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ABSTRACT. The relation between any bitopological space and its least upper bound
topology is studied. A new type of pairwise continuous functions between
bitopological spaces is presented as well. Then, we use the concept of pairwise
continuous functions to introduce the concept of pairwise fixed point property,
pairwise retraction functions and pairwise contraction functions between bitopolo-
gical spaces. We also obtain some generalizations of some well known results
concerning fixed point theory for a single topological space.

In 1963, Kelly introduced the notion of a bitopological space which is the triple (X,
11, T2), where X is a set and T, and 71, are two topologies on X. Later on, several
authors had studied this notion and other related concepts. In particular, Pervin
(1967) defined connectedness properties for bitopological spaces. Birsan (1969),
Reilly (1970), and Swart (1971) discussed various aspects of connectedness
properties. Kelly (1963) also defined pairwise Hausdorff, pairwise regular and
pairwise normal spaces, then he obtained some generalizations of several standard
results such as Urysohn’s Lemma and Tietze’s extension theorem.

We shall use p-, s- to denote pairwise, semi-, respectively, ¢ g. p-compact,
s-compact stand for pairwise compact and semi-compact respectively. If A is a
subset of the topological space (X, 1), then the relative topology on the set A
inherited by t will be denoted by t5. The product topology of t, and T, will be
denoted by T,x 1,. Let 11, T, T4, Ty, Tr denote the left ray, right ray, discrete, usual
and the cofinite topology on R, respectively.

1.1 Definition. When we say that a bitopological space (X, t;, 1) has a
particular topological property, without referring specially to t; or t,, we mean that
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both T, and 1, have the property, for instance, (X, 1, 1T5) is said to be Hausdorff if
both (X, 1;) and (X, 1) are Hausdorff.

1.2 Definition. A function f: X—X has a fixed point if there exists a point t €
X such that f(t) = t. The point t is called a fixed point of f. A topological space (X,

1) has the fixed point property (abbreviated by f.p.p.) if every continuous function
from X into itself has a fixed point.

1.3 Definition. Let f be a function from a metric space (X, d) into itself. We
say that f is a contraction function if there exists a real number o < A < 1 such that:

d (f(x), f(y)) < A d(x, y), for all x,y ¢ X.

In 1922 Banach proved that “any contraction mapping of a complete
non-empty metric space X into itself has a unique fixed point in X”. In this paper
we study this theorem in bimetric spaces and give some results.

1.4 Definition. A continuous function r from a space X onto a subspace A of
X is called a retraction function if the restriction function r|A is the identity
function on A. When such a retraction exists, A is called a retract of X.

The following are well-known results.

1.5 Pproposition. Every retract of a space with the f.p.p. has the f.p.p.
1.6 Proposition. 1f a space X has the f.p.p., then X must be connected.
1.7 Proposition. If a space X has the f.p.p, then X must be a T,-space.

In this paper we give a generalization of these propositions in bitopological
spaces. To proceed we give the following definitions.

1.8 Definition. Let (X, 11, T2) be any bitopological space. If there exist non
empty sets U,V et,U 1, such that U NV = ¢ and U U V = X then (X, 1, T2) is
called s-disconnected. A bitopological space (X, 1y, 1) is called s-connected if it is
not s-disconnected.

1.9 Definition. A bitopological space (X, Ty, 1) is called a p-T -space iff for
every pair of distinct points, there exists a T;- or at,-open set which contains one
point but not the other.

2. The Least Upper Bound Topology

In this section we shall investigate the relation between the least upper bound
topology and bitopological spaces. To proceed we need the following definition.
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2.1  Definition. Let T, and 1, be two topologies on X. Then t; U 1, forms a
subbase for some topology on X. This topology is called the least upper bound
topology on X, and is denoted by < 1, T, >.

The following result clarifies the relation between (X, 1)), (X, 12) and (X, <
Tiy To >)

2.2 Theorem. Let (X, T, T2) be a bitopological space and let A = {(x,X) :
xeX} be the diagonal subspace of (X X X, t; X 15). Then (X, < 1y, 1, >) is
homeomorphic to A.

