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Abstract: Many localization techniques and protocols have been proposed for wireless sensor 
networks. However, few of these techniques consider the mobility of the networked sensors. 
When sensors are mobile, localization must be invoked periodically to enable sensors to track 
their location. Localizing should be made frequently to allow the sensors to track their location 
accurately. However, localizing frequently is expensive in terms of energy consumption and 
program time. This research proposes an efficient Hybrid Localization Protocol (HLP) for 
mobile sensor networks that dynamically invokes adaptive and predictive protocols based on 
some heuristics. The proposed HLP determines the optimal localization frequency based on the 
sensor’s speed and mobility pattern predictability.  Optimal localization frequency reduces the 
energy consumption of localization while increasing the localization accuracy. Experimental 
simulation results and analysis show that the proposed protocol is more efficient in terms 
of energy consumption and localization accuracy than the existing counterpart protocols.
Keywords: Wireless sensor networks, mobile networks, sensor localization techniques, predictive 
localization protocol, adaptive localization protocols.
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بروتوكول مهجن لتحديد المواقع بوا�سطة 

اللا�سلكية الا�ست�سعار  �سبكات 

Mohammad A. Mikki

تاأخذ  التقنيات  هذه  من  قليلا  فاأن  ذلك  ومع  اقتراحها،  تم  والبروتوكولات  المواقع  تحديد  تقنيات  من  كثير  الم�ستخل�ص: 

ا�شتدعاوؤها  يتم  اأن  يجب  المواقع  تحديد  عملية  فاإن  متنقلة  المج�شات  تكون  عندما  ال�شبكية.  المج�شات  تنقل  الاأعتبار  بعين 

للمج�شات  لل�شماح  ق�شيرة  فترات  في  تكرارا  يتم  اأن  يجب  المواقع  تحديد  اأن   المواقع.  تتبع  من  المج�شات  لتمكين  دوريا 

الطاقة  ا�شتهلاك  حيث  من  مكلف  ق�شيرة  فترات  في  تكرارا  المواقع  تحديد  فاإن  ذلك  ومع  دقيقة.  بطريقة  المواقع  بتتبع 

يقوم  اللا�شلكية  الا�شت�شعار  �شبكات  بوا�شطة  المواقع  لتحديد  مهجنا  بروتوكولا  يقترح  البحث  هذا  البرنامج.  تنفيذ  وزمن 

المقترح  المهجن  البروتوكول  ا�شتدلالية.  معايير  على  بناءاً  ديناميكية  بطريقة  والتنبوؤية  التواوؤمية  البروتوكولات  باأ�شتدعاء 

للاأج�شام  التنقل  نمط  تنبوؤ  على  والقدرة  المج�شات  �شرعة  على  بناء  المواقع  لتحديد  الاأمثل  التردد  يعين  المواقع  لتحديد 

الذي  الوقت  في  المواقع  تحديد  لعملية  الطاقة  ا�شتهلاك  من  يقلل  المواقع  لتحديد  الاأمثل  التردد  مواقعها.  تحديد  المراد 

البروتوكول  اأن  اأظهرت  تنفيذها  تم  التي  والتحليلات  المحاكاة  تجارب  نتائج  اأن  المواقع.  تحديد  عملية  دقة  من  يزيد 

المناظرة.  الحالية  بالبروتوكولات  مقارنة  المواقع  تحديد  عملية  ودقة  الطاقة  ا�شتهلاك  حيث  من  فعالية  اأكثر  المقترح 

تحديد  بروتوكول  المج�شات،  بوا�شطة  المواقع  تحديد  تقنيات  المحمول،  �شبكات  اللا�شلكية،  الا�شت�شعار  �شبكات  مدخلية:  كلمات 

المواقع التنبوؤي، بروتوكولات تحديد المواقع التواوؤمية.
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INTRODUCTION

Advances in technology have made it 
possible to build ad hoc sensor networks using 
inexpensive nodes. Each node consists of a low 
power processor, a modest amount of memory, a 
wireless network transceiver and a sensor board. 
A typical node is comparable in size to 2 AA 
batteries (Hill, et al. 2000). Wireless Sensor 
Networks can be employed in applications 
ranging from environmental monitoring and 
battlefield surveillance to condition based 
maintenance (Estrin, et al. 2002; Li, et al. 2002; 
Estrin, et al. 2001).

