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Fixed Point Theory in Bitopological Spaces 

Ali A. Fora and Mahmoud H. AI-Refa'ei 

Yarmouk University, Irbid, Jordan 

ABsTRACT. The relation between any bitopological space and its least upper bound 
topology is studied. A new type of pairwise continuous functions between 
bitopological spaces is presented as weU. Then, we use the concept of pairwise 
continuous functions to introduce the concept of pairwise fixed point property, 
pairwise retraction functions and pairwise contraction functions between bitopolo­
gical spaces. We also obtain some generalizations of some weU known results 
concerning fixed point theory for a single topological space. 

In 1963, Kelly introduced the notion of a bitopological space which is the triple (X, 
't" '(2), where X is a set and 't1 and 't2 are two topologies on X. Later on, several 
authors had studied this notion and other related concepts. In particular, Pervin 
(1967) defined connectedness properties for bitopological spaces. Birsan (1969), 
Reilly (1970), and Swart (1971) discussed various aspects of connectedness 
properties. Kelly (1963) also defined pairwise Hausdorff, pairwise regular and 
pairwise normal spaces, then he obtained some generalizations of several standard 
results such as Urysohn's Lemma and Tietze's extension theorem. 

We shall use po, s- to denote pairwise, semi-, respectively, e.g. p-compact, 
s-compact stand for pairwise compact and semi-compact respectively. If A is a 
subset of the topological space (X, 't), then the relative topology on the set A 
inherited by 't will be denoted by 'tAo The product topology of 't1 and 't2 will be 
denoted by 'tIX 't2' Let 'tL, 'tn 'td, 'tu , 'tf denote the left ray, right ray, discrete , usual 
and the cofinite topology on R, respectively. 

1.1 Definition . When we say that a bitopological space (X , 'tl> '(2) has a 
particular topological property, without referring specially to 't1 or 't2, we mean that 
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both "[ I and "[2 have the property, for instance, (X, "[" "(2) is said to be Hausdorff if 
both (X, "[I) and (X, "(2) are Hausdorff. 

1.2 Definition. A function f: X~X has a fixed point if there exists a point t E 

X such that f(t) = t. The point t is called a fixed point of f. A topological space (X, 
"[) has the fixed point properly (abbreviated by f.p.p .) if every continuous function 
from X into itself has a fixed point. 

1.3 De finition. Let f be a function from a metric space (X , d) into itself. We 
say that f is a contraction function if there exists a real number 0 ~ A< 1 such that : 

d (f(x), f(y)) ~ A d(x , y), for all x,y E X . 

In 1922 Banach proved that "any contraction mapping of a complete 
non-empty metric space X into itself has a unique fixed point in X". In this paper 
we study this theorem in bimetric spaces and give some results. 

1.4 Definition . A continuous function r from a space X onto a subspace A of 
X is called a retraction function if the restriction function riA is the identity 
function on A. When such a retraction exists, A is called a retract of X. 

The following are well-known results . 

1.5 Proposition . Every retract of a space with the f.p.p . has the f.p .p . 

1.6 Proposition. If a space X has the f.p.p ., then X must be connected. 

1.7 Proposition. If a space X has the f.p .p, then X must be a To-space . 

In this paper we give a generalization of these propositions in bitopological 
spaces. To proceed we give the following definitions. 

1.8 Definition . Let (X , t" "(2) be a ny bitopological space. If there exist non 
empty sets U,V E"[,U "[2 such that U n V = <p and U U V = X then (X, "[I, "(2) is 
called s-disconnected. A bitopological space (X, "[I, "(2) is called s-connected if it is 
not s-disconnected. 

1.9 Definition . A bitopological space (X, tl , t 2) is called a p-To -space iff for 
every pair of distinct points , there exists a tl- or a"[z-open set which contains one 
point but not the other. 

2. The Least Upper Bound Topology 
In this section we sha ll investigate the relation between the least upper bound 

topology and bitopological spaces. To proceed we need the following definition. 
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2.1 Definition . Let tl and t 2 be two topologies on X. Then t l U t2 forms a 
subbase for some topology on X . This topology is called the least upper bound 
topology on X, and is denoted by < tl> t 2 >. 

The following result cl a rifies the relation between (X , t1) ' (X, t2) and (X , < 
tl, t 2 ». 

2 .2 Theorem. Let (X, tJ, t 2) be a bitopological space and let 6. = {(x,x) : 
x£X} be the diagonal subspace of (X x X , tl X t 2)' Then (X, < tJ, t2 » is 
homeomorphic to 6. . 