Proof, Define f: (X, < 1), 1, >) > A by F(x) = (x,x). It is clear that f is a
bijection. Since f(U N V) = (U x V) N A istrue for all U € 1,, Vet,, therefore it is
easy to check that f is continuous and open. Hence f is a homeomorphism.

Now, it is easy to observe the following corollary.

2.3 Corollary. If (X, 11, 1) satisfies the property P, then (X, < t), T, >)
satisfies P, where P is one of the following: a. regular, b. completely regular, c.
second countable, d. first countable, e. metrizable.

3. Fixed Point Theory in Bitopological Spaces
Let us start this section with the following definitions.

3.1 pefinition. Let f: (X, 11, 1) — (Y, 1), 12) be a function.
(i) If f is continuous as a function from (X, t,) into (Y, t') and f is continuous
as a function from (X, t,) into (Y, t5). Then f is called a continuous function.

(i) If for each U et', U 1., the inverse image of U,f™" (U) e1; U 15, then fis
called a p-continuous function.
3.2 Definition. Let (X, 1, T,) be a bitopological space.

(i) If every continuous function from (X, 1, 1) into itself has a fixed point,
then we say that X has the f.p.p.

(i) If every p-continuous function from (X, 14, 1) into itself has a fixed point,
then we say that X has the p-f.p.p.

3.3 Theorem. 1f (X, t, 1) has the p-f.p.p., then X has the f.p.p.
The proof of this theorem is easy because every continuous function is
p-continuous.

3.4 Lemma. If f is a p-continuous function from (X, t;, 1,) into (Y, 7, t5),
then f is continuous as a function from (X, < 1;, T, >) into (Y, < 1, 15 >).
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Proof: Let U be any subbasic opensetin (Y, <1',,15>),thenU ¢1, Ut and
sof ' (U)et, Ut Butt, U1, C <14, 1, >, therefore f is a continuous function
from (X, < 1, 1, >) into (Y, < 1), 15 >).

Now using this lemma we can easily prove the following theorem.

3.5 Theorem. If (X, 11, 15) is a bitopological space such that (X, < 1, 1, >)
has the f.p.p. Then (X, 1, t,) has the p-f.p.p.

The following example shows that the converse of the above theorem is in
general false.

3.6 Example. There exists a bitopological space (X, 11, 1,) for which (X, 14,
1,) has the p-f.p.p. and (X, < 1), 1, >) does not have the f.p.p.

Proof. Let X = {1,234}, 1, = {¢, X, {1,2}}, and 1, = {¢, X, {3}, {1,3},
{2,3,4}}.

Then < 71y, 1, > = {¢, X, {1,2}, {3}, {1,3}, {2,3,4}, {1}, {2}}. Since {1} is
closed and open in the topological space (X, < 1;, 1, >), therefore (X, < 1y, 1, >)
does not have the f.p.p. After doing some calculations, one can check that (X, 1,
1,) has indeed the p-f.p.p.

3.7 Theorem. If (X, T, 1,) has the p-f.p.p., then X is s-connected.

Proof. Suppose that (X, 1;, 1,) is s-disconnected. Then, there exist non-empty
sets U, Vet Utysuchthat UNV=¢andUUV =X.LetpeUandqgeV,
define f: X —» X by f(V) = p and f(U) = q. Then, fis a p-continuous function but
does not have any fixed point; a contradiction.

3.8 Theorem- If (X, 1), To) has the p-f.p.p., then X is a p-T, -space.

Proof. Suppose that X is not a p-T, -space, then there exist two distinct
elements in X, say p and q, such that there is no U € 1, U 1, which contains p or g
but not both; ; ¢, every U € 1, U 1, which contains p must contain q and yjce versa.
Define f: X — X by f(x) = p for all x # p and f(p) = q. Then, the inverse image of
any member of T, U 1, is ¢ or X, because every member of 1, U 1, must contain
both p and q or contains neither p nor q. Therefore, f is a p-continuous function but
does not have any fixed point; a contradiction.

