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ABSTRACT. The inner and outer Magnetohydrodynamic equilibrium equations of the
circular toroidal plasma Tokamak cross section solved to the first order of the inverse
aspect ratio. The toroidal current density is of arbitrary profile. The shape of the
conducting shell surrounding the pl is determined

In the traditional design approach, the confinement of the plasma is attempted by
interposing magnetic fields between the plasma and the walls of the reaction
chamber. This design attempts to improve plasma confinement by the closed toroi-
dal Tokamak system.

Several authors (Lavel et al. 1971, Solovev and Shafranov 1970, Coppi et al.
1972) solved analytically the ideal MHD equilibrium of the circular and non-circu-
lar plasma cross section of the toroidal Tokamak with uniform profile of the toroi-
dal current density.

In the present work, we solve analytically to the first order of inverse aspect
ratioe = R the inner and outer MHD equilibrium equations of the toroidal
Tokamak with finite beta (: the ratio kinetic and magnetic pressures). Here, a and
R are the minor and major radii of the plasma, respectively. The plasma cross
section is taken to be circular. Here, the toroidal current density profile is of

arbitrary distribution. This investigation is essentially in the design studies of the
Tokamak fusion reactor.
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The equations of interest here are the ideal MHD equations:
V-B=0, VxB=7, and 7 xB=9pP 1)

where B, T, and P are respectively the magnetic field, current density and scalar
pressure.

By introducing the coordinate system (g, 6, s) — (see Fig. 1), the expressions
of the magnetic field, current density and MHD equilibrium equation have the
form:
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€, is a unit vector along the toroidal coordinates. The surface functions P and f
are an arbitrary function of the equilibrium solution F. At this point, we would
like to mention that the poloidal flux function 4 is related to the equilibrium solu-

; ’ 14
1 F=_—.
tion F by the relation 2 7R

Here, we will assume that the functions fg and P(g have the following forms:

2
P=P,+P,F and f2=f3—%F2 5)
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Fig. 1. Coordinate system.

where Py, P;, u and f; are constants to be determined from the equilibrium solution.
All these constants are characteristics of the plasma parameters.

The expression for the toroidal current is given by:.

2 2 -1
js(x,0)=—L‘3"F—=|:’L2F—(1—ixcos0) Pl](l—ixcose) (6)
a a R R
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where x =

D

The equilibrium solution F(x,60) of the equation (4) to the first order of inverse
aspect ratio, under the assumption that P(¢o = a) = 0, can be written in the form:

F(x,0) = Fo(x,0) + £F,(x,0) Q)
where Fy(x,60) is the solution to the zero order equilibrium equation:

PF, 10F, ,
— t——= - 0<sx< 8
axz + < Bx 124 FO Pla X 1 ( )

=0 forx=1 )
This solution could be written in the form:

s P ~
Fi(x,0) = — P—" + Fo(E, + Eq(x)) 0<x
1

A

1 (10)
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=Fj. + oplnx forx =1 (11)
With
1-1,
—_— 2
To(ux) — 1
Eg(x) = Lo(ux) — 1 (13)
21,

where 1?‘0 (= 2bgly), by, F§. and «, are arbitrary constants. I;(ux) is the modified
Bessel’s function of the first kind and I, = I,(x). The notations i and o are referred
respectively to the values of the quantities in the inner (plasma) and outer (vaccum)
regions. The function F\(x,0) is the solution of the first order equilibrium equation,
namely:

3%F, 13F, 1 9%,
x?  x ax x 3

= u’F, + (2a°P;x — boul,(ux))cos 8

for0<x<1 (14)

_ (aocos 7]

) forx =1 (15)
X

The solution of equations (14) and (15) can be respectively written as:

Fi(x,0) = F,E,(x)cos 6 for0<x=<1 (16)
Qg 1

F{(x,0) = |:— 5 X Inx + al(x — ;):lcos 6 forx =1 17

where

R (s Sl A et s |

where @, is an arbitrary constant.

The average pressure (P) (= % f PdV) is given by: (P) = —P;bgl,(u) where V is

2(P
the volume bounded by F = constant. The parameters: 8 =( )

————|, poloidal
BZ (x = 1)) P
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beta ﬂp( B2 zip) 1)) the total toroidal current I f xdx j dej,(x, 0) the in-

1 (= RB, (x = 1)
g(a)\ aB,(x=1)

verse of the safety factor ) for an equivalent cylinder of radius

a and the internal inductance Ii( W f dx f dB(Bzx)) per unit length of a
6

plasma ring defined by Solovev and Shafranov (1970), are respectively given by:

_ _ 2Pbol, _ B ]
A= Ex=1 Br = —( 1 )2
d(a)
_ 1 1 1 Ibo[.t \
Lol = era=nla) )
I
L =1 ﬁ{)

where By and B are respectively the poloidal and toroidal components of the
magnetic field B.

