
Arab Gil/fl· scielll. Res. 2 ( I), [lP 137-1-15 ( 1 ')1\-1) 

Circular Braids 

Muhammad Albar and D.L. Johnson 

Department of Mathematical Sciences, University of Petroleum and Minerals, 

Dhahran, Saudi Arabia; 


Department of Mathematics, the University of Nottingham , Nottingham , UK 


AOSTRACT. Coxe ter-type ge nerali sations of the braid groups are introduced , and their 
structure is elucidated in the case when the associated graph is a circle. 

1. Consider presenta tions of the form 

(1) 

where each rij is either 

a commutator or a braid relation , respectievely, (where x:= X-I, for x E G), Such 
a group is clearly described by the isomorphism-type of its graph r, which has n 
vertices numbered from 1 to n, with an edge between i and j if and only if rij = 
(Xi, Xj)' The following points are worthy of note. 

(i) The adjunction of relators {Xi211 ~ i ~ n} yields a class of Coxeter groups . 
(ii) Since G is the direct product of the groups corresponding to the compo­

nents of r, it can safely be assumed that r is connected. 
(iii) The case when r is an interva l yields the familiar braid group Bn + I of 

Artin (1925) (for a more recent survey, see Magnus 1974) . 

As a first step in the study of this class of groups , the aim of this article is to 
obtain an algebraic description of the group Bn of circular braids, defined by (1) 
when r is a circle . The method is pure ly algebraic, though it depends for its 
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inspiration on the elementary combinatorial ideas outlined in the next section. 

2. In terms of the familiar picture, Sn may be derived from Bn by declaring 
that the crossing of the 1 and n strings be independent of the others. This yields 
in a natural way, a split epimorphism e : Sn ~ Bn , and so the problem reduces to 
describing Ker e as a Bn-group. Now the independence of this crossing is guaran­
teed by the insertion of an extra string 0 between it and the crossings of adjacent 
strings. In algebraic terms, this yields a homomorphism from Sn to the group P n + I 
of O-pure (n + I)-braids. Now it is well known (Chow 1948) that Pn + I is a split 
extension of Bn by a free group Fn = (ao, ... , an _ 11), with action given by the 
usual embedding of Bn in Aut Fn (see (3) below). 

This is summarised in the commutative diagram 

Sn 

¢j~ 
inc 

---_a~ Fn ----~a Pn+ 1 ----a~ Bn ----a 1, 

where the row is exact. Under the assumption that Ker¢n Kere = 1, the problem 
reduces to a description of (Kere)¢ = Fn n Im¢, and this turns out to be the 
Bn-normal closure F of the single element ao-Ian _ 1 E Fn . An easy calculation shows 
that F is just the subgroup of Fn consisting of all words of exponent-sum 0, and so 
the programme is now as follows: 

(i) find Schreier generators for F, 
(ii) compute the action of Bn on these, 
(iii) form the split extension of Bn by F, and 
use Tietze transformations to reduce the resulting presentation to that of Bn, 

which culminates in the following result. 

Theorem. The group Sn is a split extension of Bn by a free group F of countably 
infinite rank, where the action is given by regarding F as the subgroup ofFn consist­
ing of all words of total exponent-sum zero. 

In the proof, which occupies the remainder of the article, all the steps but one 
are straightforward, and this is concentrated into a lemma (§ 6), which may be of 
independent interest. 

3. The Schreier transversal {aok IkE Z} for F in F n yields in the following set 
of free generators for F: 

.- k -k+llk Z 1<'< I}{ Ck,j . - ao ajaO E, = 1 = n - . 
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Using a succession of Nielsen transformations, this can be replaced by a set {dk.d k 
E Z, 1 ~ i ~ n - I}, there 

Finally, let 

(2) 

for all non-zero values of k, and interpret (0, i) = e for convenience (1 ~ i ~ n - 1). 

The action on Bn of Fn is given by (0 ~ i ~ n - 1, 1 ~ j ~ n - 1) 

aj + , , if j = i + 1, 

aj' Xj = 3jaj_,aj , ifj = i . (3) 
{ 

aj , otherwIse , 

and this yields the following action of Bn on the generators (2) of F : 

(k,i)Oj = (k,i),j =1= 1, i, i + 1, (4) 

(k,i)oj + , = (k ,i + 1) , (5) 

(k,i)oj = (-I,i)(-l,i - I)(k - I,i - I)(k - I,i)(k,i), i =1= 1, (6) 

(k,i)o! = (k ,i)(k , l), i =1= 1, (7) 

(k ,1)o! = (-I ,1)(k -1,1). (8) 

Thus, the desired split extension is obtained by adjoining the generators (2) 
and relations (4)-(8) to the usual presentation of Bn' 

4. The first step is to reduce the relations (4)-(8) to a more manageable form 
«4") , (8"), (7") below), and this is done in four stages. 

