Coset Diagrams and Relations for PSL (2,Z)

G. Higman and Q. Mushtaq
Mathematical Institute, University of Oxford, Oxford, U.K.

AbSTRACT. A diagramatic argument, called coset diagrams for the modular group $\operatorname{PSL}(2, Z)$, is used to prove the results stated in this paper.

Let G denote the subgroup of the modular group $\operatorname{PSL}(2, Z)$, generated by the linear-fractional transformations x and y where x and y are respectively defined as $z \rightarrow-1 / z$ and $z \rightarrow(z-1) / z$.

A diagram with n vertices depicts a (transitive) penmutation representation of the modular group: fixed points of x and y are defined by heavy dots, and 3 -cycles of y by triangles whose vertices are permuted anti-clockwise by y; and any two vertices which are interchanged by x are joined by an edge.

In this paper we have shown that the coset diagram for the action of G on the rational projective line is connected, and transitive. Using these coset diagrams we have shown that the group $\operatorname{PSL}(2, Z)$ is generated by the linearfractional transformations x and y and that $\mathrm{x}^{2}=\mathrm{y}^{3}=1$ are defining relations for PSL(2,Z).

A diagramatic argument, called coset diagrams for the modular group $\operatorname{PSL}(2, \mathrm{Z})$, is used to prove the results in this paper.

Let G denote the subgroup of the modular group, generated by x and y where x and y are respectively defined as $z \rightarrow-1 / z$ and $z \rightarrow(z-1) / z$.

A diagram with n vertices depicts a (transitive) permutation representation of the modular group: fixed points of x and y are defined by heavy dots, and 3-cycles of y by triangles whose vertices are permuted anti-clockwise by y; any two vertices are
interchanged by x are joined by an edge.
In this paper, we have shown that the coset diagram for the natural action of G , on the rational projective line, is connected and the action is transitive. A new proof is given to show that $\operatorname{PSL}(2, \mathrm{Z})$ is generated by the linear-fractional transformations x and y and that $x^{2}=y^{3}=1$ are defining relations for $\operatorname{PSL}(2, Z)$.

If t is the transformation $\mathrm{z} \rightarrow \mathrm{l} / \mathrm{z}$ so that t belongs not to the modular group $\operatorname{PSL}(2, \mathrm{Z})$ but to $\operatorname{PGL}(2, Z)$ then x, y, t satisfy: $x^{2}=y^{3}=t^{2}=(x t)^{2}=(y t)^{2}=1$
Once it is shown that G has $x^{2}=y^{3}=1$ as defining relations and that G is the whole of PSL ($2, \mathrm{Z}$), it is clear that relations (i) are defining relations for $\mathrm{G}^{\star}=$ $<\mathrm{x}, \mathrm{y}, \mathrm{t}>$ and that G^{\star} is the whole of $\operatorname{PGL}(2, \mathrm{Z})$.

This theory of coset diagrams has also proved useful in determining generators of $\operatorname{PSL}(2, \mathrm{p})$ or $\operatorname{PGL}(2, \mathrm{p})$, where p is a prime number. Coset diagrams for the action of the modular group*, on projective lines over F_{p}, gives some interesting information.

Before we come to our main results we shall make the following remarks:
(i) If $\mathrm{k} \neq 1,0, \infty$ then of the vertices $\mathrm{k}, \mathrm{ky}, \mathrm{ky}^{2}$ of a triangle, in a coset diagram for the action of $\operatorname{PGL}(2, Z)$ on any subset of the real projective line, one vertex is negative and two are positive.
(ii) Let $k= \pm \mathrm{a} / \mathrm{b}$ where a, b are positive integers with no common factor. For $\mathrm{k} \neq$ $0, \infty$ we define $\|\mathrm{k}\|=\max (\mathrm{a}, \mathrm{b})$. Clearly, $\|\mathrm{k}\|=\|\mathrm{kx}\|$ and if k is negative, then $\|\mathrm{k}\|$ is less than $\|\mathrm{ky}\|$ and $\left\|\mathrm{ky}{ }^{2}\right\|$.
(iii) We shall use arrow head on an edge to indicate its direction from negative to positive vertex.

Theorem 1

The action of $\operatorname{PGL}(2, \mathrm{Z})$ on the rational projective line is connected.