Proof. Define f: (X , < tl , t 2 » ~ 6. by F(x) = (x ,x). It is clear that f is a 
bijection. Since f(U n V) = (U x V) n 6. is true for all U £ tl , VEl2 , therefore it is 
easy to check that f is continuous and open. Hence f is a homeomorphism. 

Now, it is easy to observe the following corollary . 

2.3 Corollary. If (X , t" t 2) satisfies the property P, then (X, < tl> t 2 » 
satisfies P , where P is one of the following: a. regular, b. completely regular, c. 
second countable , d. first countable , e . metrizable . 

3. Fixed Point Theory in Bitop%gica/ Spaces 

Let us start this section with the following definitions . 

3.1 Definition . Let f: (X, t1 , t 2) ~ (Y , t'J, t'2) be a function. 

(i) If f is continuous as a function from (X , t1) into (Y, t'l ) and f is continuous 
as a function from (X, t2) into (Y , t'2)' Then f is called a continuous function . 

(ii) If for each U n'1 U t2', the inverse image of U ,f- 1 (U) El1 U t 2, then f is 
called a p-continuous function . 

3.2 Definition. Let (X, t1 , t 2) be a bitopological space. 

(i) If every continuous function from (X , tl, t 2) into itself has a fixed point, 
then we say that X has the f.p.p . 

(ii) If every p-continuous function from (X , t], t2) into itself has a fixed point, 
then we say tha t X has the p-f. p. p. 

3.3 Theorem . If (X, tJ, t 2) has the p-f.p .p . , then X has the f.p .p. 

The proof of this theorem is easy because every continuous function is 
p-continuous. 

3.4 Lemma. If f is a p-continuous function from (X , tl, t2) into (Y, t'l, t'2), 

then f is continuous as a function from (X , < tl, t 2 » into (Y , < t'J, t'2 » . 
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Proof: Let U be any subbasic open set in (Y, < 1:'),1:'2» , then U E 1:') U 1:'2 and 
so f-)(U) E 1:) U 1:2 . But 1:) U 1:2 ~ < 1:1, 1:2 >, therefore f is a continuous function 
from (X, < 1:) , 1:2 » into (Y , <"'),",2 ». 

Now using this lemma we can easily prove the following theorem. 

3.5 Theorem . If (X, 1:), 1:2) is a bitopologica l space such that (X, < 1:), 1:2 » 

has the f.p.p. Then (X, 1:), 1:2) has the p-f.p.p. 

The following example shows that the converse of the above theorem is in 
general false. 

3.6 Example. There exists a bitopological space (X , 1:], 1:2) for which (X , 1:), 

1:2) has the p-f.p.p. and (X , < 1:), 1:2 » does not have the f.p .p. 

Proof. Let X = {l,2,3 ,4}, 1:) = {¢, X, {l,2}}, and 1:2 = {¢ , X, {3}, {l,3}, 
{2 ,3,4} }. 

Then < 1:) , 1:2> = {¢ , X, {1 ,2}, {3} , {1,3}, {2,3,4}, {l}, {2}}. Since {l} is 
closed and open in the topological space (X, < 1:), 1:2 » , therefore (X, < 1:), 1:2 » 

does not have the f.p.p. After doing some calculations, one can check that (X, 1:), 

1:2) has indeed the p-f.p .p . 

3.7 Theorem. If (X, T;, T2) has the p-f.p.p., then X is s-connected. 

Proof. Suppose that (X , 1:), 1:2) is s-disconnected. Then , there exist non-empty 
sets U , V E 1:) U 1:2 such that U n V = ¢ and U U V = X . Let p E U and q E V , 
define f: X -> X by feY) = p and feU) = q. Then, f is a p-continuous function but 
does not have any fixed point; a contradiction . 

3.8 Theorem . If (X, 1:), 1:2) has the p-f.p.p ., then X is a p-To -space. 

Proof. Suppose that X is not a p-To -space, then there exist two distinct 
elements in X, say p and q , such that there is no U E 1:) U 1:2 which contains p or q 
but not both ; i.e. every U E 1:) U 1:2 which contains p must contain q and vice versa . 
Define f : X -> X by f(x) = p for all x '* p and f(p) = q. Then, the inverse image of 
any member of 1:) U 1:2 is ¢ or X, because every member of 1:) U 1:2 must contain 
both p and q or contains neither p nor q . Therefore, f is a p-continuous function but 
does not have any fixed point; a contradiction. 