The localization problem is defined as 
estimating the position or spatial coordinates of 
wireless sensor nodes (Ramadurai and Sichitiu, 
2003). Localization is the ability of a sensor 
to find out its physical coordinates. This is a 
fundamental ability for embedded networks 
because interpreting the data collected from the 
network will not be possible unless the physical 
context of the reporting sensors is known. In 
addition, localization is important in Mobile 
Ad hoc NETworks (MANETs) where several 
protocols utilize geographical information to 
improve operation (e.g., Ko and Vaidya, 1998). 
Existing research has focused on addressing 
the localization problem for static sensor 
networks (sensors once deployed are stationary 
throughout life-time) (Juang, et al. 2002). 
Numerous localization techniques for wireless 
sensor networks have recently been proposed. 
Many techniques calculate the position of nodes 
based on the information of a set of anchor nodes 
that know the locations. The methods typically 
assume static network topologies. However, 
many sensor network applications demand the 
consideration of mobile sensor nodes. 

No universally acceptable solution has 
been adopted for realistic, outdoor environments, 
despite the attention the localization problem 
in WSN have received (Stoleru, et al. 2007). 
Localization may be carried out in one of 
several ways. If the node is equipped with a 
Global Positioning System (GPS) card, it can 
determine its coordinates by receiving signals 
from a number of satellites. Differential GPS 
requires that the node also receives signals from 

nearby ground reference stations. Alternative 
localization approaches have been proposed to 
allow nodes to learn their location either from 
neighboring nodes or from reference beacons 
(Bulusu, et al. 2001; Bulusu, et al. 2000). 

Localization techniques are divided 
into two categories: centralized localization 
techniques and distributed localization 
techniques. Centralized techniques require 
central computation that would be infeasible 
for mobile applications because of the high 
communication costs and inherent delay.  
Distributed localization techniques rely on each 
node determining its location with only limited 
communication with nearby nodes. Distributed 
localization techniques are classified as range-
based techniques and range-free techniques. 
Range-based techniques use distance estimates 
or angle estimates in location calculations, 
while range-free techniques depend only on 
the contents of received messages. Range-free 
localization algorithms are a cost effective 
alternative to the more expensive range-based 
approaches (He, et al. 2003). There are two main 
types of range-free localization algorithms that 
have been proposed for sensor networks: local 
techniques that rely on a high density of seeds 
so that every node can hear several seeds, and 
hop counting techniques that rely on flooding a 
network (Hu and Evans, 2004).

