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ABSTRACT. Numerical Relative Orientation using e le ments of one projector (dependent 
orientation) has been applied to several cases of complete as we ll as incomplete stereo­
scopic models of flat terrain . Parallax observations were made on the Zeiss Jena Stereo­
metrograph E , using the (by) screw. Since in all cases more than five observations were 
avai lable , a least squares solution was used to solve for the five e lements o f re lative 
o rien tation. This allowed the accuracy assessmen t 10 be based on analysis of variances 
and cova riances. In complete models , the accuracy o f the solution improved by increa­
sing the number of the orientation points. Howeve r, some elements improved more 
significantly than others . For incomplete models , the distribution of the orientation 
points proved to be more significant than the ir number. The la rger the dete rminant of 
the coefficient matrix of no rmal equations, the better was the solution. Il l -conditioned 
systems resulted in la rge variances despite an increased number of orientation points. 

1. Introduction 

Relative orientation may be defined as the process of eliminating y-parallaxes in 
the overlapping area between two photographs, thus bringing corresponding rays 
to intersect at model points. Practically, this is equivalent to bringing the two 
projectors of the stereoscopic plotter in a relative position similar to that of the 
camera positions during taking the photography. The relative orientation of a 
model may be achieved by changing the necessary elements of one projector only, 
while the other projector is left undisturbed (dependent orientation). It may also 
be achieved by changing the necessary elements on both projectors (independent 
orientation). The former method is useful in the bridging method of aerial triangu­
lation where one projector has to be kept fixed during strip formation. This method 
has been used in this research in which the five elements of one projector are 
determined numerically . 
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In numerical relative orientation, the changes to be given to the elements are 
computed from the parallax equations with the help of parallax measurements. 
This method has the advantage of eliminating the subjectivity usually associated 
with empirical methods due to human judgement in eliminating y-parallaxes. Ac­
cordingly , in jobs involving several models as in the case of aeropolygon or inde­
pendent model triangulation blocks, it is possible to use more than one operator 
on different shifts while maintaining the homogeneity of the observations. This 
feature is certainly attractive from a managerial point of view . However, the main 
advantage of numerical relative orientation is that it allows by using more than five 
parallax measurements, - provided that their geometry is non singular - the com­
putation of relative orientation elements based on a least squares adjustment. The 
result would be best linear unbiased estimates of the elements (X), together with 
their variance - covariance matrix (Lx) enabling us to assess the quality of the 
solution. This is rather significant particularly in incomplete models since the dis­
tribution of the orientation points has a direct effect on the accuracy of different 
elements . 

2. Mathematical Model 

The relation between the differential Y shift (dY) in the model space in a plane 
of constant (Z) due to translations .1bx, .1by, .1bz together with rotations .1w, .1</>, 
.1x of a projector is given by equation (1), Ghosh (1972). 

Y (Y2) (. XY )dY = ,1 by - Z .1bz - Z 1 + Z2 .1w - X SIn W - Z cos W .1</> 

. XY . y 2 .) A+ (X cos </> cos W - Z SIn </> - Z cos </> SIn W - Z SIn </> LJX (1 ) 

where 

dY is the shift of a point in the Y direction 
X, Y, Z are the model coordinates of the point 
.1by, .1bz are differential movements of projector in Y & Z directions 
,1w , ,11, ,1x are differential rotations of projector around X, Y, Z axes 
w , 1, x are angles of rotation around X, Y, Z axis 
For full details concerning derivation of equation (1) see Ghosh (1972), Zeller 
(1952) or Brandenberger (1947). 

In vertical or near vertical photography, it is common to assume w = 1 = O. 
Accordingly , equation (2) results after substituting a zero value for wand </>. 

