Circular Braids

Muhammad Albar and D.L. Johnson

Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, Saudi Arabia;
Department of Mathematics, the University of Nottingham, Nottingham, U.K.

AbSTRACT. Coxeter-type generalisations of the braid groups are introduced, and their structure is elucidated in the case when the associated graph is a circle.

1. Consider presentations of the form

$$
\begin{equation*}
\mathrm{G}=\left\langle\mathrm{x}_{\mathrm{i}}, 1 \leqq \mathrm{i} \leqq \mathrm{n} \mid \mathrm{r}_{\mathrm{ij}}, 1 \leqq \mathrm{i} \leqq \mathrm{j} \leqq \mathrm{n}\right\rangle \tag{1}
\end{equation*}
$$

where each $r_{i j}$ is either

$$
\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right]:=\overline{\mathrm{x}}_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \text { or }\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right):=\overline{\mathrm{x}}_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{j}} \overline{\mathrm{x}}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}
$$

a commutator or a braid relation, respectievely, (where $\bar{x}:=x^{-1}$, for $x \varepsilon G$). Such a group is clearly described by the isomorphism-type of its graph Γ, which has n vertices numbered from 1 to n, with an edge between i and j if and only if $r_{i j}=$ $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$. The following points are worthy of note.
(i) The adjunction of relators $\left\{\mathrm{x}_{\mathrm{i}}{ }^{2} \mid 1 \leqq \mathrm{i} \leqq \mathrm{n}\right\}$ yields a class of Coxeter groups.
(ii) Since G is the direct product of the groups corresponding to the components of Γ, it can safely be assumed that Γ is connected.
(iii) The case when Γ is an interval yields the familiar braid group $\mathrm{B}_{\mathrm{n}+1}$ of Artin (1925) (for a more recent survey, see Magnus 1974).

As a first step in the study of this class of groups, the aim of this article is to obtain an algebraic description of the group $\hat{\mathrm{B}}_{\mathrm{n}}$ of circular braids, defined by (1) when Γ is a circle. The method is purely algebraic, though it depends for its
inspiration on the elementary combinatorial ideas outlined in the next section.
2. In terms of the familiar picture, $\hat{\mathrm{B}}_{\mathrm{n}}$ may be derived from B_{n} by declaring that the crossing of the 1 and n strings be independent of the others. This yields in a natural way, a split epimorphism $\theta: \hat{\mathrm{B}}_{\mathrm{n}} \rightarrow \mathrm{B}_{\mathrm{n}}$, and so the problem reduces to describing $\operatorname{Ker} \theta$ as a B_{n}-group. Now the independence of this crossing is guaranteed by the insertion of an extra string O between it and the crossings of adjacent strings. In algebraic terms, this yields a homomorphism from \hat{B}_{n} to the group P_{n+1} of O-pure $(n+1)$-braids. Now it is well known (Chow 1948) that P_{n+1} is a split extension of B_{n} by a free group $F_{n}=\left\langle a_{0}, \ldots, a_{n-1} \mid\right\rangle$, with action given by the usual embedding of B_{n} in Aut F_{n} (see (3) below).

This is summarised in the commutative diagram

where the row is exact. Under the assumption that $\operatorname{Ker} \phi_{\mathrm{n}} \operatorname{Ker} \theta=1$, the problem reduces to a description of $(\operatorname{Ker} \theta) \phi=\mathrm{F}_{\mathrm{n}} \cap \operatorname{Im} \phi$, and this turns out to be the B_{n}-normal closure F of the single element $\mathrm{a}_{0}{ }^{-1} \mathrm{a}_{\mathrm{n}-1} \varepsilon \mathrm{~F}_{\mathrm{n}}$. An easy calculation shows that F is just the subgroup of F_{n} consisting of all words of exponent-sum 0 , and so the programme is now as follows:
(i) find Schreier generators for F ,
(ii) compute the action of B_{n} on these,
(iii) form the split extension of B_{n} by F, and
use Tietze transformations to reduce the resulting presentation to that of B_{n}, which culminates in the following result.

Theorem. The group $\hat{\mathrm{B}}_{\mathrm{n}}$ is a split extension of B_{n} by a free group F of countably infinite rank, where the action is given by regarding F as the subgroup of F_{n} consisting of all words of total exponent-sum zero.