Proof

To prove this we need only to show that for any rational number k there is a path joining k to ∞.

Since one of $k, k x$ is negative, therefore without any loss of generality, we can assume that k is negative.
Let $\mathrm{k}=\mathrm{k}_{0}$ be a negative rational number. Then $\mathrm{k}_{0} \mathrm{x}$ is positive and if $\mathrm{k}_{0} \mathrm{x} \neq 1$ then by remark (i) there is just one negative number (vertex), say k_{i}, in the triangle containing $\mathrm{k}_{0} \mathrm{x}$, which cannot be $\mathrm{k}_{0} \mathrm{x}$. That is, we have a fragment of the coset diagram of one of the forms:

Fig. 1

By remark (ii) we note that $\left\|k_{0}\right\|>\left\|k_{1}\right\|$. If we now consider k_{1} then $k_{1} x y$ and $k_{1} x y^{2}$ will be the vertices of the triangle containing $k_{1} x$ as its third vertex. Since $k_{1} x$ is positive, therefore as in the case of k_{0}, of $k_{1} x y$ and $k_{1} x y^{2}$ we get just one negative vertex, say k_{2} such that $\left\|\mid k_{1}\right\|>\left\|k_{2}\right\|$. If we continue like this and follow the arrows from $\mathrm{k}=\mathrm{k}_{0}$ in Fig. 2, we get a sequence of negative rational numbers $\mathrm{k}_{0}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots$ such that $\left\|\mathrm{k}_{0}\right\|>\left\|\mathrm{k}_{1}\right\|>\left|\left|\mathrm{k}_{2}\right| \| \ldots\right.$

The decreasing sequence of positive integers must terminate, and it can terminate only because ultimately we reach a triangle with the vertices 1,0 and ∞.

Fig. 3

A sequence of negative rational numbers $\mathrm{k}_{0}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots$ such that $\left\|\mathrm{k}_{0}\right\|>| | \mathrm{k}_{1}\|>\| \mathrm{k}_{2} \| \ldots$ shows that there is a path joining $\mathrm{k}=\mathrm{k}_{0}$ to ∞. This implies that every rational number occurs in the diagram and that the diagram for the action of G on the rational projective line is connected.

Corollary 2

The action of G on the rational projective line is transitive,
Proof
We shall prove transitivity of the action, by showing that, if there is a path from a rational number p to a rational number q then there exists some g in G such that $\mathrm{pg}=\mathrm{q}$.

If $\mathrm{pg}=\mathrm{q}$ then $\mathrm{pxxg}=\mathrm{q}$ and since one of p, px is negative, we can assume without any loss of generality that p is negative.

Let $p=k_{0}$ and $q=k_{i}$ for some i. Then from the coset diagram (Fig: 2) we note
that each $\mathrm{k}_{\mathrm{j}+1}$ is either $\mathrm{k}_{\mathrm{j}} \mathrm{xy}$ or $\mathrm{k}_{\mathrm{j}} \mathrm{xy}{ }^{2}$. This implies that $\mathrm{q}=\mathrm{pxy}{ }^{\epsilon_{1}} \mathrm{xy}^{\epsilon_{2}} \ldots \mathrm{xy}^{\epsilon_{i}}$ where each $\epsilon_{j}=1$ or 2. If $\mathrm{xy}^{\epsilon_{1}} \mathrm{xy}^{\epsilon_{2}} \ldots \mathrm{xy}^{\epsilon_{i}}=\mathrm{g}$ then $\mathrm{q}=\mathrm{pg}$, where q is in G . So the action of G on the rational projective line is transitive.

Theorem 3

The group $\operatorname{PSL}(2, \mathrm{Z})$ is generated by the linear-fractional transformations x and y .

Proof

Let h in PSL (2,Z) be such that $\mathrm{k}=\infty \mathrm{h}$ for a rational number k . By corollary 2 , since the action of G on the rational projective line is transitive, therefore $\mathrm{kg}=\mathrm{c}$ for some g in G . So $\infty=\mathrm{kg}=(\infty \mathrm{h}) \mathrm{g}$. Hence ∞ is a fixed point of hg. This means that hg is a linear-fractional transformation $\mathrm{z} \rightarrow(\mathrm{az}+\mathrm{b}) /(\mathrm{CZ}+\mathrm{d})$ with $\mathrm{c}=0$. Since $\mathrm{ad}-\mathrm{bc}=1$, therefore $\mathrm{a}=\mathrm{d}= \pm 1$ which then implies that hg is $\mathrm{z} \rightarrow \mathrm{z} \pm \mathrm{b}$ and $\mathrm{xy}: \mathrm{z} \rightarrow \mathrm{z}+1$ further implies that $\mathrm{hg}=(\mathrm{xy})^{ \pm \mathrm{b}}$. This shows that hg and hence h is in G , proving that x and y are generators of the group G .

