability density function of TL is given by

   (7)

Online CUSUM Algorithm
Change point problems deal with anomaly 
detection, or more generally detection of changes in 
the statistical behavior of process. There are many 
studies on the change point detection problems. 
Lai (Lai, 1995) reviewed varieties of sequential 
detection procedures and introduced a unified 
theory of sequential change point detection, which 
is intended to optimize the detection delay with 
respect to false alarm rate. Lorden (Lorden, 1971) 
proved that the mean detection delay derived 
by using the CUSUM algorithm subject to the 
average run length is asymptotically minimized 
with a given false alarm rate. Wang (Wang, 2007) 
considered a system with two stage degradation 
mode and developed a probability model to predict 
the initiation point of the second degradation stage. 
Jiang (Jiang, 2011) derived the change point by 
fitting a general piecewise model to the observed 
degradation data. 

The online change detection uses the online 
information to detect the change time. CUSUM 
algorithm is one of the widely used change-point 
detection algorithms (Basseville and Nikiforov, 
1993). In this paper, we choose CUSUM algorithm 

as the detection procedure when there is no priori 
information about the change time.

Let Y1, Y2, … , Yv, denote the subsequent 
deterioration increments in a fixed time interval Δt 
before Tc with the density function , and 
Yv+1, Yv+2,… denotes the subsequent deterioration 
increments in a fixed time interval Δt after Tc with 
density function , where  and yj is 
the realization of Yj. Define

.
 

According to the one-sided CUSUM scheme, 
the stopping rule for the sequential observations 

.

 
(8)

When  the system will be judged in M2. 
Then the detection time of the system mode change 
is . The threshold cγ is chosen such that 

 when v=∞ or , where γ and 
a are fix constants.

As stated by (Lorden, 1971), the online 
CUSUM algorithm minimizes the worst mean 
detection delay when γ→∞,

 (9)
Where ess sup denotes an essential supremum 

(Basseville and Nikiforov, 1993).
The minimal number of observations required 

for the detection of Tc in the worst case, τ*, satisfies 
the following relation

 
 (10)

where d1,2 is the Kullback-Liebler information 
between the two normal probability density 
function,  and , respectively

  
 (11)

As the observations interval is assumed to be 
fixed Δt, the value τ*Δt represents the mean time 
delay for the detection.

Maintenance Policies
There are three possible maintenance actions, 
respectively, including inspection, preventive 
replacement and corrective replacement. The 
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preventive/corrective replacement restores the 
system to be as good as new with negligible time. 
For the cost reason, the system is periodically 
inspected without error. The system degradation 
status can only be revealed by inspection. The 
inspection times  defined by 

According to whether considering the change point 
in the degradation process, two maintenance policies 
are considered in this paper adaptive maintenance 
policy and change-blind maintenance policy.

(1) Adaptive Maintenance Policy
The preventive maintenance threshold varies 
for different degradation modes in the adaptive 
maintenance policy (Fig. 2). The detailed adaptive 
maintenance policy is as follows.

Figure 2: Adaptive PM threshold

(a)	If one of the following exclusive events {X(tk-

1)<A1∩X(tk)≥L∩tk-1<tk≤tc}, {X(tk-1)<A2∩X(tk)≥ 
L∩tc<tk-1≤tk} or {X(tk-1)<A1∩X(tk)≥L∩tk-1<tc≤tk} 
occurs, the system fails and a corrective 
replacement is carried out at time tk with cost 
Cc. tc is the realization of Tc.

(b)	If one of the following exclusive events 
{X(tk-1)<A1∩A1≤X(tk)<L∩tk-1<tk≤tc}, {X(tk-

1)<A1∩A2≤X(tk)<L∩tk-1<tc≤tk} or {X(tk-

1)<A2∩A2≤X(tk)<L∩tc<tk-1≤tk} occurs, a 
preventive replacement is triggered with cost Cp.

(c)	 If one of the following exclusive events 
{X(tk)<A1∩tk≤tc} or { X(tk)<A2∩tk≥tc } occurs, the 
system is left unchanged, and the maintenance 
decision is postponed to the next inspection time 
tk+1. Each inspection incurs a cost CI.

(d)	If the degradation failure happens between 
two inspections, there will be a period of 

unavailability for the system, and the cost rate 
of the unavailability is CD.
Considering the change-point effect, 

the maintenance policy has two preventive 
replacement thresholds, A1 and A2 for mode M1 
and M2, respectively. As mode M2 is an accelerated 
degradation mode, we have A2<A1.