Several applications utilize mobile sensors. 
For such applications, dynamic management 
of localization is necessary to maintain 
energy efficient operation (Juang, et al. 2002). 
There are two classes of dynamic localization 
approaches: Adaptive approach and predictive 
approach. Adaptive approach dynamically 
adjusts the localization period based on the 
recent observed motion of the sensor. In this 
approach, localization frequency is proportional 
to the sensor’s speed. Predictive approach lets 
the sensors estimate their motion pattern and 
use this pattern to project their location in 
the future, without explicit localizing. If the 
prediction is accurate, which occurs when nodes 
are moving predictably, estimates of location 
may be generated without localization, allowing 
for farther reduction of the localization period 
(Tilak, et al. 2005). 
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The dynamic localization technique in 
mobile sensor networks is the technique that 
sensors use to calculate their location dynamically 
and periodically. Three dynamic localization 
techniques are proposed in the literature: static 
localization technique, adaptive localization 
technique and predictive localization technique. 
Static localization technique is a trivial 
technique where the localization period is fixed. 
An example protocol that uses this technique is 
the Static Fixed Rate protocol (SFR). The main 
advantage of SFR is its simplicity, while its main 
drawback is the low accuracy of localization. In 
adaptive localization technique the localization 
period is changed adaptively depending on the 
motion of the sensor node. An example protocol 
that uses this technique is the Dynamic Velocity 
Monotonic (DVM). As the sensor’s speed 
increases, the localization frequency increases 
to reduce the localization error and vice versa. 
In predictive localization technique the sensor 
nodes predict their location based on their 
previous motion.  To predict the motion, the nodes 
use dead reckoning. An example protocol that 
uses this technique is the Mobility Aware Dead 
Reckoning Driven (MADRD). Depending on 
how well the mobility of the sensor is predicted, 
the localization frequency can be significantly 
reduced using this approach. The intuition is 
that the mobility pattern is changing, and more 
localization is needed to capture the new mobility 
pattern as well as to limit the localization error. 
However, if the prediction is accurate, the 
confidence in the predictor increases and the 
localization period is increased. A state diagram 
for MADRD is shown in Figure (1). In this figure, 
HC refers to the high confidence state where the 
predictor is scoring well and localization period 
is increased. LC refers to the low confidence 
state where the predictor is not scoring well and 
the period is decreased. Erroneous predictions 
move the predictor towards the LC, while 
correct predictions move it towards HC. States 
S1 and S2 provide some level between LC 
and HC (Tilak, et al. 2005). The location error 
is measured at any time point by the distance 
difference between the actual location of the 
node and the computed location. Figure (2) 
shows the location error at different time points.

  

This research proposes an efficient Hybrid 
Localization Protocol (HLP) for mobile sensor 
networks. The protocol combines both adaptive 
and predictive protocols. These two protocols are 
dynamically invoked based on some heuristics. 
The invoked protocol and optimal localization 
frequency at any localization point are determined 
by both the sensor’s speed and predictability of the 
sensor’s mobility pattern. The optimal time period 
of localization reduces the energy consumption 
of the sensor and increases the localization 
accuracy.  HLP combines the advantages of both 
the adaptive and the predictive approaches. The 
approach trades-off between energy consumption 
(through reducing frequency of the localization 
process) and localization accuracy (through 
increasing frequency of the localization process). 
HLP is generic since it does not assume any 
specific adaptive or predictive localization 
protocol. It assumes that these two protocols are 
given when HLP executes.

Fig. 1. State diagram of MADRD protocol.

Fig. 2. Location error.



RELATED WORK

The Princeton ZebraNet project (Juang, et 
al. 2002) is a good example of a mobile sensor 
network application that explores wireless 
protocols and position-aware computation from a 
power-efficient perspective. One of the project’s 
fundamental requirements is to find the nodes’ 
location on mobile objects. If the project adopts a 
localization technique for the mobile sensors, they 
could reduce much of the cost for the system (Yi, 
et al. 2007). Doherty, et al. ( 2001) proposed a 
centralized technique using convex optimization 
to estimate positions based only on connectivity 
constraints given some nodes with known positions. 
MDS-MAP (Shang, et al. 2003) improves 
on these results by using a multidimensional 
scaling approach, but still requires centralized 
computation. Requiring central computation 
would be infeasible for mobile applications 
because of the high communication costs and 
inherent delay; hence distributed localization 
techniques appeared (Hu and Evans, 2004). 

Range-based approaches have exploited time 
of arrival (Wellenhoff, et al. 1997), received signal 
strength (Bachrach and Taylor, 2005; Patwari and 
Hero, 2003), time difference of arrival of two 
different signals (TDOA) (Savvides, et al. 2001), 
and angle of arrival (AOA) (Niculescu and Nath, 
2003). Though they can reach fine resolution, either 
the required hardware is expensive (ultrasound 
device for TDOA, antenna arrays for AOA), or the 
results depend on other unrealistic assumptions 
about signal propagation (for example, the actual 
received signal strengths of radio signals can 
vary when the surrounding environment changes) 
(Hu and Evans, 2004). Furthermore, the TDOA 
techniques require a high demand on the accurate 
measurement or estimation of time delay (Sheng 
and Hu, 2003). In the Centroid method (Bulusu, 
et al. 2000), each node estimates its location by 
calculating the center of the locations of all seeds 
it hears. If seeds are well positioned, location error 
can be reduced (Bulusu, et al. 2001), but this is not 
possible in ad hoc deployments. The APIT method 
(He, et al. 2003) isolates the environment into 
triangular regions between beaconing nodes, and 
uses a grid algorithm to calculate the maximum 
area in which a node will likely reside. 

