
Arab Gulf 1. scienl. Res. 2 (2), pp. 583-591 (1984) 
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ABSTRACT. An inequality similar to the Bhallacharyya inequality is obtained in the 
presence of prior knowledge. Conditions under which equality holds are considered 
assuming a posterior density of the exponential type. 

1. Introduction 

Let f(xIO) be a probability density function depending on an unknown parameter 
o E S, where S == (a,b) is an open interval, finite or not, on the real line. 

Let g(O) be a proper prior density for O. Denote by g(Olx) and f(x) the posterior 
density function and the marginal density function of x, respectively. 

Further, Exl!!> E91X> Ex and E9 denote the expectations with respect to f(xIO), 
g(Olx), f(x) and g(O), respectively . 

Let O(x) be an estimator of 0 and let 

(1) 

In a Bayesian context, Ferreira (1981) has generalized the Cramer-Rao in
equality as follows 

2 (1 + BfA 

(2)E9[ExI9{(O-O)}]~ [ {(a r}]'
Ex E91x ao 10gg(Olx) 
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where 

is defined as the amount of information about e contained in the joint distribution 
of (x,e). 

In the present paper , we will find greater lower bounds than the right hand 
side of (2) for Eo[Exlo{(O - e)2}] in cases where (1 + B)2/1 is not attainable, so 
extending the Bhattacharyya system of lower bounds (Kendall and Stuart 1961, 
Zacks 1971) . 

2. Bayesian Lower Bounds 

In the following , we shall always require regularity conditions as differentiabil
ity and integrability; further, that the operation of differentiating under the integral 
sign and Fubini's theorem hold. 

Consider 

(3) 

where al> .. . , as are constants to be determined so that 

(4) 

s 1 ar (e x)} 2 1

5g(e)de5 { o-e - r~lar g(elx) ga e r f(x le)dx 

is a minimum. 

Differentiating (4) with respect to aj and equating the result to zero, we obtain 

, s 1 arg(e1x)} 1 ajg(elx) _ (5)5g(e)de5 {e-e-Jlarg(elx) aer g(e lx) aeJ f(xle)dx-O 

j = 1, .. . , s. 

Putting 
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i 
r(i)= fg(6)d6J(O- 6) _ 1_ a g(6Ix) f(xI6)dx j = 1, ... ,s (6)

g(6 x) a6J
1 

1 a rg(6Ix) a ig(6Ix) 
Kri = f g(6)d6 f g2(6Ix) aer a6i f(xI6)dx r,j = 1, ... , s, (7) 

(5) can be written as 

s 
r(j) = \' a K . L r rJ j=l, ... ,s (8) 

r ; I 

Let K be the matrix whose element is K ri , r ,j = 1, .. . , s. If K is non-singular, 
we may invert the system (8) of linear equations to obtain 

r=l , .. . ,s (9) 

Substituting (9) in (4) we have 

s s 

Eo[Ex1o(D;)] = Eo[Ex1o{(e - 6)2}]- L L r(j)r(r)K~: . 
r; 1 j; 1 

Since its left hand side is non-negative, we finally obtain the required inequality 

s s 

Eo[Exlo {(e- 6/} ] ~ L L r(ilr(r)K ~: . (10) 
r; 1 j; 1 

Note that 

'Is ~ 1, 

hence it follows that the right hand side of (10) is a non decreasing function of s. 

For s = 1 (10) becomes 

moreover, we have from (6) and (7) 
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r(l ) = 5f(x)dx J(e - e) ag(elx) de = 1 + B 
a ae 

hence , for s = 1, (10) reduces to (2). This motivates us to state that the lower 
bounds on the right hand side of (10) are an extension of the Bhattacharyya system 
to the case of Bayesian estimation. 

The condition for the bound in (10) to be attained is 

(11) 

up to sets of probability zero with respect to f(x Ie)g( e). 

In the particular case s = 1, it follows from (11) 

1 + B a 
e 

A 

- e = - 1- ae logg(elx), (12) 

that is, the equality holds if and only if g(elx) = N(e,(l + B)/I) . 