In the proof, which occupies the remainder of the article, all the steps but one are straightforward, and this is concentrated into a lemma (§6), which may be of independent interest.
3. The Schreier transversal $\left\{\mathrm{a}_{0}{ }^{\mathrm{k}} \mid \mathrm{k} \varepsilon \mathbf{Z}\right\}$ for F in F_{n} yields in the following set of free generators for F :

$$
\left\{c_{\mathrm{k}, \mathrm{i}}:=\mathrm{a}_{0}{ }^{\mathrm{k}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{0}{ }^{\mathrm{k}+1} \mid \mathrm{k} \varepsilon \mathbf{Z}, 1 \leqq \mathrm{i} \leqq \mathrm{n}-1\right\} .
$$

Using a succession of Nielsen transformations, this can be replaced by a set $\left\{\mathrm{d}_{\mathrm{k} . \mathrm{i}} \mid \mathrm{k}\right.$ $\varepsilon \mathbf{Z}, 1 \leqq \mathrm{i} \leqq \mathrm{n}-1\}$, there

$$
d_{k, i}=\left\{\begin{array}{l}
c_{0, i} \ldots c_{k, i}=a_{i}{ }^{k+1} \bar{a}_{0}{ }^{k+1}, k \geqq 0, \\
c_{\mathrm{k}, \mathrm{i},} \ldots c_{-1, i}=a_{0}{ }^{k} \bar{a}_{i}{ }^{k}, k<0 .
\end{array}\right.
$$

Finally, let

$$
(\mathrm{k}, \mathrm{i})=\left\{\begin{array}{l}
\mathrm{d}_{\mathrm{k}-1 . \mathrm{i}}, \mathrm{k}>0 \tag{2}\\
\overline{\mathrm{~d}}_{\mathrm{k}, \mathrm{i}}, \mathrm{k}<0
\end{array}\right\}=\mathrm{a}_{\mathrm{i}}{ }^{\mathrm{k}} \overline{\mathrm{a}}_{0}{ }^{k}
$$

for all non-zero values of k , and interpret $(\mathrm{o}, \mathrm{i})=\mathrm{e}$ for convenience $(1 \leqq \mathrm{i} \leqq \mathrm{n}-1)$.
The action on B_{n} of F_{n} is given by ($\mathrm{o} \leqq \mathrm{i} \leqq n-1,1 \leqq \mathrm{j} \leqq n-1$)

$$
a_{i} \cdot x_{j}= \begin{cases}a_{i+1} & , \text { if } j=i+1 \tag{3}\\ \bar{a}_{i} a_{j}-1 & a_{i}, \text { if } j=i \\ a_{i} \quad, & \text { otherwise }\end{cases}
$$

and this yields the following action of B_{n} on the generators (2) of F :
$(\mathrm{k}, \mathrm{i}) \sigma_{\mathrm{j}}=(\mathrm{k}, \mathrm{i}), \mathrm{j} \neq 1, \mathrm{i}, \mathrm{i}+1$,
$(\mathrm{k}, \mathrm{i}) \sigma_{\mathrm{i}+1}=(\mathrm{k}, \mathrm{i}+1)$,
$(\mathrm{k}, \mathrm{i}) \sigma_{\mathrm{i}}=(-1, \mathrm{i}) \overline{(-1, \mathrm{i}-1)}(\mathrm{k}-1, \mathrm{i}-1) \overline{(\mathrm{k}-1, \mathrm{i})}(\mathrm{k}, \mathrm{i}), \mathrm{i} \neq 1$,
$(\mathrm{k}, \mathrm{i}) \sigma_{1}=(\mathrm{k}, \mathrm{i}) \overline{(\mathrm{k}, 1)}, \mathrm{i} \neq 1$,
$(\mathrm{k}, 1) \sigma_{1}=(-1,1) \overline{(\mathrm{k}-1,1)}$.
Thus, the desired split extension is obtained by adjoining the generators (2) and relations (4)-(8) to the usual presentation of B_{n}.
4. The first step is to reduce the relations (4)-(8) to a more manageable form $\left(\left(4^{\prime \prime}\right),\left(8^{\prime \prime}\right),\left(7^{\prime \prime}\right)\right.$ below), and this is done in four stages.
(i) The relations (6) are superfluous: induct on $\mathrm{i} \geqq 2$. First of all,
$(k, 2) x_{2}=\left[(k, 2) x_{1} \cdot(k, 1)\right] x_{2}$, by (7),
$=(k, 1) x_{2} x_{1} x_{2} \cdot(k, 1) x_{2}$, by (5),