By using the above parameters, we could write respectively the functions E,(x)
and E(x,0), the pressure P(x,0) and the inner equilibrium solution F' in the
following forms:

T,(px) Xlo(ﬂx) 163 I;(px)
£ =(a2 )57 - ) Bl 1) 20
E(x,0) = E, + E((x) + €E;(x)cos 6 (21)
Fi(x,0) = — ? + FoE(x,6) (22)
P(x,0) = F,P,E(x,6) (23)

with
= _ _(aef(x=1)\/ 1 4L,

Fo= o) =(5) (i ) @
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It is clear that the function E(x,0) and the pressure P(x,6) vanish on the plasma
boundary x = 1. Also, we have

F(x=1, 0)——?
1

Here, we will introduce the parameter v defined as:

§+ﬂ,,=(a/LR) (25)

The position of the magnetic axis whose coordinates are assumed to be = &

E (X = Xy, t = 7)
ax

slightly non-uniform toroidal current density profile, the expression for x, is given

by:
o= )G (i~ ) 2

The limiting values of beta Bp,, for equilibrium is defined as the value of beta
at which a second magnetic axis on the plasma to boundary will appear. This value

is given by:
oo = () s ~ 20~ ) R @

In other words,the condition for the appearance of a second magnetic axis is given
by v <1 or 8 < Bemax-

The toroidal current density j,(x,6) for the class of equilibrium under consider-
ation is given from (6) and (20-22) as:

and x = x,, is determined from the condmon = 0. For the case of

- (jo ‘iz oEo(x)) + s( z FoE (x) + 2xP1)cos eE(1 —~ £x cOS e)_l (28)

where j, is the central toroidal current density, which is given by:

AN )
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. 1
In this case, the parameter —— could be expressed as

4(a)
Lo L) o) )
where

By using (24), (3) and (31) into (28), we can rewrite expression for j(x,6) as
follows:

is(x,0) = jo

To(ux) + 8[212]51()() —G—;)Z,Bp] cos 6 %(l — £X COS 0)_1 (32)

Figure 2 shows to the zero order of approximation the toroidal current distribution
over the plasma cross section of the Tokamak. This distribution depends on the
value of u.

At a point (defined by x = 1 and 8 = 0) on the plasma boundary, the longitudi-
nal current density vanishes when B, = (p., where

At this point, the Tokamak equilibrium can not be maintained. The current density
will reverse at a point (defined by: x = xy and 6 = 0) if By > Bp.. In other words,
the consideration of the first order of approximation leads to the inverse of the
toroidal current density with all profiles inside the plasma.

The inner equilibrium function E(x,0) for the case of slightly non-uniform
toroidal current has the form:

E(x,6) = 8”—122 (1 —x3(—1 + vyx cos 6) (34)

where
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Fig. 2. Various toroidal current density distribution (j/jo) profiles over the whole plasma cross section
of the toroidal Tokamak configuration with ¢ = 0.2.

1
The hyperbolic point of the separatrix (v > 1) is x, = 1 and 6 = cos™! 7 at which

E=Es=0, P=Ps=0 and F=Fs=—§-
1

While for the case of uniform distribution profile this function becomes:

E(x,0) = (1 — x®)(—1 + vx cos 6) (35)

The form of the solution Fi(x,0) near the magnetic axis (Xp,7) could be written
in the form:

F(x,0) = F,, + (A + B cos 26)¢” + (C cos 6 + D cos 36)¢’ (36)
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where

P 2
Fm = + Fo(sl )EmO’ Emo =1+ xm + VXm — VX3 (37)

A= —Cy(1 + 2vaxy), B = —(%)vm, C= —(%)vm, D=0

and

r 2
—(fo#
Co (1:2)812

The constants F3., @ and a, are determined from the following pressure bal-
ance conditions on the plasma boundary: (B})? + (Bi)> = (Bg)> + (B)?, assuming
that the pressure vanishes at x = 1. The result of calculation is:

Py (o

: 1 1
= = F} = = -1 2= - 22 — = e
F. =F,=F} (x 1,8 = cos v) P, ,( . ) &fo Ok

(2%

In this case, the outer equilibrium takes the form:

F°(x,6) = F§, + (aeofo %)3ln x+¢€ [— ; Inx + %(% - %V)(X - i—):lcos 0$' (38)

The deformation of the magnetic surface near ¢ = b can then be computed by
substituting 0 = b + A cos 6 in the solution (37), where b is the radius of the
conducting shell — (see Fig. 3), and A is the plasma displacement.

Finally, the MHD equilibrium problem of a toroidal Tokamak configuration
with a circular plasma cross section and a toroidal current density of arbitrary
distribution solved analytically. We found that the limiting value of Beta for the
reverse of the toroidal current inside the plasma is given by B < f,, while that
for the appearance of both of a second magnetic axis on the plasma boundary and
a separatrix inside the plasma are given by B < Bp . MHD equilibrium can be
achieved by shaping the cross section of a conducting shell so as to make it can
coincide with one of the magnetic surfaces in vacuum. The advantage of this study
is to determine the optimum toroidal current profile for equilibrium, which should
be considered when the fusion reactor will be designed.
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vacuum conducting wall .

Fig. 3. A circular plasma of radius a is confined by an outer perfectly conducting shell of radius b.
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