It is important to observe that Theorem 3. 8 can not be improved to pairwise 
T). For if X = {l,2}, 1:) = 1:2 = {¢ , X , {l} }, then (X , 1:), 1:2) has the p-f.p.p. but X 
is not a p-T)-space. 
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Now we shall introduce the definition of pairwise retraction function and 
pairwise retract in any bitopological space, then we obtain some related results. 

3.9 Definition. Let (X, tl, t2) be a bitopological space and let A be any 
subset of X. 

(i) If there exists a function r :(X, tJ, t2) ~ (A, tlA, t2A) which is p-continuous 
and such that rIA=iA. Then A is called a p-retract of X and r is called p-retraction. 

(ii) If A is a retract of (X,tl) and a retract of (X,t2)' Then A is called a retract 
of X . 

The following two examples show that there is no relation between 
p-retraction and retraction . 

3.10 Example. In the bitopological space (R, td, tu), the set A = (-1 , 1) is a 
p-retract but it is not a retract of (R, tu). Thus, it is not a retract of (R, td, tu)' 

3.11 Example. Let X = (0 , x), tl = tr, t 2 = tr and A = (0, 1]. 

Define r: X ~ A by rex) = x for all xEA and rex) = l/x for all xE[I, oc). Since 
every element of A is an image of at most two elements, therefore r is continuous 
as a function from (X, tl) onto (A, tIA) ' Therefore, A is a tl-retract of X . 

Let r' : X~A be defined by r' (x) = x for all XEA and r ' (x)=1 otherwise. Then, 
r' is increasing. Consequently, r' is continuous as a function from (X, t2) onto (A , 
t2A) ' Hence A is a t2 -retract of X. Thus , A is a retract of (X, t[, t2)' 

To show that A is not a p-retract of (X, tl, t2), suppose on the contrary that A 
is a p-retract of (X, tJ> t2)' Then, there exists a p-continuous function h: X~A such 
that hlA = iA. If xEA, then (x , I]Et2A' thus h - I((x,lj) Etl U t2' Therefore , h- l 

((x,I]) Et2 because (O,x] is an infinite set and h-I((O,xj) is infinite. Hence, h is 
continuous as a function from (X, t2) onto (A, t2A)' Since t2A is the right ray 
topology on A and h is continuous, therefore h is an increasing function . Hence, h 
= r' is the only possible way. But, (0, 1) EtlA and h-I(O,l) = (0,1) ~ tl U t2 ' 
Therefore , h is not p-continuous; a contradiction. 

3.12 Theorem . If A is a p-retract of (X, t l , t2), then A is a retract of (X, < 
tJ, t2 ». 

The proof of this Theorem is easy by using Lemma 3.4. 

3.13 Corollary. Let (X, tJ, t2) be a p-Hausdorff space , and let A be a 
p-retract of X. Then, A is a closed subset of (X, < tl, t2 ». 
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The following example shows that the converse of the above theorem is in 
general false. 

3.14 Example_ There exists a bitopological space (X, 11,12) and a set A C X 
for which A is a retract of (X, < "1 , "2 » but A is not a p-retract of (X , "1 , 12). 

Proof. Let X = {1,2,3,4},11 = {<p,X,P,2}, {3,4}},12 = {<j> ,X,{l,3}, {2,4}}, 
and A = {1,2,3}. Then , 11 ,A = {<j>,A , {l,2}, {3}}, " 2.A = {<j>,A,{1,3}, {2}}, and < 
"1, "2 > = l d.X · It is clear that A is a retract of (X, < lj, 12 » because < "1, 12> is 
the discrete topology on X. After doing simple calculations, one can check that A is 
indeed not a p-retract of (X, "1 , 12)' 

3.15 Theorem . If the bitopological space (X, "1, 12) has the p-f.p .p. , then 
every p-retract of X has the p-f.p .p. 

Proof. Let A be a p-retract of X and let r : X~A be a p-retraction function. Let 
f: A~A be any p-continuous function, then (f 0 r) : X~A is a p-continuous 
function from X into itself. Thus, (f 0 r) has a fixed point in A because (f 0 r)(X) = 
A, i.e. there exists pEA such that p = (f 0 r)(p) = f(p). Hence A has the p-f.p .p. 