$$
\begin{aligned}
& =(k, 1) x_{1} x_{2} x_{1} \cdot(k, 1) x_{2}, \text { by a braid relation, } \\
& =[(-1,1) \cdot \overline{(k-1,1)}] x_{2} x_{1} \cdot(k, 1) x_{2}, \text { by }(8), \\
& =(-1,2) \sigma_{1} \cdot \overline{(k-1,2)} \sigma_{1} \cdot(\mathrm{k}, 2) \text { by }(5), \\
& =(-1,2) \cdot \overline{(-1,1)} \cdot(\mathrm{k}-1,1) \cdot \overline{(\mathrm{k}-1,2)} \cdot(\mathrm{k}, 2), \text { by }(7),
\end{aligned}
$$

as required. For $\mathrm{i}>2$,

$$
\begin{aligned}
(\mathrm{k}, \mathrm{i}) \sigma_{\mathrm{i}} & =(\mathrm{k}, \mathrm{i}) \sigma_{\mathrm{i}-1} \sigma_{\mathrm{i}}, \text { by }(4) \\
& =(\mathrm{k}, \mathrm{i}-1) \sigma_{\mathrm{i}} \sigma_{\mathrm{i}-1} \sigma_{\mathrm{i}}, \text { by }(5) \\
& =[(-1, \mathrm{i}-1) \cdot \overline{(-1, \mathrm{i}-2)} \cdot(\mathrm{k}-1, \mathrm{i}-2) \cdot \overline{(\mathrm{k}-1, \mathrm{i}-1)} \cdot(\mathrm{k}, \mathrm{i}-1)] \sigma_{\mathrm{i}} \sigma_{\mathrm{i}-1},
\end{aligned}
$$

by induction,
$=[(-1, \mathrm{i}) \cdot \overline{(-1, \mathrm{i}-2)} \cdot(\mathrm{k}-1, \mathrm{i}-2) \cdot \overline{(\mathrm{k}-1, \mathrm{i})} \cdot(\mathrm{k}, \mathrm{i})] \sigma_{\mathrm{i}-1}$, by (4) and (5),
$=(-1, \mathrm{i}) \cdot \overline{(-1, \mathrm{i}-1)} \cdot(\mathrm{k}-1, \mathrm{i}-1) \cdot \overline{(\mathrm{k}-1, \mathrm{i})} \cdot(\mathrm{k}, \mathrm{i})$, by (4) and (5),
as required.
(ii) The relations (4) are all consequences of those with $\mathrm{i}=1$, namely

$$
(k, 1) x_{j}=(k, 1), j \geqq 3 ;
$$

for, by (5), $(k, i) x_{j}=(k, 1) x_{2} \ldots x_{i} x_{j}$, and this is (k, i) when $j>i+1$ (by the relations of B_{n}), while for $2 \leqq j \leqq i-1$, the right-hand side is $(k, 1) x_{j+1} x_{2} \ldots x_{i}=(k, i)$ by (4').
(iii) The relations (7) are all consequences of those with $\mathrm{i}=2$, namely (using (5))

$$
\begin{equation*}
(k, 1) x_{2} x_{1}=(k, 1) x_{2} \cdot \overline{(k, 1)} . \tag{7'}
\end{equation*}
$$

For $\mathrm{i} \geqq 2$, $(k, i) \mathrm{x}_{1}=(\mathrm{k}, 1) \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}} \mathrm{x}_{1}$, by (5),

$$
\begin{aligned}
& =(k, 1) x_{2} x_{1} x_{3} \ldots x_{i}, \text { by the relations of } B_{n}, \\
& =\left[(k, 1) x_{2} \cdot \overline{(k, 1)}\right] x_{3} \ldots x_{i}, \text { by }\left(7^{\prime}\right), \\
& =(k, i) \overline{(k, 1)}, \text { by }(5) \text { and }\left(4^{\prime}\right) .
\end{aligned}
$$

