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Abstract: This paper proposes an adaptive threshold estimation method for de-noising in wavelet
domains merged with translation invariant de-noising. The sub-band shrink is computationally
more efficient and adaptive because the parameters required for estimating the threshold depend
on subband data. A new probability density function is proposed to model the statistics of wavelet
coefficients. The subband threshold is derived using Bayesian estimation theory and the new pdf.
Different shifts are used and applied to the noisy image in order to attain different estimates to the
unknown image and then linearly average the estimates. In speckle images, the noise content is
multiplicative. The proposed method is applied for speckle ultrasound images by using logarithmic
transformation. Experimental results on several test images are compared with various de-noising
techniques.
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INTRODUCTION

Coherent imaging systems such as
ultrasound suffer from speckle noise, creating
images that appear inferior to those generated
by other medical imaging modalitie. Speckle is
a random interference pattern caused by coherent
radiation in a medium containing many sub-
resolution scatters. Speckle has a negative impact
on ultrasound images as the texture does not
reflect the local echogenicity of the underlying
scatters. The local brightness of speckle pattern,
however, does reflect the local echogenicity of the
underlying scatters. Clinically, speckle noise has
been shown to reduce the ability to detect lesions
by a factor of eight (Anderson, et al. 2000).

Speckle filtering of medical ultrasound
images represents a critical pre-processing step,
providing clinicians with enhanced diagnostic
ability. Efficient speckle noise removal algorithms
may also find applications in real time surgical
guidance assemblies. However, it is vital that
regions of interest are not compromised during
speckle removal.

Several methods have been proposed for
de-noising the signals. Wavelets transform has
proven a successful tool for analysis of signals
due to its good localization properties in time and
frequency domains (Daubechies, 1992; Graps,
1995). Inrecent years, there has been a fair amount
of research on wavelet thresholding and threshold
selection for signal de-noising (Westrink, et al.
1987; Donoho, 1993; Donoho and Johnstone,
1995; Grace, et al. 2000; Mastriani and Giraldez,
2006;) because wavelet provides an appropriate
basis for separating the noisy signal from the
image signal. The motivation is that as the wavelet
transform is good at energy compaction, the small
coefficients are more likely due to noise with large
coefficient due to important signal features. These
small coefficients can be thresholded without
affecting the significant features of the image.

Thresholding is a simple non-linear
technique, which operates on one wavelet
coefficient at a time. In its most basic form, each
coefficient is thresholded by comparing against
threshold. If the coefficient is smaller than the
threshold, is set to zero; otherwise the threshold
is kept or modified. Replacing the small noisy

coefficientsby zeroandinverse wavelettransforms
on the result may lead to reconstruction of the
essential signal characteristics with less noise.
This paper proposes anear optimal threshold
estimation technique for image de-noising which
is subband dependent, i.e. the parameters for
computing the threshold are estimated from
observed data, one set for each sub-band. A new
probability density function (pdf) is proposed to
model the statistics of wavelet coefficients, and
the new threshold derived using Bayesian theory.
The proposed method is used to speckle filtering
of Ultrasound images. A logarithm is taken of the
speckle image, then the speckle multiplicative
corruption of the original image becomes additive.
This papermay be outlined as follows:
The de-noising process in the transform domains
is discussed in Section 2. In Section 3, a new sub-
band adaptive shrinkage function is developed
for natural images. Section 4 introduces the
concept of translation — invariant de-noising. The
proposed algorithm for the de-noising technique
is presented in Section 5. The results of the
proposed algorithm are presented in Section 6.
The paper closes with conclusions in Section 7.

Wavelet Thresholding
Let
f={;,6i=12 ... , M} (1)

Denote the MxM matrix of the original image
to be recovered and is some integer power of 2.
During transmission to signal f is corrupted by
independent and identically distributed (i.1.d)
zero mean, white Gaussian noise nij with standard
deviation o i.e. n, ~ N(0,0?).At the receiver end,
the noisy observation

g;=f;ton, . (2)
is obtained. The goal is to estimate an s which
minimizes the mean squared error (MSE),
AJS’E:L%(/’;—E)Z

ERa]
M 1j=1

3)

Let W and W denote the two dimensional
orthogonal discrete wavelet transform (DWT)
matrix and its inverse respectively. Then Y=Wg
represents the matrix of wavelet coefficients of
having four sub bands (LL, LH, HL, HH). The
sub-bands HH o HL,, LH, are called details, where

is the scale varying from 1, 2,...... ,JandJ



Tamer Nabil

165

is the total number of decomposition. The size of
the subband at scale k is M/ xx M/ The subband
LL, is the low-resolution residue.

The different methods for denoising differ
only in the selection of the threshold. The basic
procedure remains the same.

* Calculate the discrete wavelet transform of
the image.

e Threshold the wavelet coefficients.
(Threshold may be universal or subband
adaptive)

* Compute the inverse wavelet transforms to
get the denoise estimation /.