4. Pairwise Complete Bimetric Spaces and Pairwise Contraction Functions 

In this section, we shall define the concept of pairwise complete bimetric 
spaces and the concept of pairwise contraction functions , then we obtain some 
related results and an analogue of Banach 's theorem in bitopological spaces. 

4.1 Definition. Let (X, d 1, d2) be a bimetric space . Then , X is called 
(i,j)-complete if every d;-Cauchy sequence has a dj-limit point (i *" j, i,j = 1,2) . 

If (X, d1 , d2) is (1 ,2)-complete and (2,1)-complete then (X,d1 ,d2) is called 
p-complete. 

The following example shows that (X ,d l ,d2) can be (1 ,2)-complete but neither 
drnor d2-complete. 

4.2 Example. Let X = [-1,1]' and let d1 be defined as follows : 

d1(x,x) = °for all XEX, d,(x,y) = 1 for a l.1 y E X, Y *" x,x£[O,l] and d l (x,y) = 
Ix-yl for all X,YE [-1 ,0). Let d2 be defined as follows: 

d2 (x,x) = °for all xE[-I,I]' d2 (x ,y) = Ix-yl for a ll x,YE[-l,l) and dil ,x) = 1 
for all XE[ -1 ,1). 

Then, the sequence Xn = (n-1)/n is a drCauchy sequence but does not have 
any drlimit point , therefore (X,d2) is not complete. The sequence Xn = -lin is also 
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a d,-Cauchy sequence but does not have any d,-limit point. Therefore (X,d,) is not 
complete . 

However if (xn) ~ is any d,-Cauchy sequence then we have two cases to 

consider: 

Case I : The tail of (xn)~ is constant , then (xn) ~ is convergent in (X,d2 ). 

Case II: The tail of (xn)~ is not constant , then a tail of (xn) is contained in 
[-1,0); but [-1,0) has the usual metric as d, and ([ -1,0], d2) is the usual metric 
space so it is complete , therefore (xn) ~ has a drlimit point. Hence (X ,d, ,d 2) is 
(1 ,2)-complete. 

4.3 Theorem. Every p-complete bimetric space is complete. 

Proof: Let (xn)~ be a di-Cauchy sequence. Then (xn) is a dj-convergent , i:;i::j. 
But every convergent sequence in a metric space is a Cauchy sequence, therefore 
(xn) is a dj-Cauchy sequence, so it has a di-limit point. Hence (X,d j ) is complete; 
i = 1,2. 

4.4 Example. Let (R,d u ) and (R,dd) denote the usual metric space and the 
discrete metric space on R, respectively. Then, (R,d u ) and (R, dd) are complete 
metric spaces but the sequence (lin) ~ is a du-Cauchy but does not have any dd-Iimit 
point. Therefore (R, du,dd) is not p-complete . 

4.5 Theorem. Let (X, d J,d2) be a (1 ,2) -complete bimetric space, and let 
f:X~X be a dJ-contraction and drcontinuous . Then, f has a unique fixed pOint. 

Proof: Let XoEX . If f(xo) = xo, then we are done. So , let f(xo) :;i:: Xo and then 
define Xl = f(xo) and Xn+ J = f(xn) . It is easily seen that (xn)~ is a d,-Cauchy 
sequence. Therefore , it has a drlimit point p. Since (xn)~ = (f(xn)o, therefore the 
sequence (f(xn)tdrconverges to p. But f is d2-continuous, therefore lim f(xn) 
f(lim xn) . Thus, P = f(p) . 

For uniqueness , suppose that there exist two distinct elements x,y such that 
f(x) = x and fey) = y, then d1(x,y) = dJ(f(x), fey)) ~ A dJ(x,y), therefore dJ(x,y) = 
0. Hence x = y; a contradiction. 

4.6 Definition. The function f: (X ,d1,d2)~ (X,d i,d2 ) is called p-contraction if 
there exists AE[0,1) such that 

dJ(f(x), fey)) ~ A d2(x,y) , and 
d2(f(x), fey)) ~ A dJ(x,y) for all X,YEX . 
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4.7 Theorem . Let f be a p-contraction function from the bimetric space 
(X,d] ,d2) into itself. Then f is p-continuous, 

Proof: Let XEX and E > °be any real number , and let Bi(f(x) ,E) denote the 
dj-open ball with center f(x) and radius £. We claim that 

f(B;(x,E» ~ Bj(f(x),E); i =I=- j,i,j = 1,2. 