(2) Change-blind Maintenance Policy
With the aim to show the importance of considering 
the degradation rate change, we also investigate 
the change-blind maintenance policy. The decision 
rule of the change-blind maintenance policy 
neglects the change of degradation rate and only 
considers the system stay in mode M1. The change-
blind maintenance policy is as follows:
(a)	 If X(tk)<A, the system is left as it is until the 

next inspection time.
(b) If A≤X(tk)<L, the system is replaced preventively.
(c) If X(tk), the system is considered as failed 

and a corrective replacement will take place. 
Before the replacement, there will be a period 
that the system stays in unavailability.

A and Δt are two maintenance decision variables 
in the change-blind maintenance policy. The 
corresponding costs for different maintenance actions 
are the same as the adaptive maintenance policy. 

Maintenance Policy Evaluation
Considering the maintenance cost incurred for 
each maintenance action, the maintenance policy 
is evaluated using the expected long run cost rate 
over an infinite time span. Because the system is 
restored to as good as new after each preventive/
corrective replacement, we can use the renewal 
reward theory (Sheldon, 1996) to compute the 
expected long-run cost rate as 

  
(12)

where C(t) is the global maintenance cost at time 
t, T is the length of a renewal cycle.

The accumulated cost on a renewal cycle T 
can be written as

   (13)
where 
E[NI(T)] is the expected number of inspections 

during a renewal cycle T;
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Pp(Δt,A) is the probability that the renewal cycle 
ends with a preventive replacement and 
A is the PM threshold set {A1,A2};

Pc(Δt,A)  is probability that the renewal cycle ends 
with a corrective replacement;

E[W(T)]is the expected unavailability time in a 
renewal cycle.

The maintenance optimization problem is 
reduced to find the value of Δt, A1 and A2 that 
minimize the expected long-run cost rate E[C∞].

According to whether the priori distribution 
of the change point is known, two configurations 
for the adaptive maintenance policy evaluation are 
considered: online evaluation and offline evaluation. 

(1) Online Evaluation
When the change time is completely unknown, 
CUSUM algorithm is used to detect the change 
point in the degradation process and there will 
be a detection delay for the change time. In this 
configuration, the expected long-run cost rate is 
evaluated based on the online CUSUM algorithm. 

The threshold A1 can be obtained by minimizing 
the maintenance cost in mode M1 and A2 can be 
obtained in mode M2 by the same way.

(2) Offline Evaluation
If the distribution of the change time is known 
before the application of the adaptive maintenance, 
the analytical expression of the expected long-run 
cost rate can be obtained. There will be no detection 
delay of the change time in this case. The detailed 
analytical expressions are as follows.
(2.1)	 Expression of Pc(Δt, A)
The corrective replacement can be caused by 
degradation failure. According to the change point 
occasions (see Figure 3), the probability for a corrective 
replacement in a renewal cycle is denoted as

 
(14)

The detailed analytic formulas of Pc(Δt,A) are 
expressed as follows.
If tk-1<tk<tc, the degradation failure founded at tk is

  

(15)

If tc< tk-1< tk, the probability for the degradation 
failure founded at tk is 	 		    

(16)

 

If tk-1< tc< tk, the probability for the degradation 
failure founded at tk is                                     

(17)

	

 
(2.2)	 Expression of Pp(Δt, A)
Under the considered maintenance policy, the 
probability for a renewal cycle ended by a 
preventive replacement is 

 
(18)

where

	
                                                                         

(19)

       
                                                                          

(20)	

	

(21)

(2.3) Expression of E[NI(T)] 
Based on the formulas of the probability for the 
corrective/preventive replacement, the expected 
number of inspection during a renewal cycle 
E[NI(T)] is given as

(22)
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(2.4)	 Expression of E[W(T)]
Under the considered maintenance policy, the 
degradation failure is non-self-announcing, 
and there will be a period of unavailability after 
degradation failure for the system. Denote the 
expected unavailability time in a renewal cycle by 
E[W(T)]. The detailed expression of E[W(T)] can 
be found in Appendix A.
(2.5)	 Expression of E[T]

Under the considered maintenance policy, 
the system lifecycle can be ended by a preventive 
replacement and a corrective replacement. The 
expected length of the system lifecycle is given as

  

 (23)

 Numerical Examples
In this Section, the optimal maintenance decision 
values of Δt, A1 and A2 are investigated through 
a gearbox run to failure case. Gearboxes are 
the most important components of machines 
for transmitting mechanical power, and always 
degrade gradually during their operating processes. 
The health condition of gears can be monitored 
by vibration monitoring. Through wavelet 
transformation, we can obtain the evolution of 
vibration energy signals in a gearbox experiment 
(Teng et al., 2012; Zhao and Feng, 2011). Figure 
4 shows the degradation process of the vibration 
signal of a gearbox. This is similar to the bearing 
degradation signals developed in (Wang, 2007; 
Gebraeel and Pan, 2008). 

As Wiener processes can describe the non-
monotone processes, we use the Wiener process to 
model the evolution of the vibration signal. From 
Figure 4, we can see that the degradation process is 
composed by two distinct stages. The degradation 
rate is small in the first stage and becomes larger in 
the second stage.