Soft thresholding has been used over hard
thresholding for the following reasons: Soft
thresholding has been shown to achieve near
mini-max rate over a large number of Besov
spaces (Donoho, 1993). Moreover, it is also
found to yield visually more pleasing images.
Hard thresholding is found to introduce artifacts
in the recovered images. The soft thresholding
with threshold A is defined as follows:

D(U, 4) = sgn(U) * max(0,|UI-4) 4)

A disadvantage of the DWT is that,
in contrast to the CWT, this decimated
representation is not invariant under
translation. The lack of shift invariance makes
it unsuitable for pattern recognition and also
limits its performance in denoising. The latter
is perhaps more clear from the viewpoint of
the lack of redundancy. The redundancy of
a representation, in general, helps to better
estimate a signal from its noisy observation.
In this respect, Translation — invariant was
proposed as: one averages the de-noising
results of several cyclically shifted image
versions.

Estimation of the Threshold Using Bayesian
Denoising Model

In, the wavelet domain, when an orthogonal
wavelet transform is used, the problem can be
formulated as

=X+V )
where Y=Wg denotes the matrix of wavelet
coefficients of g . Similarly X=Wfand V=WY.

This section aims to estimate the desired
signal / from the noisy observation. The maximum
a-posteriori (MAP) estimator is used for this
purpose. The classical MAP estimator for (5)

¥ 6)

_‘i’(}’) = arg max ley(_\’

Using Bayes rule, one gets

_‘i’(}’) = arg 111>£<1X{PY| mied

ROTY;¥6 o) N,

=arg 111}5(1):{}; (Y-X)e P .(X)}

Therefore, these equations allow the writing
of this estimation in terms of pdf of the noise (P )
and pdf of the signal coefficient (P_). From
the assumption on the noise P , is zero mean
Gaussian with variance (0 ) ,i.e.,

V2

1 _r

o, \/2—,_(3 I,
It has been observed that wavelet
coefficients of natural images have highly non-
Gaussian statistics (Sendur and Selesnick,
2002a; Sendur and Selesnick, 2002b). The pdf
for wavelet coefficients is often modeled as a

generalized (heavy-tailed) Gaussian ( Sendur and
Selesnick, 2002¢)

B()= ®)

bdla

5

P(X)=K(s,p)¢” ©

where s,p are the parameters for this
model, and k(s,p) is the parameter-dependent
normalization constant. In practice. Two problems
generally arise with the Baysian approach when
an accurate but complicated P (X) is used:

1- It can be difficult to estimate the parameters
of P _for a specific image, especially from
noisy data,

2- the estimators for these models may not have
A simple closed form solution and can be
difficult to obtain.

The solution to these problems usually
requires numerical techniques. Equation (7) is

also equivalent to

X(¥) = arg pax [log(B(Y - V) +log( P(X)]  (10)
X

As in ( Prasad, et al. 2008; Sendur and Selesnick,
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2002b), let us define

J(X) =log( P (X)) (11)
By using (8), (11), (10) becomes
X(v) = arg max[_(};;\;)z + £ (12)

n

This is equivalent to solving the following for
W if P_(X) is assumed to be strictly convex and
differentiable

y-X o
. (X)=0
g (13)

_8lx
e “

(14)

P(X)=
r (X) Go

Where the scale parameter  is computed
once for each scale using the following equation
as in [4],

I
3= Jlog(~-
] Og(J)

Where L, is the length of the subband at & th scale,
then

(15)

f(!f):—log(ﬁa)—@ (16)
and the estimator will be

T = sign(¥) o[[T] ﬁj . (17)
Here, (h), is defined as

. = {|"0-,if h<0 (18)

[g . other wize

Equation (18) is the soft shrinkage function.

Translation—Invariant D-enoising
Thresholding in the orthogonal wavelet
domain has been observed to produce significantly
noticeable artifacts such as Gibbs-like ringing
around edges and specks in smooth regions. To
ameliorate this unpleasant phenomenon, Coifman
and Donoho(1995) proposed the translation
invariant (TI) de-noising. The discussion in
(Coifman and Donoho, 1995) is one—dimensional

(1-D), but Ismail and Nabil proposed TI in 2-D
( Ismail and Nabil, 2004). Let Shift 0 [¢] denote
the operation of circularly shifting the input
image g by k indices in the vertical direction and /
indices in the horizontal, and let Unshift [g] be
a similar operation but in the opposite direction.
Also, let Denoise (g, T] denote the operation of
taking the DWT of the input image g, threshold
it with a threshold 7" according to equation ( 17),
then transform it back to the space domain. TI
denoising then yields an output which is the
average of the threshold copies over all possible
shifts:
Af-1

[ S Unnshift,, [ Denoise[ Shift, ,[21.T1]

M %

(19)

The rationale is that since the orthogonal
wavelet transform is a time-varying transform and
thresholding the coefficients produces ringing-
like phenomena, thresholding a shifted input
would produce ringing at different locations, and
averaging overall different shifts would yield an
output with more attenuated artifacts than a signal
copy alone.