Y Z2 + y2 XY 
dY = .1by - Z .1bz - Z .1w + Z ,11 + XLIx (2) 

If we denote the initial parallax at point (i) by (Py,), then relative orientation 
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changes should be introduced , such that the parallax is eliminated at point (i) by 
introducing a change LI Py;. Accordingly, 

Py; + LlPy; = 0 

or 

(3) 

Generally , movements introduced to both projectors I and II result in differential 
Y shifts dYJ and dYu respectively. Accordingly, LlPy, can be expressed as the 
difference between differential shifts of both projectors , or more generally: 

LlPy = (dYI - dY II ) = - Py = 

Y Z2 + y 2 XY 
Llby[ - Z LlbzJ - Z Llwr + Z LI¢[ + XLlxJ (4) 

where b is the base representing the distance between the left and right projection 
centers , Fig. 1. Equation (4) represents the fundament al formula for relative orien­
tation. In this equation only five coefficients are linearly independent , therefore 
only five of the ten unknowns can be determined . These are the five parameters 
of the relative orientation. Regrouping with respect to the independent coefficients 
of equation (4), we arrive at the orientation formula with pseudo-unknowns. 

XY Z2 + y2 Y 
LlPy = -Py = Z LlA - Z LIB - Z LlC + X.LlD + LIE (5) 

where 

LlA = LI¢I - LI¢J1 
LIB = Llwr - LlwlI 
LlC = LlbzJ - LlbzlI - bLl¢1I 
LID = LlxJ - LlxlI 
LIE = Llby, - LlbYll + bLlxlI 

Since the dependent method of relative orientation using projector (II) is 
employed , the final equation for numerical relative orientation is given- by (6). 

Y Z2 + y2 (X - b)Y
-Py = -LlbYII + Z Llbz lI + Z LlwlI - Z LI¢lI - (X - b)LlxlI (6) 

Equation (6) is obtained from equation (4) after substituting zero values for the 
elements of projector (1), since it is kept unchanged during the orientation process. 
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3. Experiment Set-up 

3.1. Parallax Measurements 

Numerical relative orientation is based on parallax measurements at five or 
more points in the model space arranged in such a way that they do not conform 
to critical or singular geometry . If parallaxes are measured at only five points, then 
use of equation (6) results in a unique solution for the unknowns. By using parallax 
observations at more than five points, a solution based on a least squares algorithm 
is utilized. Points (1, 2, 3, 4, 5 & 6) are always referred to as the six standard 
points. V-Parallaxes can be measured either by using the (by) control knob or the 
(w) control knob of the stereoscopic plotter. However, since the effect of w rota­
tion is non-linear then the left hand side of equation (6) should be simply modified 
to account for this non-linearity of the movement, according to equation (7). 

Z2 + Y2) 
Wy ( Z = -Py (7) 

In this research, the by screw was used to measure the Y -parallaxes and accord­
ingly equation (6) was employed. Stereoscopic models were set on the Zeiss (Jena) 
stereometrograph E after proper calibration and adjustment of the stereoplotter. 
Inner orientation was first performed followed by a coarse empirical relative orien­
tation. Then V-parallaxes were measured for twelve points symmetrically distri­
buted within the model area, Fig. 1. 

Z

b. It bVI/. v 

7.)~ 
/l. ) /. RIGHT PROJECTION CENTER 

~.;{,~Ba""+t'---C-- X 

Fig. 1. Coordinate system, model dimensions and locations of orientation points (Dimensions in mm) 
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3.2. Repeated Parallax Observations 

There is a false concept that repeating parallax observations will contribute to 
the accuracy of the solution. This is not true as we will illustrate next. The variances 
of Y -parallaxes (o~) depend upon the geometric exactness of the two photographs 
(o~), the instrumental errors (oD and the extent of elimination of the parallax, i.e. 
the observation (do). Assuming no correlation among different groups of errors, 
the relation between these variances can be expressed according to (8). 

o~ = o~ + of + do (8) 

Experience has shown that typical estimates for these variances would be o~ 
= 25fJ-2, of = 50fJ-2 using analog instruments and do = 25fJ-2, Hoschtitzky (1970). 
Accordingly, substituting these values in equation (8) will result in a value of OR 

= 10fJ-. Repeated parallax observations at one model point will improve the preci­
sion very slightly, as op and 0l will behave systematically. For repeated (n) obser­
vations, the mean variance of Y-parallax (O~R) may be then expressed by (9). 

