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ABSTRACT. We shall define size functi o ns and sizable spaces , These spaces are generali 
zations of metric spaces, We shall discuss some of their properties and then we discuss 
the metrizable space they induce under certain conditions on the sizable space, We 
shall also define open spheres and open balls and discuss the to pologies they induce , 
Amo ng the results we obtain, we have the following: 

i) Every countably compact sizable space must be separable, and hence , it must 
have at most countably many disc rete points , 

ii) Every countably compact sizable space induces a compact Hausdorff metrizable 
space which is weaker than the original topology, We shall also discuss the metrizability 
of countably compact spaces as an application of our concepts, 

1. Introduction 

Let X be a nonempty set and let d: X x X ---') [0,00) be a function satisfying the 
following conditions: 

i) d(x,y) = 0 if and only if x = y. 

ii) d(x,y) = d(y,x) for all x,y E X. 


iii) d(x,y) ~ d(x,z) + d(z,y) for all x,y,z E X, 


Then d is called a metric function on X and the ordered pair (X,d) is called a 
metric space. The set of all open spheres in X forms a base for the metric topology 
on X which will be denoted by T(d), Several nice properties are carried by this 
metric space (X,T(d)) . For example, every metric space is first countable, normal 
and Hausdorff, In metric spaces, separability is equivalent to second countability 
(Long 1971), 
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Let N ,R denote the set of all natural numbers, the set of all real numbers, 
respectively. Let CI A denote the closure of the set A. Let T(B) denote the 
topology generated by the base B. 

If (X,d) is any metric space and A S X , then p E CI A if and only if 
in f{d(p,a) : a E A} = O. We also know that a countably compact metric space 
must have an E-net for every E > O. From this fact and because of the structure 
of the base of (X,T(d)), we conclude that every countably compact metric space 
must be separable . We can also prove for the same space that it is second countable 
and hence Lindelbf. 

The familiar Sorgenfrey Line S is defined to be the space of real numbers with 
the class of all half open intervals [a,b), a < b , as a base. It is a well-known fact 
that S is hereditary Lindelof, first countable, separable and nonmetrizable. It is 
also known that the Sorgenfrey plane S x S is not normal (Steen and Seebach 
1970) . 

We shall discuss all of the above properties for generalized metric spaces. 
These spaces are called 'sizable spaces'. 

2. Sizable Spaces 

Let (X,T) be a topological space and let B be a base for T. Let L: X x X u 
B ~ [0, 00 ) be a function. Then L is called a size function for (X,T(B)) if it satisfies 
the following conditions: 

Ll) L(x,y) = 0 if and only if x = y. 

L2) L(x,y) = L(y ,x) for all x,y E X. 

L3) For any x E X, for any open set U x containing x, and for any positive real 
number r , there exists a basic open set Vx ,r E B such that x E Vx,r S U x and L(Vx,r) 
<	 r. 

L4) For any V ,V' E B and for any x,x' E V; y,y' E V', we have 

L(x' ,y') ~ L(x,y) + L(V) + L(V'). 

A space (X,T) is called a sizable space if the topology T on X has a base Band 
an associated size function L This space will be denoted by (X,T(B),L). 

For a nonempty set A S X, if {L(x,y): x,y E A} is a bounded set in R, then 
we define the L-diameter of A; denoted by 6L(A) ; by 

6L(A) = L-diameter of A = sup{L(x,y): x,y E A}. 

We shall write 6(A) for 6L(A) if there will be no occasion for confusion . A size 
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function L:s called bounded if o(X) < 00. If L is bounded, then we call (X,T(B),L) 
a bounded sizable space. The L-open sphere in (X,T(B),L) with center at p and 
radius r > 0 is denoted by SL(p,r) and is defined by 

SL(p,r) = {x E X: L(p,x) < r}. 

We shall write S(p ,r) for SL(p ,r) if there will be no occasion for confusion . The 
L-open ball in (X ,T(B),L) with center p and radius r > 0 is denoted by BL(p,r) 
and is defined by 

BL(p,r) = u {V: p E V, V E Band L(V) < r}. 