(iv) Using (5), the generators (k, i) for $\mathrm{i} \geqq 2$ can now be eliminated by a Tietze transformation. Writing $(k, 1)=k: k \varepsilon \mathbf{Z}$, we have reduced the presentation to that of B_{n}, augmented by generators \mathbf{Z} and relators
$\left.\mathrm{k}^{\mathrm{x}_{1}}=-1\right) \cdot \overline{\mathrm{k}-1}$,
$\mathrm{k}^{\mathrm{x}_{\jmath}} \quad=\mathrm{k}, \mathrm{j} \geqq 3$,
$\mathrm{k}^{\mathrm{x}_{2} x_{1}}=\mathrm{k}^{\mathrm{x}_{2}} \cdot \overline{\mathrm{k}}$.
Now (8 ") simply asserts that the generators $\mathrm{k} \neq 1$ are superfluous (note that $O=e$ and $1^{x_{1}}=-1$, in particular). Next, the relations ($4^{\prime \prime}$) are all consequences of those with $k=1$, namely

$$
1^{x_{1}}=1,3 \leqq j \leqq n-1,
$$

because of ($8^{\prime \prime}$) and the relations of B_{n}. Finally, all the relations ($7^{\prime \prime}$) are consequences of those with $k= \pm 1$ (together with $\left(8^{\prime \prime}\right)$ and $\left(4^{\prime \prime}\right)$), namely

$$
\begin{align*}
1^{x_{2} x_{1}} & =1^{x_{2}} \cdot \overline{1}, & & \left(7^{\prime \prime}+1\right) \\
1^{x_{1} x_{2} x_{1}} & =1^{x_{1} x_{2}} \overline{1}^{x_{1}} . & & \left(7^{\prime \prime}-1\right)
\end{align*}
$$

The proof of this is deferred to $\S 6$, and we show first that the resulting presentation yields $\hat{\mathrm{B}}_{\mathrm{n}}$.
5. We first examine the effect of the following change of generators:
$\left.\begin{array}{l}\mathrm{a}=\mathrm{x}_{2} . \\ \mathrm{b}=\mathrm{x}_{1} \cdot 1 \\ \mathrm{c}=\overline{\mathrm{x}}_{2} \mathrm{x}_{1} \mathrm{x}_{2}\end{array}\right\} \quad\left\{\begin{array}{l}\sigma_{2}=\mathrm{a}, \\ \sigma_{1}=\mathrm{ac} \overline{\mathrm{a}}, \\ 1=\mathrm{a} \overline{c a b},\end{array}\right.$
adopting for convenience the notation $x \sim y$ means $[x, y]=e$ and $x \approx y$ means $(x, y)=e$. Now the relations of B_{n} not involving x_{1} or x_{2} remain unaltered, and it is easy to check that

$$
x_{1} \approx x_{2},\left(7^{\prime \prime}+1\right),\left(7^{\prime \prime}-1\right)
$$

pass to

$$
\begin{equation*}
c \approx a, a \approx b, b \approx c \tag{9}
\end{equation*}
$$

respectively. Also, the relations $r_{1 j}$ and $r_{2 j}(j \geqq 3)$ of $B_{n},\left(4^{\prime \prime \prime}\right)$ pass to

$$
\begin{gather*}
a c \bar{a} \sim x_{3}, \ldots, x_{n-1}, \tag{10}\\
a \approx x_{3}, a \sim x_{4}, \ldots, x_{n-1}, \tag{11}\\
a \overline{c a b} \sim x_{3}, \ldots, x_{n-1}, \tag{12}
\end{gather*}
$$

respectively.
The presentation now reads

$$
\left\langle\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}-1} \mid(9)-(12), \mathrm{r}_{\mathrm{ij}}=\mathrm{e}, 3 \leqq \mathrm{i}<\mathrm{j} \leqq \mathrm{n}-1\right\rangle,
$$