2 
2 2 2 0 0 

0MR = Op + 0l + - (9) 
n 

Equation (9) is represented graphically in Fig. 2 from which we see that as (n) 
approaches (co), 0MR drops from lOfJ- to approximately 8.6fJ-. Therefore, more than 
two cycles of parallax observations can not be economically justified. In fact the 
main reason for repeating parallax observations is checking against blunders rather 
than improving the precision. Parallax measurements for the twelve points of Fig. 
1 were observed two times for each point using the by screw, then taking their 
arithmetic mean. 
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Fig. 2. (OMea" Parallax) Versus repeated observations 
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3.3. Cases of Study 

To test the performance of the procedure of numerical relative orientation for 
flat terrain for complete and incomplete models, eleven different configurations 
have been studied, Fig. 3. For complete models, the objective was to test the 
accuracy of the solution by increasing the number of relative orientation points. 
Six different point configurations have been tested using 7,8,9,10,11 & 12 points 
as shown in Fig. 3a. 

Due to the existence of large bodies of water or clouds, especially along the 
coastal zones, the problem of incomplete models arise. In these models, a portion 
of the stereoscopic model is lost, thus resulting in poor geometry. Five different 
cases have been investigated as shown in Fig. 3b. 

· ..... .. .. . · .. .. .. .. .. . . . .. . · " .. .. .. . " ...DCOOOC 

(7pt.) (8pt.) (9pt.) (10pt.) (11pt.) (12Pt.) 

(a) 

Fig, 3a, Configuration of orientation points (Complete models) 
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Fig,3b, Configuration of orientation points (Incomplete models) 

In all cases of complete and incomplete models, accuracy assessment was based 
on testing the variance-covariance matrix of unknown paramaters, correlation coef­
ficients and geometry of orientation points. 

3.4. Weighing Scheme 

A proper solution using a least squares algorithm requires adequate estimates 
for weights of observations. In trying to find the correct approach to this problem, 
we observe that the weight of an individual parallax observation depends apart 
from the operator's personal capability on the following factors, Ghosh (1963): 

A. The attitude of intersections of individual rays at point of intersection. 
B. Obliquity of the epipolar plane through the point of intersection. 
C. Change in the scale of detail. 
D. Different photographic resolution. 
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Table 1 Weights according to different factors 

Weight due to factor 
Final average 

Points Weight
A B DC 

1 1 1 1 1I 
2 1 1 1 11 

0.27 0.660.55 0. 83 13 
0. 274 0.55 1 0.660. 83 

0.55 0.27 0.665 0.83 1 
0.55 0.27 0.666 0.83 I 

7 0.85 0.95 1 0.18 0.75 
0.95 0.18 0.758 0.85 1 

9 0.85 0.95 1 0.18 0.75 
110 0.85 0.95 0.18 0.75 

11 0.64 0.83 I 0 0.62 
0.6412 0.83 1 0.62 0 

These factors are analysed to finally formulate the weights due to each as well 
as their joint effect. Summary of the weighing scheme is given in T ab le 1. For more 
details concerning the derivation of these weights see Ghosh (1963) and Moustafa 
(1983) . 

These weights represent the statistical properties of the observations which is 
referred to as the stochastic model. This model designates the nondeterministic 
(probabilistic) properties of the observations, whereas the fun ctional model as 
expressed by eqn . (6), for example, describes the deterministic properties of the 
physical situation under consideration. Both functional and stochastic models con­
stitute the mathematical model. 

4. Results and Analysis 

For each case of complete and incomplete model, t he observation and normal 
equations were formed and the solution of the relative orientation parameters 
obtained. A program in BASIC language for the 'Hewlett-Packard system 45 ' 
version was developed> according to the following steps, 

n[R]l + n[A]s . s[XL = n[O]l (10) 

[A]T. [Pl , [R] + [A]T. [P] . [A] . [X] = [0] (11 ) 
--~vr---' 

u N 
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or more concisely 

s[N]ss[X] 1+ 5[U]1 = S[ (5It (12) 

Then the solution is obtained as follows , 

[XJ = _[Ntl . [U] (13) 

where 

[RJ is the vector of parallax observations 
[A] is the coefficient matrix of observations 
[X] is the vector of unknown parameters 
[P] is the weight matrix of observations 

Following the solution of each case , the observational residuals V are obtained 
from which the following statistical measures are determined. 

06 = [Vf . [P] . [V]/DF (14) 

Lx = 06 . [Nt ' (15) 

Lobs = 06 . [AJ . [Nt ' . [A]T (16) 

where 
06 is the a posteriori va riance of unit weight 
DF is the degrees of freedom 
Lx is the variance covariance matrix of unknowns 
Lohs is the variance cova riance matrix of observations 

Finally , the correlation coefficients (rxv) between any two variables x & yare 
computed for the elements of relative orie'ntation (eqn. 17). 