We shall write B(p,r) for BL(p,r) if there will be no occasion for confusion . It is 
clear that every L-open ball is open in (X,T(B)) . However, we are going to prove 
that every L-open sphere is open in (X,T(B)) . It is also important to notice that 
these open spheres (balls) are not necessarily basic open sets in (X ,T(B)) (see 
Example 2.2 below). 

The obvious difference between size functions and metric functions is the 
triangle inequality . This, of course, will yield a major difference between sizable 
spaces and metrizable spaces. We shall explain ourselves through the following 
theorems and the following examples in this paper. 

2.1 Theorem 

Every metric space (X ,T(d)) is a sizable space . 

Proof 

Define the function L by L(x,y) = d(x ,y), x,y E X; and also define L(V) = 
sup{d(x,y): x,y E V}, where V is an open sphere in (X,d). Then for any V ,V' 
d-open spheres, and for any x,x' E V; y,y' E V', we have (use the triangle inequal
ity of d): 

L(x' ,y') = d(x' ,y') ~ d(x' ,x) + d(x,y) + d(y,y') ~ L(V) + L(x,y) + L(V'). 

Therefore, L is a size function for (X,T(d)) , i.e. , (X ,T(d) ,L) is a sizable space. 

The following example shows that the converse of Theorem 2.1 is in general 
not true. 

2.2 Example 

(i) The Sorgenfrey Line S is a sizable space. 

(ii) The Sorgen frey plane S x S is a sizable space . 
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Proof 

(i) Let B = {[a ,b): a < b} and let L be defined by L(x,y) = Ix - yl; x,y E S 
and L([a,b» = 2(b - a). Then , L is a size function for S. 

(ii) Let B = {[a,b) x [c ,d): a < b, c < d} and let L be defined by L[a,b), 
[c ,d)) = la - cl + Ib - dl; a, b , c, dE Rand L([a,b) x [c,d» = (b - a) + (d - c). 
Then, L is a size function for S x S. 

Actually, one can prove the following theorem (Fora 1983a). 

2.3 Theorem 

Let (X,T,),(Y,T2) be topological spaces and let Tp denote the product topology 
on X x Y. Then (X x Y,Tp) is sizable if and only if (X,TI)' (Y,T2) are sizable 
spaces. 

Example 2.2 illustrates that a sizable Lindelof separable first countable space 
need not be second countable. This is one of the main differences between sizable 
spaces and metrizable spaces. Notice also that, in Example 2.2, we have S(O,r) = 
(-r,r) while B(O,r) = (- 112 r, '/2 r) (r > 0) and these sets are not basic open sets in 
S. We also observe that a sizable space need not be normal (see Example 2.2(ii». 

We noticed above that every metric function is a size function. However, 
Example 2.2(i) shows that the converse is not true. 

One can prove the following theorem which illustrates some properties of size 
functions and sizable spaces (Fora 1983a). 

2.4 Theorem 

Let (X,T(B» be a sizable space with the size function L. Then we have the 
following: 

i) (X,T(B» is a Hausdorff space. 

ii) o(V) ~ L(V) for every V E B. 

iii) L(V) = 0 if and only if V has exactly one element; V E B 

iv) Every point in X is a Go-set in X. 

v) If P E Cl F where F s:: X, then inf{L(p,x): x E F} = O. 

vi) The converse of (v) is in general not true. 

Although every point in a sizable space must be a Go-set, the space itself need 
not be first countable. We illustrate this fact in the following example. 
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2.5 Example 

A sizable space need not be first countable. 

Proof 

Let X = R x R. Define basic open sets in X as follows: 

Vr«x,mx)) = {(x' ,mx'): Ix' - xl < r}, r < lxi, 0 < r ::!S 1; if x -=1= 0; 

V«O,O)) = u {(x' ,mx'): Ix' 1< rm} u {(O,t): It I < r}; where r ,rmE (0,1]
meR 

Vr«O,y)) = {(O,y'): Iy - y'l < r}, r < Iyl, 0 < r::!S 1; if Y -=1= O. 