Proposed Algorithm

First, the global description of the method
for computing the subband threshold and
removing speckle is introduced.
Estimation of Threshold Parameters

This section describes the method for
computing the various parameters used to
calculate the threshold value (T), adaptive to
different sub-band characteristics:

(20)

Where the scale parameter 3 is computed
one for each scale using the following equation:

L 2D
3 = flog(~E
B = 4Jlog( ¥ )
where L, is the length of the subband & th scale.
62n is the noise variance, which is estimated for

sub-band H |, using formula
Sendur and Selesnick, 2002c¢)

medicarn(|Y, |)

0.6745

& = 1*.7, = subband HH

(22)
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and a, is the standard deviation of the sub-band
consideration.

Image Denoising Algorithm

This section describes the proposed image
denoising algorithm in the wavelet domain
for recovering the original from the noisy one.
The algorithm 1is very simple to implement
and computationally more efficient. It has the
following steps:
I- fork=1,...... M l=1,...... M do unshift

[Denoise[Shift 0 Lg].T1]

Where the steps of Denoise[l, T] are:

e perform multi-scale decomposition of the
image corrupted by Gaussian noise using
wavelet transform (the total number of
subbands of different scales is J ).

* estimate 6° using equation (22)

» foreach level, compute the scale parameter
B using equation (21)

e for each subband (except the low-pass
residual):

a- compute the standard deviation oy
b- compute threshold 7" using equation (20)
c- apply soft thresholding to the noisy
coefficients
2- compute the mean average to reconstruct the
denoised image using / equation (19).

Speckle Model

The de-noising framework described is
based on the assumption that the distribution of the
noise is additive zero mean Gaussian. In speckle
image, the noise content is multiplicative and non-
Gaussian. Such noise is generally more difficult to
remove than additive noise because the intensity
of the noise varies with the image intensity.
A model of multiplicative noise is given by

g, j)=J@ @, j) (23)

Where the speckle g(i,j) is the product of
the original image f (i,j) and the non-Gaussian
noise n(i,j).

In most applications involving multiplicative
noise, the noise content ia assumed to be stationary
with unitary mean and unknown noise variance 0.
To obtain an additive noise model, a logarithmic
transformation on the special image g(i,j) must
be applied. The noise component in n(i,j) can be

approximated as an additive zero mean Gaussian
process as shown in the following equation.
Ing(ij)=InfG j)+InnG, j) (24)

The DWT is then applied to In( g(i,j)). After
the inverse DWT, the processed image is subject

to an exponential transformation to reverse the
logarithmic operation.

EXPERIMENTAL RESULTS

The results of the proposed algorithm and
compared to the results using popular threshold
based de-noising methods are presented here. The
experimentswereperformedonsimulated256x256
Ultrasound images. As a quantitative performance
measure we the signal to noise ratio used was

SNR = 10log,, (‘E;flgmj (25)

D )

noise

where the power is estimated by calculating the
variance. We have also compared the methods by
calculating peak-signal-to-noise ratio
PSNR = 10log , ((255)* / MSE) (26)

The Daubechies D, D,, D, D, filter pairs
are used in wavelet transform. Here, the results
are only reported for the Haar wavelet D,.

For performance computation of the
proposed method and comparison with other
methods, we have taken a noise-free Ultrasound
image was taken and added to multiplicative
speckle noise. The result was compared with
those of other similar methods such as Multilevel
soft-threshold based method (Khare and Tiwary,
2005), Universal threshold based denoising and
Visushrink. The computation of results from
the other methods was done to compare results
on the same image on a similar scale. In all
multilevel experiments wavelet decomposition
was performed up to 4 levels.

(Figure 1) Simulation results using the proposed
algorithm and several other methods

Figure (1) shows the expanded view of the
same 1mage of a de-noised image by multilevel
thresholding, universal thresholding and the
proposed algorithms.
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Fig. 1. (A-D) (a) Noisy image (SNR=47.8432, PSNR=32.1759).

(b) Denoised image using proposed method (SNR=59.4351, PSNR=42.7650).
(c) Multilevel threshold denoised image (SNR=51.0672, PSNR=34.6520).
(d)Universal threshold de-noised image (SNR=54.4763, PSNR=38.935).

The result in (Figure 1) shows that, the
proposed method preserves detailed features
and sharpens information to a greater extent
compared to other methods. The superiority
of the proposed method compared to previous
efforts can be observed in smooth noise removal
as well as in good preservation of sharp features.
Although the Multilevel thresholding method

also preserves sharp features, it has poor noise
removal. Also, the Universal threshold is very
poor for preserving sharp features compared to
the present study. It should be noted that the SNR
for the present study was found as 59.4351 which
is greater compared to multilevel and universal
thresholding, which implies good removal of
noisy data.
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CONCLUSION

In this study, simple and sub-band adaptive
thresholding with transition invariant algorithm
was proposed to address the issue of image
recovery from its noisy counterpart. It is based
on generalized Gaussian distribution modeling
of sub-band coefficients. The method was found
to be computationally efficient and significantly
reduced the speckle while preserving the sharp
features in the original images. Also, results
obtained show the proposed method is useful in
real time Ultrasound imaging enhancement. The
comparisons against previous efforts show that
present method is superior in extracting noisy data
from the original image as well as in preserving
the sharp features of the image.
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