(17) 

4.1. Cases of Complete Models 

Figure 4, shows the improvement in the solution of the rotational elements of 
the relative orientation by increasing the number of orientation points. Using 
twelve symmetrically distributed points instead of seven improved Ow & Ox by 20% 
whereas 0 ", improved by approximately 12% . This is because the ¢ movement has 
its maximum effect only at the four corner points of the model. It can be also 
noticed that by using points 11 and 12 the accuracy of OJ improved significantly 
while accuracy of ¢ and x increased slightly. This is explained by the fact th a t the 
y-component of ¢ and x movement is nil at poi nts 11 and 12. Meanwhile OJ move ­
ment will have its y-co mponent at points 11 and 12 of the same magnitude as the 
four corner points 3, 4, 5 & 6. Accordingly Ow dropped clea rly by adding po ints 
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11 and 12 to the orientation points. In fact, the w-solution may be obtained sepa­
rately using parallax measurements at three points located on a cross-section whose 
X coordinates are similar, provided that the determinant of the coefficient matrix 
is non-singular , i. e. , 

Z2 + y2 Y ]
det [ Z ; Z ; -1 *- 0 

The relation between the number of orientation points and the standard devia­
tions of Llb y and Llbz elements is shown in Fig . 5 and 6 , respectively . It is clear that 
the improvement in Llby was nearly linear and increased by 20% when the number 
of points increased from seven to twelve . The linear behaviour agrees with the 
theoretjcal expectation since Ll bv element has a uniform effect over the whole 
model area, independent of the location of the points. The small deviations from 
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the straight line (dotted line) is attributed to the stochastic noise associated with 
the parallax observations. The standard deviation of L1 bz element improved by 
approximately 16% when using 12 instead of 7 points . Meanwhile, points # 11 and 
12 were more significant because of the same previously mentioned reason for the 
welement. 

Table 2 gives a summary of the standard deviations of the five elements of 
relative orientation for the different cases of complete models together with the a 
posteriori variance of unit weight (66). 
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Table 2 Accuracies from cases of complete models 

~ a Elements 
7 8 9 10 11 12 

a¢ . (10)3 rad 
aw ' (10)3 rad 
ax ' (lW rad 
aLlbz ' (10) mm 
aLlby ' (10) mm 
(a~) 

0.385 
0.295 
0.202 
0.245 
0.577 
0.943 

0.379 
0.287 
0.189 
0.240 
0.562 
0.963 

0.368 
0.280 
0.179 
0.235 
0 .542 
0.969 

0.357 
0.274 
0.168 
0.233 
0.521 
0.976 

0.346 
0.252 
0.163 
0.218 
0.489 
0.918 

0.341 
0.234 
0.160 
0.206 
0.461 
0.889 

4.2. Cases of Incomplete Models 

Incomplete models exist due to clouds or water bodies, thus causing serious 
problems to the operators in performing empirical relative orientation. The prac­
tice of taking elevations or measurements of the water level on shores, in addition 
to available orientation points , becomes generally a procedure with many iterations 
and, therefore , rather time consuming. However, the use of the x-component of 
¢ or w motions, in conjunction with elevation measurements may lead to a better 
solution, Klaver (1979). In these cases, the use of numerical relative orientation 
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Table 3 Accuracies from cases of incomplete models 

, 

~ 
Case # 

"­

o Elements '~ 
I II III IV V 

0", . (10)3 rad 

ow · (lW rad 
Ox . (10)3 rad 
oLlbz · (10) mm 
oLlby · (10) mm 
(06) 

1.180 
0.428 
0.527 
0.364 
0.815 
1.175 

1.060 
1.360 
0.459 
1.528 
2.024 
0.858 

0.328 
0.339 
0.181 
0.193 
0.716 
0.326 

2.070 
1.710 
0.398 
1.101 
2.734 
0.807 

1.890 
0.958 
0.771 
0.785 
1.639 
1.682 

procedure becomes a valuable tool, particularly since numerical procedures elimi­
nate the subjectivity of the empirical method caused by the operator's judgement 
concerning the location of the orientation points or the procedure to be followed. 
Figure 7, shows the standard deviations for the rotational and translational ele­
ments for the five configurations of orientation points of incomplete models used 
in the study. Results from each of the five cases are analysed separately as follows, 
whereas all accuracy figures are presented in Table 3. 