To prove our claim, let y EBi(X ,E). Then di(x ,y) < E, Therefore, dj(f(x), fey»~ 
~ Ad;(x,y) < AE < £. Hence, f is a p-continuous function. 

Now , we are ready to give the following lemma which will be needed in the 
proof of the next theorem. 

4.8 Lemma. Let (X,d],d2) be a p-complete bimetric space, Then (X,d] +d2) 
is a complete metric space. 

Proof: It is clear that (X , d] +d2) is a metric space. To prove that (X, d] +d2) is 
complete. Let (xn)~ be any (d] +d2)-Cauchy sequence, Then (xn) is a d]- and 
dr Cauchy sequence because d](x ,y) ~ (d] +d2) (x ,y) for all x,y EX . Therefore 
(xn) l' has a d]-limit point, say p, also (xn);''' has a drlimit point, say q , We claim that 
p = q. To prove our claim, consider the sequence (tn); where t2n-] = Xn and t2n = 
p; (tn)~ is a d]-Cauchy sequence, so it has a drlimit point say z . Now (xn) is a 
subsequence of (tn), so Xn ~ z. Thus, z = q . Also (p) is a subsequence of (tn),

d, d , +d, 
so p ~ z. Thus, P = q. It follows that Xn ~p = q. 

The following example shows that (X ,d] + d2) need not be complete even if 
(X,d]) and (X ,d2) are complete, 

4.9 Example . Let X = [0 ,1] U {2}, and let d] be defined as follows : 

d](x ,x) = °for all XEX, d](x,y) = Ix-yl for all x,yE [0 ,1] and d](x,2) = 1 for all 
xE[O,l]; and let d2 be defined as follows : 

d2(x,x) = °for all XEX, d2(x,y) = Ix-yl for all x,yE [0,1), di1,x) = 1 for all 
xE{I}; and d2 (2,x) = I-x for all x€[O,I). Then, (X ,d1) and (X,d2) are complete 
metric spaces . But, the sequence (n/(n+ 1))~ is d]-and drCauchy, so it is 
(d] +d2)-Cauchy, but does not have any (d] +d2)- limit point. 

4.10 Theorem. Let (X ,d ],d2) be a p-complete bimetric space . Then, every 
p-contraction function from X into itself has a unique fixed point. 

Proof: Let d = d]+d2 (i.e. d(a,b) = d] (a ,b) + d2(a,b)) , then, d is a metric on 
X, and d(f(x), fey»~ = d](f(x) , fey»~ + d2(f(x) , fey)) ~ Ad] (x ,y) + Ad2(x,y) = A 
(d](x,y) + d2 (x,y» = Ad(x,y) . This shows that f is a d-contraction function . Since 
(X,d h d2) is p-complete , therefore; by Lemma 4.8; (X ,d]+d2) is complete. Hence; 
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by Banach's Theorem f has a unique fixed point. 

4.11 Theorem . Let AI, A2 > 0 be such that (Al' A2) < 1, and let f be a function 
from (X,d J,d2) into itself such that 

dj(f(x) , fey)) :s;; AI d2(x,y) for all X,YEX and 

d2(f(x), fey)) :s;; A2 dj(x,y) for all X,YEX. 


Then, f has a unique fixed point provided that (X , d l ) or (X, d2) is a complete 
metric space . 

Proof: Without loss of generality we may assume that (X , d t) is a complete 
metric space. Let f2 denote the composition function (fof), and let x,yE X be any 
two elements, then 

d j(f2(X), fey)) :s;; Ajd2(f(x), fey)) :s;; At A2 dt(x,y). 

This shows that f2 is a dt-contraction. Therefore there exists a unique element 
x E X such that f2(X) = X. To show that f(x) = x, we have (dt(x,f(x))) (d2(x,f(x))) = 
(d j(f2(X), f(x))) (d2(f2(X), f(x))) :s;; (At(d2(f(x) , x))) (Aidt(f(x), x))) = AIA2(dt(f(x), 
(x))) (d2(f(x) , (x))). This shows that (dt(f(x) ,x)) . (d2(f(x),x)) = 0 which implies that 
dt(f(x),x) = 0 or d2(f(x) , x) = O. In either case we have x = f(x) . Hence, f has a 
fixed point. To prove the uniqueness of such x, suppose that x' E X is a fixed point 
of f. Then f(x') = f(f(x)')) = f(x') = x'. Hence x' is a fixed point of f2. 
Consequently x' = x. 
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