To provide localization in networks where 
seed density is low, hop-counting techniques 
propagate location announcements throughout 
the network. DV-HOP (Niculescu and Nath, 
2003) uses a technique based on distance vector 
routing. Each node maintains a counter denoting 
the minimum number of hops to each seed, and 
updates that counter based on messages received. 
Seed location announcements propagate through 
the network. When a node receives a new seed 
announcement, if its hop count is lower than the 
stored hop count for that seed, the recipient updates 
its hop count to the new value and retransmits the 
announcement with an incremented hop count 
value. The Amorphous localization algorithm 
(Nagpal, et al. 2003) uses a similar approach. The 
coordinates of seeds are flooded throughout the 
network so each node can maintain a hop-count 
to that seed. Nodes calculate their position based 
on the received seed locations and corresponding 
hop count (Hu and Evans, 2004). Similar to this 
work Tilak, et al. (2005) presents two protocols 
to solve the localization problem in the mobile 
sensor networks. These two protocols decide 
when to invoke the localization technique. The 
first protocol is the Adaptive protocol and the 
second is the Predictive protocol.

METHODOLOGY

DVM improves the performance of SFR 
in the mobility pattern changes environments. 
DVM uses velocity as the parameter to compute 
the localization frequency. MADRD predicts 
the mobility pattern. Our approach combines 
the advantages of both DVM and MADRD. 
It uses both the speed and mobility pattern 
of the sensors as parameters to determine the 
localization frequency. Hence, the proposed 
protocol is a hybrid protocol that combines both 
DVM and MADRD. The proposed approach is 
adaptive since it uses either of these protocols 
adaptively based on the current sensor’s state. 
The sensor’s state is specified by the combination 
of sensor’s speed and sensor’s mobility pattern. 
The proposed approach is also dynamic, 
since it computes the localization frequency 
dynamically over time. We call the proposed 
approach Hybrid Localization Protocol (HLP).
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Each sensor in the HLP has four states. The 
sensor’s state is defined by the combination of 
both the sensor’s speed and its mobility pattern 
(whether the sensor moves predictably or not). 
Table (1) presents these four sensor states and the 
corresponding localization time period for each 
state.  The localization time period of a state is 
the time between two localizations. In state 1 the 
sensor’s speed is high and the sensor moves in an 
unpredictable manner;  the localization time period 
is short because both high speed and mobility 
unpredictability require short localization time 
period to maintain acceptable accuracy.  In state 2 
the sensor’s speed is low and the sensor moves in an 
unpredictable manner; the localization time period 
is medium because low sensor speed requires 
long localization period and sensor’s mobility 
unpredictability requires short localization time 
period to maintain acceptable accuracy.  In state 3 
the sensor’s speed is high and the sensor moves in a 
predictable manner; the localization time period is 
medium because high sensor speed requires short 
localization time period and sensor’s mobility 
predictability requires long localization time period 
to maintain acceptable accuracy. Finally, in state 
4 the sensor’s speed is low and the sensor moves 
in an unpredictable manner; the localization time 
period is medium because both low sensor speed 
and sensor’s mobility unpredictability require short 
localization time period to maintain acceptable 
accuracy. These localization time periods depend 
on the application requirements and their values 
for the short, medium, and long localization time 
periods, are set by the user or programmer.