Case I 

This case is known as the case of incomplete models with complete cross-sec­
tion. In this case, at least one cross-section with x = constant exists somewhere in 
the model, where three orientation points j, (j + 2) , (j + 4) can be chosen such that 

y 7 Y .""'1
Y = o· - = - = constant 

J ' Z j + 2 ZJ + 4 

In this case, the OJ solution is nearly as accurate as the case of complete model 
(ow = 0.00043 radianse). The if> solution, on the other hand, deteriorated due to 
the absence of points # 4 & 6 that are very significant for this element. The other 
elements remained within tolerances . In this case, ten orientation points were used 
for the elements determination. 

Case II 

The upper half of the model is assumed to be clear and nine evenly distributed 
points were used. Due to the nonexistence of a complete cross-section , the OJ 

solution deteriorated significantly. The x and if> elements improved slightly due to 
the use of points # 2 and 4. Meanwhile, by and bz deteriorated at almost the same 
rate as OJ. 
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Case III 

Although the obscured area of case III is equal or even larger than other cases , 
this case resulted in the highest accuracy. Accuracy figures shown in Table 3 are 
comparable to those of complete models . This is simply due to the fact that the 
distribution of orientation points within the model approaches the case of the six 
standard models. For all the solved elements, the accuracy was consistently higher 
than all other cases. 

Case IV 

Here the distribution of points approaches the case of a singular system , since 
the orientation points are scattered close to a straight line that connects points 8 
and 9. Since the points are not exactly lying on a straight line, the system is known 
to be ill-conditioned. In mathematical terms, the determinant of the coefficient 
matrix of the normal equations will be very small. In extreme cases, the coefficient 
matrix of the normal equation will suffer from a rank deficiency and accordingly 
its inverse can not be obtained. Such an incomplete model should be rejected for 
mapping purposes and ground surveying methods should be used instead. 

Case V 

This case improved the accuracy as compared to the previous case particularly 
for the (w) and (by) solutions due to the existence of two incomplete cross-sections. 
However, the results are generally considered poor. 

Results from each case of complete as weJl as incomplete models have been 
statistically tested. A chi-square (I) test has been used to test the a priori versus 
the a posteriori variance of unit weight. It has been shown that (OF. ifolifo) follows 
a 1 distribution. In addition, testing of a posteriori variances between different 
cases was carried out. It has been also shown that (ofl&z) follows F-distribution 
depending on the degrees of freedom of the cases, Hamilton (1964) . For complete 
details concerning such testing see Moustafa (1983). 

5. Conclusion 

Numerical relative orientation for the complete model cases offers no problem. 
The accuracy of the elements improved by increasing the number of orientation 
points. However, the improvement of each element differs depending upon the 
location of these points within the model space. For incomplete models , the dis­
tribution rather than the number of points affects the accuracy directly . The study 
showed that the accuracy of the solution is a function of the numerical value of 
the determinant of the coefficient matrix of normal equations (N) . The larger the 
determinant INI , the more accurate will be the solution . Referring to Fig. 7, the 
computations showed that det INI III > det INI, > det INI" > det IN Iv det INI,v . 
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However, individual elements may be improved by careful choice of point location . 
Imperfections in the relative orientation elements cause model deformation . Linear 
model deformation in height is completely removed during the absolute orientation 
phase. Only non-linear errors due to <p and w elements will remain. The covariance 
o o;.¢ will be zero, as long as the two orientation points used for the solution of the 
<p and bz elements have the same y-coordinates. If two pairs of points are used for 
this purpose , each pair should have the same y-coordinate to keep 0w.1/> as zero. 
Finally, it should be pointed out that the advantage of numerical over empirical 
relative orientation becomes clear in the case of incomplete models . Apart from 
solving the relative orientation elements in a systematic way, the eventual residual 
parallaxes are distributed according to the fixed principle of least squares. For this 
reason , the use of numerical methods are of great significance during phototriangu­
Jation when more than one operator works simultaneously in different shifts . 
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