This space is called the Radial Interval Topology (Steen and Seebach 1970) . Define 
L as follows: 

L«x,y),(z,t)) = «x - Z)2 + (y - tn'h; x,y,z ,t E R; 

L(V) = sup{L(x ,y) : x,y E V}, where V is a basic open set. 

Then (X ,T(B)) is a sizable space and not first countable because it is not first 
countable at (0,0) . 

The following theorem characterizes the class of all size functions on a given 
topological space (X,T). For the proof, consult (Fora 1983a). 

2.6 Theorem 

(i) Let (X,T(B),L) be a sizable space. Let V E B be a basic open set. Then 
for any a ,b E V and for any x E X, we have 

L(x ,b) ::!S L(x,a) + L(V). 

(ii) Let (X ,T(B)) be a topological space and let L: X x X u B ---+ [0,(0) be a 
function satisfying (Ll), (L2), (L3) and the following condition: 

L4)' For any V E B and for any a,b E V, x E X, we have 

L(x ,b) ::!S L(x,a) + L(V). 

Then L is a size function for (X,T(B)) . 
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3. Spheres In Sizable Spaces 

We shall start this section by the following theorem. 

3.1 Theorem 

Let (X,T(B),L) be a sizable space and let p E X, r > O. Then we have the 
following: 

i) B(p,r) is always open in (X ,T(B)). 

ii) S(p ,r) is always open in (X ,T(B)). 

jii) B(p,r) S S(p,r). 

Proof 

(i) It is clear that B(p,r) is an open set in (X,T(B)) because it is the union of 
open sets in (X,T(B)). 

(ii) To prove that S(p,r) is open in (X,T(B)), let q E S(p ,r). Then L(p,q) < r, 
i.e., r - L(p,q) > O. By the use of (L3), there exists V E B such that q E V and 
L(V) < r - L(p,q). We claim that V S S(p,r). To prove our claim, let x E V. 
Then by Theorem 2.6(i), we have 

L(p,x) !S L(p,q) + L(V) < L(p,q) + r - L(p,q) = r. 

Therefore x E S(p,r); i.e., our claim is completely verified. Hence, for each 
q E S(p,r), there exists V E B such that q E V S S(p,r). Consequently, S(p,r) is 
open in (X,T(B)). 

(iii) Let x E B(p,r). Then, there exists V E B such that x,p E V and L(V) < r. 
By the use of Theorem 2.4(ii) , we get L(p,x) ~ L(V) < r. Consequently, 
x E S(p,r). Hence , the proof of the theorem is completed. 

In what follows, let B*, 13 be defined as follows: 

B* = {S(p,r): p E X, r> O}, 

13 = {B(p,r): p E X, r> O}. 

Then, we have the following results. 

3.2 Theorem 

Let (X,T(B)) be a sizable space with a size function L. Then, we have the 
following: 
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(i) If B * is a base for some topology on X, then (X,T(B*)) is a TI-space. 

(ii) If B is a base for some topology on X, then (X ,T(B)) is a TI-space . 

(iii) If B * ,B are bases for some topologies on X, then 

T(B *) '= T(B) '= T(B). 

Proof 

(i) Let p ,q E X such that p "* q . Then L(p,q) = r > 0. Let t = liz r. Then , it 
is clear that q E S(q ,t), p Ij S(q,t) , p E S(p ,t), q Ij S(p,t). 

(ii) Let p,q E X such that p "* q. Then L(p,q) = r > 0. Let t = 1/2 r. Then it 
is clear that q E B(q,t) , p 1. B(q,t), p E B(p ,t), q 1. B(p ,t) (use Theorem 2.4(ii)). 

(iii) It is easy to prove (iii) by using Theorem 3.1 (i) and Theorem 3.1 (iii). 