The inequality (10) can be obtained too by introducing the (s + I)-dimensional 
random vector 

A I ag(elx) 1 asg(e1x)} 
{e - e, g(elx) --ae- ' """' g(elx) aes 

whose marginal random variables are functions of (x,e) . The non-negative definite 
matrix L of the second order moments about the origin of the vector and the 
non-negative definite matrix K above introduced are such that 

where det(A) denotes the determinant of the matrix A. If K is non-singular, the 
inequality (10) follows again. 
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3. Posterior Distribution of the Exponential Type 

Let 

g(0 Ix) 	= h(x)e l/l l (8)I(x) + 1/12(8) (13) 

where 1Pi(O) =1= °and t(x) is the minimal sufficient statistic. 

Suppose that () does not verify (12) . Then there is no value of s > 1 for which 
the equality (11) holds . 

Proof. According to the above results , the s-th bound , but not the (s - 1)-th 
bound , is attained if and only if there exist constants aJ, .. . , as such that 

_ s 1 arg(Olx) 

0 - 0 = r~l ar g(Olx) -~ . (14) 


Differentiating (13) r times with respect to 0, we can write 

(15) 

where Urh ( 0) are linear combinations of products of 1/J1(0) and 1P2( O)'s derivatives. 

Substituting in (14) , we find that () is a polynomial of degree s in t(x). But we 
now prove that a polynomial of degree s > 1 never verifies (14) if g(Olx) is given 
by (13). Let 

s 

()(x) = 	 L citi(X) (16)
i~ 0 

where Ci i = 0, .. . , s are arbitrary constants . 

Making use of (15) , equate the coefficient of the r-th power of t(x) in (14) to 
that of the corresponding power of t(x) in (16) for every r = 0, .. . , s . 

We get 
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k = 1, ... , s - 2 

8 = Co - L
5 

aj[{1/J2(8)}j + U jo(8)], (17) 
j = I 

where ills is a positive integer for s > 1 and is equal to zero for s = l. 
It appears evident from (17) that ai, . .. , as may be constants only if 1/J'1(8) and 

1/J2(8) are independent on 8 , in which case the last relation in (17) is not verified. 

Hence, if g(8Ix) is of the exponential type, there exists no estimator 8(x) such 
that Ee[Exle{(8 - 8)2}] attains the s-lh lower bound (10) ; but not the (s - 1)-lh 
bound. (Q.E.D.) 

For s = 1 it follows from (17) 

hence the equality (12) is possible only if 11';( 8) = constant = k, 1/J2(8) = ~ (co - 8). 
CI 

Finally, we remark that in a non-Bayesian context, Fend's theorem (Fend 
1959, Zacks 1971) states that the variance of an estimator which is a polynomial 
of degree s in the minimal sufficient statistic in an exponential family attains the 
s-th Bhattacharyya lower bound , but not the (s - 1)-th bound; and conversely. 

4. A Decisional Bayesian Inequality 

In a decisional Bayesian context, let L(8,8) : S x D ~ R+ be the loss function 
which associates a real value?: 0 to every (8 E S ,8 ED). 

Suppose that regularity conditions on L(8 ,8) and y'L(8,e) are verified. 

Consider 

8E [E {0VL(8J)}] = f f()d J~ oYL( ,(}) (8 I )d8 (18)x (lix 08 x x 08 g x . 
a 

Following Ferreira (1981), that is integrating the right hand side of (18) by 
parts, then applying to the result the Cauchy-Schwarz inequality, we get 
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(19) 

where 

denotes the prior risk and 

Convex loss functions of the following form 

are 	often of interest in statistical decision problems. 

Assuming 

where 

+1 ify>O 
sgny = 

{ 
- 1 if Y < 0 

W attains the right hand side of (19) if and only if there exists a constant K such that 

from which it follows 

2 ,- -	 - 18-/}I,m+1 
g(e/x)ae K(m+ 2) 

In particular for m = 2 we find again gee/x) = N(~,K). 

Finally, the inequality (19) coincides with the Ferreira inequality (Ferreira 
1982) concerning estimating functions, assuming there g2(x,e) = L(e,~). 
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