clearly equal to \hat{B}_{3} when $n=3$. For general n, one further change of generator is required, namely,
$\left\{\begin{array}{l}a^{\prime}=a^{x_{3} \ldots x_{n}-1}=x_{n-1} 1^{x_{n}-2 \ldots x_{3} a}, \\ a=a^{\prime x_{n}-1 \ldots x_{3}},\end{array}\right.$
where the second equation follows from $r_{i j}=e$ and $a \approx x_{3}$.
It remains to show that these relations pass to those of \hat{B}_{n} on $a^{\prime}, b, c, x_{3}, \ldots$, $\mathrm{x}_{\mathrm{n}-1}$, which we call $\mathrm{s}_{\mathrm{ij}}, 0 \leqq \mathrm{i} \leqq \mathrm{n}-1$. In view of (10), we have

$$
(12) \rightarrow \mathrm{s}_{\mathrm{l} j}, 3 \leqq \mathrm{j} \leqq \mathrm{n}-1
$$

Because of (11),

$$
(10) \rightarrow s_{2 j}, 4 \leqq j \leqq n-1, s_{02} .
$$

A simple calculation shows that

$$
(11) \rightarrow \mathrm{s}_{0 \mathrm{j}}, 3 \leqq \mathrm{j} \leqq \mathrm{n}-2, \mathrm{~s}_{0 . n-1} .
$$

Finally,

$$
\text { (9) } \rightarrow s_{23}, s_{01}, s_{12},
$$

and we have arrived at $\hat{\mathbf{B}}_{\mathrm{n}}$.
6. Returning to the deferred step of the proof, the crucial observation is that $\left(7^{\prime \prime}\right)$ is a braid relation; in fact, writing $x=x_{1}, y=x_{2}$ and using $x \approx y$, it becomes

$$
\mathrm{r}_{\mathrm{k}}: \mathrm{y} \approx \mathrm{kx}, \mathrm{k} \varepsilon \mathbf{Z}
$$

Putting $\mathrm{d}=-1$, this asserts that $\mathrm{y} \approx \mathrm{dx}, \mathrm{x}, \mathrm{xd}$ (taking $\mathrm{k}=-1,0,1$). Furthermore, $\left(8^{\prime \prime}\right)$ can be written in either of the forms

$$
\begin{aligned}
& (k-1) x=\overline{\mathrm{kx}} \cdot \mathrm{xdx}, \text { or } \\
& (\mathrm{k}+1) \mathrm{x}=\mathrm{xdx} \cdot \overline{\mathrm{kx}}
\end{aligned}
$$

Taking $\mathrm{t}=\mathrm{kx}$, the following lemma thus asserts that

$$
r_{-1}, r_{0}, r_{1}, r_{k} \Rightarrow\left(r_{k-1} \Leftrightarrow r_{k+1}\right),
$$

which affords an inductive proof that all the r_{k} are consequences of $r_{ \pm 1}$ and $y \approx x$.
Lemma. If y, d, x, t are elements of any group, such that $y \approx d x, x, x d$ and t , then

$$
y \approx \bar{t} x d x \Leftrightarrow y \approx x d x \bar{t}
$$

Proof.

Acknowledgement

The second author would like to thank the Mathematics Institute of University College Cardiff for its hospitality during the preparation of this article.

References

Artin, E. (1925) Theorie der Zöpfe, Abh. math. Semin. Univ. Hamburg 4: 47-72.
Chow, W.-L. (1948) On the algebraical braid group, Ann. Math. (2) 49: 654-658.
Magnus, W. (1973) Braid groups: a survey, Proc. Second Internat. Conf. on Theory of Groups, Canberra, 1973, pp. 463-487; and Springer Lecture Notes, No. 372, Berlin-Heidelberg-New York 1974.

الضفائر الدائرية

عحمد علوى البار و دافيد جونسون

قسم العلوم الـريـاضيـة - جامعة البتر ول والمعادن - الظهر ان - المـلكة
العربية السعودية
قسم الرياضيات - جامعة نوتنكهام - نوتنكهام - المملكة المتحدة
 لزمــــــ الضفــائـر - ولتوضيح ذلك شمل البحث دراسة الزمرة التى غخططها دائرة .