Although (X ,T(B *)) and (X ,T(B)) are TI-spaces, they need not be Hausdorff. 
The following example illustrates this fact. 

3.3 Example 

For sizable space (X ,T(B) ,L) , the space (X,T(B*)) is not necessarily a Haus
dorff space. 

Proof 

Let X = [0,1]' B = {{o}, {I}, (a,b): °< a < b < I}. Define L(x,y) = Ix - yl 
if xy "* 0, L(x ,O) = L(O ,x) = x(1 - x) if x "* 1, L(O,l) = L(I ,O) = 1, L(x ,x) = 0; 
x,y E X, and we also define L«a,b)) = b - a, °< a < b < 1, L({O}) = L({l}) 
= 0. Then B is a base for some topology on X, and moreover L is a size function 
for (X ,T(B)) , i.e. , (X,T(B),L) is a sizable space . By doing some calculations, we 
find that 

S(O,r) = [0,112(1 - t)) u (112(1 + t),I) , where t = (1 - 4r)'h and °< r < 1/4 , 

S(I,r) = (1 - r,l], °< r < 1. 

Therefore S(O,r) n S(I,r') "* 0 for every r,r' > 0. Hence (X,T(B*)) is not Haus
dorff. Notice also that (X,T(B)) is a second countable locally compact space and 
is the union of two metrizable subspaces which are both open and closed in X. 

Although (X ,T(B*)) need not be a Hausdorff space, it will be Hausdorff under 
certain conditions 00 (X,T(B)) as we shall see io the next section . 



600 A .A. Fora 

4. Open Spheres In Countably Compact Sizable Spaces 

Let (X,T(B),L) be a sizable space and E a positive real number. The finite set 
A S X is called an E-net for X iff for each point x E X there exists a point a E A 
such that L(x,a) < E. Recall that a space X is countably compact iff every countable 
open cover of X has a finite subcover for X. The following theorem characterizes 
the class of all countably compact T1-spaces (Long 1971). 

4.1. Theorem 

Let (X,T) be a T1-space . Then X is countably compact if and only if every 
infinite subset of X has a cluster(accumulation) point in X . 

The following is our first result in this section . 

4.2 Theorem 

Let (X,T(B» be a countably compact sizable space with a size function L, and 
let A S X. Then we have 

P E Cl A if and only if inf{L(p ,a): a E A} = O. 

Proof 

Let inf{L(p,a): a E A} = O. Then for each n E N, there exists a point an E A 
such that L(p,an) < lin . We have two cases to consider: 

Case I. If {aj,az,... } is a finite set, then there exists kEN such that ak = aj 
for infinitely many i's. Therefore L(p ,ak) = L(p,aj) < lIi for infinitely many i's. 
Hence L(p,ak) = 0, i.e. , p = ak. Consequently p E Cl A. 

Case II. If {aj,az, . .. } is an infinite set, then there exists a point q E X such 
that q is a cluster point of {al>az, ... } (we have used Theorem 4.1 and Theorem 
2.4(i). We claim that p = q. To prove our claim, suppose on the contrary that p
'* q. Then L(p,q) = r > O. Take a fixed natural number mEN such that 11m < 
r. Applying (L3) , there exist two basic open sets V P' V q E B such that p E V P' q 
E Vq and L(Vp) < 1/(4m), L(Vq) < 1/(4m). Since q is a cluster point of {a],az, ... }' 
therefore there exists a natural number k > 4m such that ak E V q' Applying (L4), 
we get L(p,q) ,.::; L(p,ak) + L(Vp) + L(Vq) < 11k + 2/(4m) < 11m. This implies 
that r = L(p,q) < 11m which is impossible . Hence, the proof of the theorem is 
completed because of Theorem 2.4(v). 

Using the above theorem, one can prove the following theorem (Fora 1983b). 