At each localization point, HLP measures 
the sensor’s speed and the mobility pattern and 
then decides the next state and the localization 
time period accordingly. Figure (3) shows the 
state diagram of the protocol. HLP transition from 
one state to another depends on two inputs; the 

first input is the sensor’s speed which takes two 
values (H for high speed and L for low speed). 
The second input is the sensor’s motion pattern 
(MP) which takes two values (P for predictable 
motion and U for unpredictable motion). The 
output of each state is the localization time 
period which takes three values (L for long, M 
for medium, and S for short). Figure (4) lists the 
pseudo code of HLP. HLP starts by initializing 
the localization time periods of the four states 
of the sensors. HLP also sets the threshold error 
and the threshold speed. These threshold values 
are application dependent. Usually the threshold 
error is high in applications that can afford error 
such as ZebraNet project (Juang, et al. 2002). 

On the other hand, the threshold error is 
low in applications that are very sensitive to error 
such as target detection applications. For the 
threshold speed, it is low when the application 
is related to low mobility nodes or semi-static 
nodes like environmental monitoring. On the 
other hand, the threshold speed is high when 
the nodes in the application move in high speed 
such as battlefield surveillance. The threshold 
error is used to control the desired accuracy 
of the protocol and the predictability of the 
sensor’s motion. The threshold speed is used to 
control the localization time period. HLP is then 
reset to the initial default state which is state 1. 
State 1 is selected as the initial state where the 
localization time period is the shortest. We chose 
state 1 as the initial state because at first we do 
not know the mobility pattern which means that 
it is unpredictable. Since we do not know the 
speed of the sensor, state 1 represents the safest 
choice of the initial state. This is because it is not 
inaccurate if the node is actually moving in low 
speed at first and we assume it is moving in high 
speed since the protocol will detect the low speed 
soon and move to another state. If we assume 
the opposite, i.e., that the node is moving in low 
speed while it is actually is moving in high speed 
then, at first, there will be low accuracy in the 
prediction because the localization time period 
will be medium or long based on the sensor’s 
motion predictability pattern. 

The initial choice of the states does not 
have a significant effect on the performance of 
the protocol. However; state 1 is the safest choice. 

State # Sensor’s 
speed

Sensor’s mobility 
pattern

Localization Time 
Period

1 High (H) Unpredictable (U) Short (S)
2 Low  (L) Unpredictable (U) Medium (M)
3 High (H) Predictable (P) Medium (M)
4 Low (L) Predictable (P) Long (L)

Table 1. The states of HLP.
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After the HLP chooses the initial state, it executes 
an infinite loop. At the beginning of this loop, HLP 
assesses the current state (sensor’s speed, sensor’s 
mobility pattern) which will determine the optimal 
localization time period and the next state. This 
optimal localization time period is an essential 
advantage of HLP over other protocols.  Based on 
the current sensor’s state (sensor’s speed, sensor’s 
mobility pattern), HLP determines the appropriate 
localization protocol (adaptive or predictive) to 
be used.  Hence, HLP exploits the advantages of 
both adaptive and predictive protocols. Fig. 3. The state diagram of the HLP.

Fig. 4. The pseudo code of HLP.

Algorithm HLP (   )

begin

//set state time periods

set state1_T, state2_T, state3_T, state4_T;

set threshold_speed,  threshold_error;

mobility_pattern = Unpredicted; 

speed_status = High;

current_state = state1;

state_T = state1_T;

while (1) {

   Localization_Protocol(current_state);

   wait(state_T);

   Speed = (new_location –    

                  old_location)/State_T;

   if (current_speed > threshold_speed)

      speed_status = High;

   else

      speed_status = Low;

   error = actual_location – calculated_location;

   if (error > threshold_error)

      mobility_pattern = Unpredicted;

   else

      mobility_pattern = Predicted;

   switch(speed_status, mobility_pattern){

      case (High,Unpredicted):

 Current_state = state1; 

               state_T = state1_T;break;

      case (Low,Unpredicted):

 Current_state = state2; 

               state_T = state2_T break;

      case (High,Predicted):

 Current_state = state3; 

               state_T = state3_T break;

      case (Low,Predicted):

 Current_state = state4; 

               state_T = state4_T break;

   } // end switch

} // end while

end algorithm

Localization_Protocol(STATE S){

switch (S){

   case state1: call DVM(state1_T); break;

   case state2: call DVM(state2_T); break;

   case state3: call MADRD(state3_T); break;

   case state4: call MADRD(state4_T); break;