(i) The relations (6) are superfluous: induct on i ~ 2. First of all, 

(k ,2)x2 = [(k ,2)x, . (k,I)]x2, by (7), 
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= (k,l)xlxzxl . (k,1)x2' by a braid relation, 

= [(-1 ,1)· (k -	 1,1)]x2xl' (k,1)x2, by (8), 

= (-1,2)01' (k -1,2)01' (k ,2) by(5), 

= (-1 ,2) · (-1,1)· (k - 1,1)· (k - 1,2) · (k ,2), by (7), 

as required . For i > 2, 

(k ,i)Oi = (k,i)oi_loi , by(4) 

= (k,i - 1)0;0; _ 10i , by (5) 

= [(-l,i - 1)· (-l,i - 2)· (k - 1,i - 2)· (k - 1,i - 1) · (k,i -l)]o;Oi - l, 

by induction , 

= [( - 1 , i) . (-l,i - 2) . (k - 1,i - 2) . (k - 1 ,i) . (k ,i) ]Oi _ I, by (4) and (5) , 

= (-l,i)· (-l ,i - 1)· (k -l ,i - 1) · (k - 1,i)· (k,i) , by (4) and (5), 

as required . 

(ii) The relations (4) are all consequences of those with i = 1, namely 

(k,1)Xj = (k,1) , j 	~ 3; (4') 

for , by (5), (k , i)xj = (k , 1)x2" ,xiXj , and this is (k, i) when j > i + 1 (by the relations 
of Bn) , while for 2 ~ j ~ i - 1, the right-hand side is (k, 1)xj + I X2" ,Xi = (k , i) by 
( 4'). 

(iii) The relations (7) are all consequences of those with i = 2 , namely (using 
(5)) 

(7') 

For i ~ 2, (k ,i)xl 	= (k,1)X2",XiXl' by (5), 

= (k ,l)X2xIX3" .x;, by the relations of Bn, 

= [(k,1)x2 ' (k ,1)]x3' .. Xi , by (7') , 

= (k,i)(k ,1), by (5) and (4') . 
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(iv) Using (5), the generators (k, i) for i ~ 2 can now be eliminated by a Tietze 
transformation . Writing (k, 1) = k: k E Z, we have reduced the presentation to 
that of B n , augmented by generators Z and relators 

kX , = -1)·k-1 , (8") 

k
X

' = k,j ~ 3, (4") 

,kX2X = kX
" k. (7") 

Now (8") simply asserts that the generators k '* 1 are superfluous (note that 
o = e and lX' = -1, in particular). Next , the relations (4") are all consequences 
of those with k = 1, namely 

F' = 1, 3 ~ j ~ n - 1, (4"') 

because of (8") and the relations of Bn . Finally , all the relations (7") are conse­
quences of those with k = ±1 (together with (8") and (4")) , namely 

1X'X ' = l X, . I , (7" + 1) 

(7" - 1) 

The proof of this is deferred to § 6, and we show first that the resulting presentation 
yields Bn. 

S. We first examine the effect of the following change of generators: 

} r::::., 
1 = acab, 

adopting for convenience the notation x - y means [x, y1= e and x ::; y means 
(x, y) = e. Now the relations of Bn not involving XI or X2 remain unaltered, and it 
is easy to check that 

XI ::; X2, (7" + 1) , (7" - 1) 

pass to 

c::; a, a ::; b, b ::; c (9) 
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respectively. Also, the relations rlj and r2j (j ~ 3) of Bn , (4''') pass to 

(10) 

(11) 

(12) 

respectively . 

The presentation now reads 

(a,b,c,x}, ... ,xn _ 1 1(9)-(12), rij = e , 3 ~ i < j ~ n - 1), 

clearly equal to B} when n = 3. For general n , one further change of generator is 
required, namely , 

where the second equation follows from rij = e and a = x} . 

It remains to show that these relations pass to those of Bn on a', b , c, x" ... , 
Xn _ \, which we call Sij, 0 ~ i ~ n - 1. In view of (10) , we have 

(12) ~ Sl j, 3 ~ j ~ n - 1 

Because of (11), 

A simple calculation shows that 

(11) ~ SOj, 3 ~ j ~ n - 2 , sO.n _ \ . 

Finally , 

and we have arrived at Bn. 
6. Returnin g to the deferred step of the proof , the crucial observation is th a t 

(7") is a braid relation ; in fact , writing x = x I, Y = X2 and using x = y, it becomes 

rk : Y = kx , k [ Z . 
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Putting d = -1, this asserts that y = dx , x, xd (taking k = -1 ,0,1). Furthermore, 
(8") can be written in either of the forms 

(k - 1)x = kx . xdx, or 

(k + l)x = xdx . kx . 

Taking t = kx , the following lemma thus asserts that 

which affords an inductive proof that all the rk are consequences of r± 1 and y = x. 

Lemma . If y, d, x, t are elements of any group, such that y = dx , x, xd and 
t , then 

y = txdx ~ Y= xdxt. 

Proof. 
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