4.3 Theorem 

Let (X,T(B),L) be a countably compact sizable space. Then X has an E-net 
for each E > O. 
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4.4 The.orem 

Every countably compact sizable space is separable; and hence must have at 
most countably many discrete points. 

The following lemma is needed for the next theorem. 

4.5 Lemma 

Let (X,T(B),L) be a countably compact sizable space and let p E X, r > O. 
Then, for any q E S(p,r) there exists n E N such that S(q,lIn) S S(p,r) . 

Proof 

Suppose on the contrary, that is, for some q E S(p,r) and for all n EN, we 
have S(q,lIn) $ S(p,r) . Therefore, there exists Xn E S(q,lIn) and Xn ft S(p,r) 
(n EN) . Consequently, L(q,xn) < lin and xn E X - S(p,r). By the use of Theorem 
4.2, we have q E Cl(X - S(p,r)). Using Theorem 3. 1 (ii) , we get q E X - S(p,r), 
i.e., q ft S(p,r) which is a contradiction. This completes the proof of the Lemma. 

4.6 Theorem 

Let (X,T(B),L) be a countably compact sizable space. Then, the set of all open 
spheres in X forms a base B* for some topology on X. 

Proof 

Easy by using the above Lemma 4.5. 

The following lemma concerns open balls in sizable spaces . This lemma is 
needed for the proof of the next theorem. 

4.7 Lemma 

Let (X,T(B),L) be a countably compact sizable space and let p E X, r > O. 
Then for each q E B(p,r) there exists n E N such that B(q,lIn) S B(p,r). 

Proof 

Suppose on the contrary, that is, for some q E B(p,r) and for every n EN, we 
have B(q,lIn) ct B(p,r). Therefore , there exists Xn E B(q,lIn) and Xn ft B(p,r) 
(n EN). Consequently, there exists Vn E B such that xn,q E Vn and L(Vn) < lin. 
By the use of Theorem 2.4(ii), we have L(xn,q) ~ L(Vn) < lin . Hence 
inf{L(x,q): x E X - B(p,r)} = O. Using Theorem 4.2, we get q E Cl(X - B(p,r». 
But X - B(p,r) is a closed set in (X,T(B» (by Theorem 3.1(i)) . Therefore q E X 
- B(p,r) which is a contradiction. This completes the proof of the lemma. 
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4.8 Theorem 

Let (X,T(B),L) be a countably compact sizable space. Then, the set of all open 
balls in X forms a base for some topology on X . 

Proof 

Easy by using the above lemma 4.7. 

4.9 Theorem 

Let (X,T(B),L) be a countably compact sizable space, Then (X,T(B*» is a 
second countable space. 

Proof 

Since (X,T(B» is a countably compact sizable space, therefore; by Theorem 
4.4; there exists a countable T(B)-dense subset 0 S X. Using Theorem 3.2(iii) , 
we deduce that 0 is T(B*)-dense in X, i.e., (X,T(B*» is a separable space. Let 
Bl be defined by 

BI = {S(x,r): xED; r is any positive rational number} . 

Then BI is obviously a countable set. To prove that B] is a base for T(B*), let U 
E T(B*) and y E U. Then, there exists a positive rational number r such that 
S(y,r) S U. Since S(y,r) is a T(B)-open set, therefore there exists V E B such that 
y E V S S(y,I/4 r) and L(V) < 1/4 r. Since 0 is T(B)-dense , therefore there exists 
x E V n D. This implies that x E S(y,I/4 r); i.e., L(x,y) < 1/4 r. Consequently, we 
have y E S(X,I/2 r) . To prove S(X,I/2 r) S S(y,r), let z E S(X,I/2 r). Then L(x,z) < 1/2 r. 
Applying Theorem 2.6(i), we get L(z,y) :0::; L(z ,x) + L(V) < 1/2 r + 1/4 r < r. Hence 
z E S(y,r). Thus, we have found that y E S(X,I/2 r) S S(y,r) S U, xED , 1/2 r is a 
positive rational number. Consequently Bl is a countable base for (X,T(B*», 
which completes the proof of the theorem . 