 } // end switch

} // end procedure
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EXPERIMENTAL RESULTS

In this section we validate the proposed 
protocol by conducting simulation experiments. 
The experiments compare the performance 
of the proposed protocol with some existing 
localization protocols from the literature. SFR 
protocol (static localization protocol), DVM 
protocol (adaptive localization protocol) and 
MADRD protocol (predictive localization 
protocol) are used for performance comparison. 
We developed a Java-based simulation model 
to simulate HLP protocol and to compare 
its performance with these protocols. The 
simulation environment uses a simulation area 
of 300 by 300 meters and sensor transmission 
range of 100 meters using IEEE 802.11. The 
environment uses 36 equally spaced beacon 
nodes for localization and 24 mobile nodes 
that carry out the localization. Each simulation 
experiment was run for 900 seconds. We use 
a query-based localization mechanism: a node 
that is interested in localization broadcasts a 
request – beacons that receive the request reply 
with their location which can then be used to 
triangulate the nodes own location. The beacons 
are placed such that at least three beacons are 
able to answer each query. Energy is measured 
in terms of number of localization operations, 
regardless of the number of primitive operations 
in the localization process itself. 

The sensor’s mobility model used in the 
simulation is the random waypoint model, widely 
used in the mobile ad hoc network community. 
In this model, a node picks a random location in 
the simulated area and starts moving to it with 
a controllable average velocity. When the node 
reaches the destination, it pauses for some fixed 
pause time. The model is predictable while the 
node is moving, or for the duration of the pause 
period but not when the sensor pauses or when 
it starts moving. Furthermore, if the pause time 
is zero, the model is unpredictable when the 
node reaches its destination, then picks another 
location randomly and starts moving towards it. 
We can control how predictable the model is by 
manipulating the average speed and the pause 
time – if the pause times are short, then the 
sensor has more unpredictable behavior. 

The first experiment compares the 
performance of DVM and HLP in the case of a 
sensor moving in high constant speed of 20 m/sec. 
Figure (5) shows the results. Figure (5a) shows the 
performance of DVM. DVM localizes with high 
frequency (every 2 sec) since the sensor’s speed 
is high to minimize the localization error. This 
leads to high energy consumption. In addition, 
since DVM does not consider the prediction, the 
error increases linearly until the next localization 
point. Figure (5b) shows the performance of HLP. 
Since HLP considers the mobility predictability, 
the localization period increases (localization 
frequency decreases) as time elapses since HLP 
will detect the constant high speed mobility. 
HLP localizes less often as long as the sensor 
motion is predicted. This leads to lower energy 
consumption. In addition, HLP reduces the 
localization error. This is because HLP lets the 
sensor update its location, continuously and does 
not wait until the next localization point to update 
its location as in DVM protocol.

The second experiment compares the 
performance of MADRD and HLP protocols 
in the case of a sensor moving in low constant 
unpredictable speed of 2 m/sec. Figure (6) shows 
the results. Figure (6a) shows the performance of 

Fig. 5. Localization of a node in high constant 
motion.
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MADRD. Since MADRD does not consider the 
sensor’s speed, it decreases the localization time 
period because the sensor moves unpredictably 
(low confidence state). However, since the sensor 
moves in low speed, high localization frequency 
is not needed. This makes MADRD protocol 
inefficient in the case of low speed. Although 
MADRD has high accuracy in this case, it 
consumes a lot of energy. Figure (6b) shows the 
performance of HLP. HLP improves performance 
of MADRD by considering the speed of the 
sensor. When HLP predicts the motion of the 
sensor correctly it increases the localization time 
period. On the other hand, when the sensor moves 
unpredictably, HLP decreases the localization 
time period to capture the motion pattern of the 
sensor. HLP avoids high localization overhead 
by detecting the low speed motion. HLP can still 
improve accuracy since the sensor moves with 
low speed. As Figure (6) shows, localization error 
of MADRD is worse than that of HLP.