It is important to observe that Theorem 3.8 can not be improved to pairwise
T,. Forif X = {1,2}, 1, =1, = {¢, X, {1} }, then (X, 1}, 1) has the p-f.p.p. but X
iIs not a p-T,-space.
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Now we shall introduce the definition of pairwise retraction function and
pairwise retract in any bitopological space, then we obtain some related results.

3.9 pefinition. Let (X, 1, 12) be a bitopological space and let A be any
subset of X.

(i) If there exists a function r:(X, 1), T2) = (A, T4, T2a) Which is p-continuous
and such that rfA=i. Then A is called a p-retract of X and r is called p-retraction.

(ii) If A is a retract of (X,t;) and a retract of (X,1;). Then A is called a retract
of X.

The following two examples show that there is no relation between
p-retraction and retraction.

3.10  Example. In the bitopological space (R, 14, Ty), theset A= (=1, 1)isa
p-retract but it is not a retract of (R, t,). Thus, it is not a retract of (R, tq4, T,).

311 Example. Let X = (0, *), 1y = %, &, = 1, and A = (0, 1].
Define r: X — A by r(x) = x for all xeA and r(x) = 1/x for all xg[1, ). Since

every element of A is an image of at most two elements, therefore r is continuous
as a function from (X, t;) onto (A, t;4). Therefore, A is a t,-retract of X.

Letr’': X— A be defined by r’ (x) = x for all xeA and r’ (x)=1 otherwise. Then,
r' is increasing. Consequently, r’ is continuous as a function from (X, t,) onto (A,
T,4). Hence A is a 1, -retract of X. Thus, A is a retract of (X, T, T).

To show that A is not a p-retract of (X, Ty, 12), suppose on the contrary that A
is a p-retract of (X, 1, T5). Then, there exists a p-continuous function h: X— A such
that h|A = is. If xeA, then (x, 1]et,a, thus h™'((x,1]) e1; U 1,. Therefore, h™!
((x,1]) e, because (0,x] is an infinite set and h™'((0,x]) is infinite. Hence, h is
continuous as a function from (X, 1) onto (A, T,4). Since 1,4 is the right ray
topology on A and h is continuous, therefore h is an increasing function. Hence, h
= 1’ is the only possible way. But, (0, 1) €14 and h™'(0,1) = (0,1) ¥ 1, U 1,.
Therefore, h is not p-continuous; a contradiction.

3.12  Theorem. If A is a p-retract of (X, 14, 1,), then A is a retract of (X, <
T, Tr >).

The proof of this Theorem is easy by using Lemma 3.4.

3.13  Corollary. Let (X, 1y, 1) be a p-Hausdorff space, and let A be a
p-retract of X. Then, A is a closed subset of (X, < 7, T, >).
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The following example shows that the converse of the above theorem is in
general false.

3.14  Example. There exists a bitopological space (X, 1, 1,) and aset A C X
for which A is a retract of (X, < 1y, T, >) but A is not a p-retract of (X, 1), 7).

Proof. Let X = {1,2,3,4}, 7, = {¢.X,{1,2}, {3.4}}, 12 = {$.X.{1,3}, {2.4}},
and A = {1,2,3}. Then, 1y o = {$,A, {1,2}, {3}}, 124 = {0,A,{1,3}, {2}},and <
Ty, T, > = 1q.x. [tisclear that A is a retract of (X, < 1, 1, >) because < 1y, T, > 18
the discrete topology on X. After doing simple calculations, one can check that A is
indeed not a p-retract of (X, 1y, Ty).

3.15 Theorem. If the bitopological space (X, 1, 1,) has the p-f.p.p., then
every p-retract of X has the p-f.p.p.

Proof. Let A be a p-retract of X and let r: X— A be a p-retraction function. Let
f: A—A be any p-continuous function, then (f o r): X—A is a p-continuous
function from X into itself. Thus, (f o r) has a fixed point in A because (f o r)(X) =
A, j e. there exists peA such that p = (f o r)(p) = f(p). Hence A has the p-f.p.p.

4. Pairwise Complete Bimetric Spaces and Pairwise Contraction Functions

In this section, we shall define the concept of pairwise complete bimetric
spaces and the concept of pairwise contraction functions, then we obtain some
related results and an analogue of Banach’s theorem in bitopological spaces.