4.10 Theorem 

Let (X,T(B),L) be a countably compact sizable space. Then (X,T(B*» is 
compact and moreover <'leX) < 00 (i.e . , L is a bounded size function). 

Proof 

Since (X,T(B» is a countably compact sizable space and T(B*) S T(B) 
(Theorem 3.2(iii), so by Theorem 3.2(i) and Theorem 4.1, (X,T(B*» is also count
ably compact. By the use of Theorem 4.9, (X,T(B*» is a Lindelof space. Hence 
(X,T(B*» is a compact space. To prove the second part of the theorem , we notice 
that the T(B*)-open countable cover ~ = {S(p,n): n E N} (p is a fixed point in 
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X) has a finite subcover ; i .e. , there exists kEN such that X = S(p,k). Hence, the 
result. 

Now, we can state and prove one of our main results concerning the metriza
bility of countabJy compact spaces. 

4.11 Theorem 

Let (X,T(B)) be a countably compact space. Then, (X ,T(B)) is metrizable if 
and only if it is sizable . 

Proof 

If (X ,T(B)) is metrizable , then it is sizable according to Theorem 2.1 . Con
versely, let (X,T(B)) be a sizable space with a size function L. We are going to 
prove that B* is a base for T(B), i.e., B,B* are equivalent bases for T(B). In order 
to prove our claim, let V E B and let p E V. We claim that there exists n E N such 
that S(p,l/n) '= V. To prove our claim, suppose, on the contrary, that is for each 
n E N we have S(p,lIn) 1= V. Therefore, for each n E N there exists Xn E X 
such that L(p,xn) < lin and Xn E X-V. By the use of Theorem 4.2, since 
inf{L(p ,x): x E X - V} = 0, therefore p E CI(X - V) (the closure is being taken 
in (X,T(B))). But V is open in (X,T(B)). Hence p E X - V which is a contradic
tion; and hence B* is a base for T(B) . Consequently, we have T(B) S T(B*) . 
Combining this result together with Theorem 3.2(iii), we obtain that T(B) = T(B* 
) . Using Theorem 2.4(0, Theorem 4.9, Theorem 4.10 and the classical theorem of 
Urysohn (Willard 1970), we get the required result, that (X,T(B)) is metrizable. 

As a final remark in this section, we may observe from the following example 
that (X,T(B),L) may be a countably compact sizable space and hence (X,T(B)) is 
metrizable but L will not be a metric for X. We also notice that the condition 
'countably compact' is needed heavily for the sizable space (X,T(B)), for otherwise 
the resulting space (X,T(B*)) will not be even Hausdorff as we observed in Exam
ple 3.3. 

4.12 Example 

There exists a countably compact sizable space (X,T(B),L) in which L is not 
a metric function. 

Proof 

Let X = {1,2,3} and let B = {{x}: x E X} be the base for the discrete topology 
T(B) on X . Define L(1,2) = 1, L(1,3) = 2, L(2,3) = 4, L(a,b) = L(b,a), 
L(a ,a) = 0, L({a}) = 0; a,b E X. Then L is a size function and not metric. Note 
that (X ,T(B),L) is a countably compact sizable space. 
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5. Significance Of The Main Result 

As we noticed that alJ theorems concerning metric spaces use heavily the 
triangle inequality of the metric space. Theorem 2.1 asserts that all theorems hold
ing for sizable spaces must hold for metrizable spaces. Because of this fact, our 
theorems may be considered as generalizations of the well-known theorems for 
metric spaces . If we take a look in Long 1971, (page 260) we can see how strong 
our generalizations are. Actually, all the theorems for metric spaces use the prop
erties of open spheres, especially the one which states that all open spheres in a 
metric space form a base for some topology. This property depends, indeed, heav
ily on the triangle inequality of the metric. Therefore, the generalization of the 
triangle rule brings a distinction between the balls and spheres approach. 
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