The third experiment compares the effect 
of varying the pause time on energy consumption 
(measured by the localization frequency) for SFR, 
DVM, MADRD and HLP. The sensor’s speed is 
fixed at 1 m/sec. Figure (7) plots the number of 
localization operations as a function of the pause 
time. The localization operations are normalized 

to SFR. The number of localization operations 
correlates directly with localization energy since 
the average cost of localization is constant for 
most localization schemes. In this case of low 
mobility, the localization frequency of SFR is the 
highest while that of HLP is the lowest. Hence, 
HLP has the lowest energy consumption among 
all the evaluated protocols. For a given protocol 
there is almost no change in localization frequency 
as the pause time changes. This is logical for low 
speed motion. The reason for high localization 
frequency of SFR is that SFR does localization at 
fixed periods regardless to the speed of the node. 
DVM detects the low speed mobility of the node 
and localizes less frequently. MADRD protocol 
however localizes even less frequently than DVM. 
This is because MADRD protocol predicts the 
mobility pattern of the node. Therefore, there is 
no need for making a lot of localization since the 
node moves in a predictable pattern. HLP has the 
least localization frequency because it detects the 
low speed and predictable pattern of the sensor 
and sets the localization period accordingly.

The fourth experiment compares the effect of 
varying sensor’s speed on the energy consumption 
for SFR, DVM, MADRD and HLP. The pause 
time is fixed at 90 seconds. Figure (8) plots the 
localization frequency of the protocols as a function 
of sensor’s speed. Similar to Figure (7), the 
localization operations are normalized to SFR. As 
the figure shows, SFR has the highest localization 
frequency. This is expected since SFR localizes 
at a fixed frequency regardless of the speed. 
When the speed is low, SFR has more overhead 
localization. DVM is more efficient than SFR since 
it adapts with change in the speed. Because the 

Fig. 6. Localization for a node in 
unpredictable motion and low speed.

Fig. 7. Localization frequency at 1 m/sec speed.
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pause time is quite long, DVM is better than SFR. 
MADRD consumes less energy than DVM and 
HLP has the least energy consumption as expected.

The fifth experiment compares the effect of 
varying the pause time on the accuracy of SFR, 
DVM, MADRD and HLP. The speed is fixed at 
5 m/sec. Figure (9) plots the mean absolute error 
(MAE) of the protocols as a function of pause time. 
The MAE is a quantity used to measure how close 
the calculated values are to the actual measurement 
values. The MAE is given by

Where: 
fi  is the predicted (simulated or calculated)  value 

of the node location; 
yi is the true (measured) value of the node location;
ei = fi − yi, is the absolute error; and 
n  is the number of nodes.

As Figure (9) shows, HLP achieves the 
highest accuracy compared to its SFR, DVM 
and MADRD counterparts. This is expected 
since HLP calculates the localization frequency 
adaptively based on both sensor’s speed and 
mobility predictability.

The sixth and final experiment compares 
the effect of varying the sensor’s speed on the 
accuracy of SFR, DVM, MADRD and HLP. The 
pause time is fixed at 90 seconds. Figure (10) 
plots the mean absolute error of the protocols as 
a function of sensor’s speed. As the figure shows, 
HLP achieves the highest accuracy compared to 
its SFR, DVM and MADRD counterparts. This 
is expected since HLP calculates the localization 
frequency adaptively based on both sensor’s speed 
and mobility predictability.

CONCLUSION

In this research we propose an efficient 
Hybrid Localization Protocol (HLP) for mobile 
sensor networks that dynamically invokes 
adaptive and predictive protocols based on 
some heuristics. HLP determines the optimal 
time period of the localization process based 
on the sensor’s speed and mobility pattern 
predictability.  Optimal time period of localization 
reduces the energy consumption of localization 
while increasing the localization accuracy. We 
developed a Java-based simulation model to 
simulate the proposed protocol and to compare its 
performance with static, adaptive and predictive 
protocols. We compared the performance of HLP 
with that of SFR, DVM and MADRD in regards 
to localization error and energy efficiency. 
Experimental Simulation results and analysis 
show that the proposed protocol is more efficient 
than the existing counterpart protocols.
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