4.1 pefinition, Let (X, d;, d,) be a bimetric space. Then, X is called
(i,j)-complete if every di-Cauchy sequence has a dj-limit point (i # j, i,j = 1,2).

If (X, dy, d2) is (1,2)-complete and (2,1)-complete then (X,d;,d,) is called
p-complete.

The following example shows that (X,d;,d,) can be (1,2)-complete but neither
d;-nor dp-complete.

4.2 Example. Let X = [-1,1], and let d; be defined as follows:

di(x,x) = 0 for all xeX, d,(x,y) = 1 forall y e X, y # x,xe[0,1] and d, (x,y) =
|x-y| for all x,ye [—1,0). Let d, be defined as follows:

do(x,x) = 0 for all xe[—1,1], d2(x,y) = |x-y| for all x,ye[—1,1) and dx(1,x) = 1
for all xe[—1,1).

Then, the sequence x, = (n-1)/n is a d,-Cauchy sequence but does not have
any d,-limit point, therefore (X,d,) is not complete. The sequence x, = —1/n is also
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a d,-Cauchy sequence but does not have any d;-limit point. Therefore (X,d,) is not
complete.

However if (x,); is any d,-Cauchy sequence then we have two cases to
consider:

Case I: The tail of (x,); is constant, then (x,); is convergent in (X,d,).

Case II: The tail of (x,)7 is not constant, then a tail of (x,) is contained in
[—1,0); but [-1,0) has the usual metric as d, and ([~1,0], d,) is the usual metric
space so it is complete, therefore (x,); has a d,-limit point. Hence (X.,d;,d,) is
(1,2)-complete.

4.3 Theorem. Every p-complete bimetric space is complete.

Proof: Let (x,)i" be a d;-Cauchy sequence. Then (x,) is a dj-convergent, 1#].
But every convergent sequence in a metric space is a Cauchy sequence, therefore
(xn) Is a dj-Cauchy sequence, so it has a d-limit point. Hence (X,d;) is complete;
i =12

4.4 Example. Let (R,d,) and (R,dy) denote the usual metric space and the
discrete metric space on R, respectively. Then, (R,d,) and (R, d,) are complete
metric spaces but the sequence (1/n);" is a d,-Cauchy but does not have any d4-limit
point. Therefore (R, d,,dy) is not p-complete.

4.5 Theorem. Let (X, d;,dy) be a (1,2)-complete bimetric space, and let
f:X—X be a d,-contraction and d,-continuous. Then, f has a unique fixed point.

Proof: Let xoeX. If f(xg) = xo, then we are done. So, let f(xy) # x, and then
define x; = f(x¢) and x,4; = f(x,). It is easily seen that (x,);" is a d,-Cauchy
sequence. Therefore, it has a d,-limit point p. Since (x,); = (f(x,)q, therefore the
sequence (f(x,);d,-converges to p. But f is dy-continuous, therefore lim f(x,) =
f(lim x,). Thus, p = f(p).

For uniqueness, suppose that there exist two distinct elements x,y such that
f(x) = x and f(y) =y, then di(x,y) = d,(f(x), f(y)) < A d(x,y), therefore d,(x,y) =
0. Hence x = y; a contradiction.

4.6  Definition. The function f: (X,d;,d,)—(X.d,,d,) is called p-contraction if
there exists Ae[0,1) such that

dl(f(x)! f(Y)) s A dZ(va)’ and
da(f(x), f(y)) =X di(x,y) for all x,yeX.
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4.7 Theorem. Let f be a p-contraction function from the bimetric space
(X,d;,d;) into itself. Then f is p-continuous.

Proof: Let xeX and € > 0 be any real number, and let B;(f(x),e) denote the
d;-open ball with center f(x) and radius €. We claim that

f(Bi(x,e)) C Bj(f(x),e); i # j,i,j = 1,2.

To prove our claim, let y eB(x,€). Then di(x,y) < e. Therefore, d;(f(x), f(y))
< Mdi(x,y) < ke < €. Hence, f is a p-continuous function.