Figure 4: The Evolution of Vibration Degradation 
Signal

According to the experiment data in Fig.4, the 
estimated degradation model parameters are (μ1,σ1)= 
(51.89,1336.6), and (μ1,σ1)=(640.88,9859.6). The 
system degradation failure threshold L=95000 g2. 
The maintenance costs are, respectively, CI=5, 
Cp=50, Cc=100, CD=250. The change time Tc is 
assumed to follow uniform distribution U(0,450). 

Considering the system with a single 
degradation mode, we use Monte Carlo method 
or the method in reference ( Wang et al., 2011) 
to calculate the optimized maintenance values 
with fixed inspection interval. For mode M1, the 
minimum expected cost rate is  which 
is achieved at A1=43000 g2, Δt1 =180h; For mode 
M2, the minimum expected cost rate is  
which is achieved at A2=30000 g2, Δt2=10h.
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As the mode M2 is an accelerated degradation 
mode compared with the mode M1, it can be noticed 
that Δt2<Δt1, and A2<A1. For the clarity of the 
detection algorithm, we choose Δt2 as the inspection 
interval to evaluate the online maintenance policy. 
Because Δt2 not only can achieve the optimal result 
in mode M2, also can assure the system operating 
with high reliability in mode M1. 

Figure 5: False Alarm Rate vs. Detection Threshold

(1) Online Optimization
For the CUSUM algorithm, the detection threshold 
cγ affects the expected maintenance cost rate and 
the detection accuracy. The evolution of false 
alarm rate with varied cγ is shown in Figure 5. It 
is noticed that the false alarm rate approaches zero 
with cγ increasing.

In order to obtain the minimum E[C∞] for the 
online adaptive maintenance policy, the expected 
cost rate for different values of cγ is calculated and the 
optimal cγ is corresponding to the minimum E[C∞]. 
Considering the online adaptive maintenance policy 
with A1=43000 g2, A2=30000 g2 and Δt =10 h, the PM 
threshold changes adaptively from A1 to A2 when the 
change point is detected and the lowest E[C∞]=0.78 is 
achieved at the optimal cγ=20 see Figure 6.

Figure 6: E[C∞] with cγ Under the Online 
Maintenance Policy

(2) Offline Optimization
Under the offline adaptive maintenance policy, 
the change point can be known instantly during 
the evolution of the degradation process, and the 
PM threshold will change with the degradation 
mode. Through Monte Carlo simulations, the 
optimal expected cost rate E[C∞]=0.77 is achieved 
with A1=43000, A2=30000 andΔt =13h. Figure 7 
presents the contour curves of E[C∞] with Δt =13h. 

Figure 7: Contour Curves of E[C∞] with Δt =13 h

Compared with the online optimization 
result, it is noticed that the inspection interval of 
the offline optimization is a little larger than the 
online inspection interval and the achieved offline 
minimum expected cost rate is lower than the result 
of online model. Because the larger inspection 
interval for the offline model will decrease the 
total maintenance cost compared with the online 
model. Meantime, the optimal expected long run 
cost rates are similar. This proves that the online 
model results are consistent with the offline model 
and the online adaptive maintenance policy is 
applicable and effective for the non-informative 
change point occurrence situation.

(3) Change-blind Maintenance Policy
Under the change-blind maintenance policy, the 
change point influences will not be considered in 
the maintenance optimization model. The optimal 
maintenance decision variables for mode M1, 
A1=43000 and Δt =180h, will continue to be used in 
mode M2. The minimum expected cost rate obtained 
by Monte Carlo simulations is E[C∞]=41.57. 

The result of change-blind maintenance model 
reveals that change mode monitoring has great 
influences to the maintenance decisions and it is 
necessary to consider the degradation mode change 
in the maintenance model.
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Appendix A
The expected unavailability time in a renewal 
cycle, E[W(T)] is given as

	
  
  

(A.1)

where

	

(A.2)

where

Conclusions
For the non-stationary Wiener degradation system, 
this paper presents two adaptive maintenance 
optimization models, online model and offline 
model to take into account the degradation mode 
change influences. CUSUM algorithm is used 
to detect the change point assuming the time of 
change of mode is unknown completely. The online 
adaptive maintenance model is adapted to the 
situation that the change time is non-informative, 
and the offline model can be applied when the 
change point time distribution is known. Through 
the comparison among the maintenance models, 
we validate the applicability and effectiveness of 
the adaptive maintenance model.

The numerical analysis from a gearbox case 
proves that 1) it is necessary to consider the 
degradation mode change in the maintenance 
model and 2) the adaptive maintenance model 
can deal with the change of degradation mode 
efficiently and provide an optimal maintenance 
schedule.
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