Theorem 4

Relations $\mathrm{x}^{2}=\mathrm{y}^{3}=1$ are defining relations for $\operatorname{PSL}(2, \mathrm{Z})$.

Proof

Suppose $\mathrm{x}^{2}=\mathrm{y}^{3}=1$ are not defining relations of $\operatorname{PSL}(2, Z)$. Then there is a relation of the form $\mathrm{xy}^{\boldsymbol{\epsilon}} \mathrm{xy}^{\boldsymbol{\epsilon}}{ }^{2} \ldots \mathrm{xy}^{\boldsymbol{\epsilon}}=1$ where $\mathrm{m} \geqslant 1, \boldsymbol{\epsilon}_{\mathrm{i}}= \pm 1$ and $\mathrm{i}=1,2, \ldots, \mathrm{~m}$. We know that neither x nor y can be 1 .

The coset diagram (Fig.2) depicts that it does not contain any closed circuit, apart from the circuit in the triangle containing ∞. For if it contains the closed circuit (Fig. 4). and $\mathrm{k}_{0}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}$ are the vertices of the triangles in the diagram such that $\mathrm{k}_{0}<0$, then this leads to the contradiction $\left\|\left|\mathrm{k}_{0}\left\|>\left|\left|\mathrm{k}_{1}\left\|>\ldots| | \mathrm{k}_{\mathrm{m}}\right\|>| | \mathrm{k}_{\mathrm{o}} \|\right.\right.\right.\right.\right.$. So the coset diagram (Fig. 2) does not contain any other closed circuit, apart from the circuit in the triangle containing ∞ as its vertex.

Fig. 4

This shows that there are points in the diagram whose distance from the point ∞ is arbitrary large. Choose k with $\mathrm{k}<0$, so that the distance fom the point k to the point ∞ is greater than m. Define $k_{i}=k x y^{\epsilon}{ }^{\epsilon} \mathrm{xy}^{\epsilon}{ }^{\boldsymbol{2}} \ldots \mathrm{xy}^{\boldsymbol{\epsilon}} \mathrm{i}$ where $\mathrm{i}=0,1,2, \ldots, \mathrm{~m}$. Then $\left\|k_{0}\right\|>\left|\left|k_{1}\left\|>\left|\left|k_{2}\left\|\ldots>| | k_{m}\right\|\right.\right.\right.\right.\right.$ and in particular $k_{m} \neq k_{0}$. Thus $x y^{\epsilon_{1}} \mathrm{xy}^{\epsilon_{2}} \ldots x^{\epsilon_{m}} \neq 1$ and so $\mathrm{x}^{2}=\mathrm{y}^{3}=1$ are defining relations for the modular group $\operatorname{PSL}(2, \mathrm{Z})$.

Acknowledgements
The second author wishes to thank the Royal Commission for the Exhibition of 1851 and ORS-Committee of the Vice-Chancellors and the Principals of the U.K Universities and Colleges for their financial support.

علاقات للزمرة PSL(2,Z)

ج. هيجمان وقيصر مشنتاق

معهد الرياضيات، جامعة أكسفورد، اكسفورد المملكة المتحدة

الستعملت طريقة البرهان الـرسمي التي تسمى الـرسـوم
 على النتائج التي تم الحصول عليها في هذا البحث.

لتكن G زمرة جزئية من الزمرة النموذج من قبل التحويلات الكسرية الحطية y, x معرفة على التوالي $z \rightarrow(z-1) / z, z \rightarrow-1 / z$

في هذا البحث برهنا على أن بجموعة الرسم للمجموعات
 ومتعدية. باستكمال بجموعة الرسوم للمجموعات الميات المشـاركة برهنا على أن الزمرة PSL (2,Z) مولدة من قبل التحويلات
 الزمرة المطة