Now, we are ready to give the following lemma which will be needed in the
proof of the next theorem.

4.8 [emma. Let (X,d,,d,) be a p-complete bimetric space. Then (X,d;+d,)
is a complete metric space.

Proof: Itis clear that (X, d,+d,) is a metric space. To prove that (X, d,+d,) is
complete. Let (x,); be any (d,+d,)-Cauchy sequence. Then (x,) is a d,- and
d,-Cauchy sequence because d,(x,y) = (d;+d,) (x,y) for all x,y €X. Therefore
(xn)1 has a d;-limit point, say p, also (x,); has a d,-limit point, say q. We claim that
p = q. To prove our claim, consider the sequence (t,); where ty,_; = x, and t,, =
p; (t,)7 1s a d;-Cauchy sequence, so it has a d,-limit point say z. Now (x,) is a
subseqléence of (t,), so X, —%, 7. Thus,z= q. Also (p) is a subsequence of (t,),

1+d;

so p —— z. Thus, p = g. It follows that x, ——P = q.

The following example shows that (X,d, + d;,) need not be complete even if
(X,d;) and (X,d,) are complete.

4.9 Example. Let X = [0,1] U {2}, and let d, be defined as follows:

d,(x,x) = 0 for all xeX, d,(x,y) = |x-y| for all x,ye [0,1] and d,(x,2) = 1 for all
xg[0,1]; and let d, be defined as follows:

dy(x,x) = 0 for all xeX, dy(x,y) = |x-y| for all x,ye [0,1), d5(1,x) = 1 for all
xe{1}; and d, (2,x) = 1-x for all xg[0,1). Then, (X,d,) and (X,d,) are complete
metric spaces. But, the sequence (n/(n+1))7" is d;-and d,-Cauchy, so it is
(d,+d,)-Cauchy, but does not have any (d,+d,)- limit point.

4.10 Theorem. Let (X.d;,d>) be a p-complete bimetric space. Then, every
p-contraction function from X into itself has a unique fixed point.

Proof: Letd = d,+d; (j.e. d(a,b) = d, (a,b) + dy(a,b)), then, d is a metric on
X, and d(f(x), f(y)) = di(f(x), f(y)) + dx(f(x), f(y)) = Ad; (x,y) + Ada(x,y) =
(dq(x,y) + d; (x,y)) = Ad(x,y). This shows that f is a d-contraction function. Since
(X,d,,d,) is p-complete, therefore; by Lemma 4.8; (X,d,+d,) is complete. Hence;
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by Banach’s Theorem f has a unique fixed point.

411 Theorem. Let Ay, A, > 0 be such that (A A;) < 1, and let f be a function
from (X,d,,d;) into itself such that

d,(f(x), f(y)) < A, da(x,y) for all x,yeX and
dy(f(x), f(y)) <%y di(x,y) for all x,yeX.

Then, f has a unique fixed point provided that (X, d;) or (X, d,) is a complete
metric space.

Proof: Without loss of generality we may assume that (X, d,) is a complete
metric space. Let f* denote the composition function (fof), and let x,ye X be any
two elements, then

di(f(x), £(y)) < Mdy(f(x), f(y)) <M Ay dilxy).

This shows that f* is a d,-contraction. Therefore there exists a unique element
x € X such that f2(x) = x. To show that f(x) = x, we have (d,(x,f(x))) (d,(x,f(x))) =
(di(f2(x), f(x))) (do(£(x), £(x))) = (Mi(da(f(x), X))) (ha(di(£(x), X)) = Ma(d (F(x),
(x))) (da(f(x), (x))). This shows that (d,(f(x),x)). (d2(f(x),x)) = 0 which implies that
d,(f(x),x) = 0 or dy(f(x), x) = 0. In either case we have x = f(x). Hence, f has a
fixed point. To prove the uniqueness of such x, suppose that x’ € X is a fixed point
of f. Then f(x') = f(f(x)")) = f(x') = x’. Hence x’ is a fixed point of f2,
Consequently x' = x.
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