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Abstract: The steady Couette flow with heat transfer of a conducting fluid is studied, taking into 
consideration the Hall effect. The viscosity of the fluid is assumed to vary with temperature. The fluid is 
subjected to a constant pressure gradient and an external uniform magnetic field perpendicular to the plates, 
which are kept at different but constant temperatures. The effect of Hall's current on the velocity components, 
as well as on the temp«rature, is more p,ronounced for higher values of viscosity exponent. It was also found 

I 
that the Hall term has .a marked effecron the axial and transverse components of the skin friction and the 
Nusselt number at both walls of the channel. 
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Introduction 

The flow with heat transfer of a viscous 
incompressible electrically conducting fluid 
between two parallel plates, which has important 
applications in magnetohydrodynamic (MHD) 
power generators and pumps, accelerators, aerody
namic heating, electrostatic precipitation, polymer 
technology, and in the petroleum industry in the 
purification of crude oil and fluid droplet sprays, has 
attracted the attention of many authors (Cramer and 
Pai, 1973); (Tani, 1962); (Soundal-gekar, et ai. 
1979); (Attia, 1998). Most of these studies are 
based on constant physical properties. However, 
some physical properties vary with temperature 
(Herwig and Wicken, 1986), and assuming constant 
properties is a good approxima-tion as long as small 
differences in temperature are involved. However, 
more accurate . prediction for the . flow and heat 
transfer can be achieved by considering the 
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variatIOn of these physical properties with 
temperature. (Klemp, et al. 1990) studied the effect 
of temperature dependent viscosity on the entrance 
flow in a channel in the hydrodynamic case. The 
(MHD) fully developed flow and heat transfer of an 
electrically conducting fluid between two parallel 
plates with temperature dependent viscosity is 
studied (Attia and Kotb, 1996); (Attia, 1999) 
without taking into consideration the Hall effect. 
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In this pape~, the steady Couette flow of 
a viscous incompressible electrically conducting 
fluid with heat tra'l:1sfer between two electrically 
insulating plates is studied, considering the Hall 
effect. The upper plate is moving with a constant 
speed, and the lower plate is kept stationary, while 
the fluid is acted upon by a constant pressure 
gradient and an external uniform magnetic field is 
applied perpendicular to the plates. The magnetic 
Reynolds number is assumed to be ~mall so that the 
induced magnetic field is neglected (Cramer and 
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Pai, 1973); (Attia, 1998). The two plates are kept at 
two constant, but different temperatures, while the 
viscosity of the fluid is assumed to vary with 
temperature. Thus, the coupled set of the equations 
of motion and the energy equation including the 
viscous and Joule dissipation terms becomes non
linear and is solved numerically using the finite 
difference approximations to obtain the velocity and 
temperature distributions. 

Formulation of the Problem 

The fluid is assumed to be flowing between two 
infinite horizontal plates located at the (y=±h) 
planes. The upper plate moves with a uniform 
velocity, (U.), while the lower plate is stationary. 
The two plates are assumed to be electrically 
insulating and kept at two constant temperatures (Tl) 
for the lower plate and (T2) for the upper plate with 
T2>TI). A constant pressure gradient, (dP/dx) , is 
applied in the (x-direction). A uniform magnetic 
field, (Bo), is applied in the positive (y-direction) 
which is the only magnetic field in the problem as 
the induced magnetic field is neglected by assuming 
a very small magnetic Reynolds number (Cramer 
and Pai, 1973); (Attia, 1998). The Hall effect is 
taken into consideration, and consequently a (z
component) for the velocity is expected to arise. 
The viscosity of the fluid is assumed to vary 
exponentially with temperature and the viscous and 
louIe dissipations are taken into consideration. The 
flow of the fluid is governed by the Navier-Stokes 
equation which has the two components (Cramer 
and Pai, 1973); (Attia, 1998). 

EdP d2/1 dp dll C1B~ 3 
- - + p- + -----(II + f3I!W) = O. 

dx dy2 dy ely 1 + P; 
Eq. (1) 

Eq. (2) 

Where (J..!) is the viscosity of the fluid, (u=u(y)) 
is the electric conductivity of the fluid, (u=u(y)) is 
the velocity component of the fluid in the (x
direction), (w=w(y)) is the velocity component of 
the fluid in the (z-direction), and (f3e) is the Hall 
parameter (Cramer and Pai, 1973). The no-slip 
condition at the plates implies that the energy 
equation describing the temperature distribution for 
the fluid is given by (Cramer and Pai, 1973); 
(White, 1991) 

Ed
2

J +,u[(du)2+(dw)2J+ uB; (Ll2+w2)=~ 
dy2 dy dy I+P; ~ 

Eq. (3) 

Where (T) is the temperature of the fluid and (k) 
is the thermal conductivity of the fluid. The last two 
terms in the left-hand side of Eq. (4) represent, 
respectively, the viscous and Joule dissipations. 
The temperature of the fluid must satisfy the 
boundary conditions, 

[y=-h: T=TI, y=h: T=T2,] Eq. (4) 

The viscosity of the fluid is assumed to vary with 
temperature and is defined as, (J..!=).lJ;(T)). By 
assuming the viscosity to vary exponentially with 
temperature, the function (f;(T)) takes the form, 

(f;(T)=exp(-al) (T-Tl)) (Klemp, et al. 1990) 
Where (al) is a constant which in some cases may 

be negative, i.e. the coefficient of viscosity increases 
with temperature (Attia and Kotb, 1996); (Attia, 
1999). 

The problem is simplified by writing the 
equations in the non-dimensional form. To achieve 
this, we define the following non-dimensional 
quantities (Table 1). 

Table (1): Definition of Non-dimentional 
quantities. 

Non-diamentional Definitions 
quantities 

.... 
fl(O) = exp( -a,(T1- T,)T) the viscosity exponent. 

= exp(-aT),(a) 

fzCO) = 1+b,(T1-T,)9=T), The thennal conductivity 

= 1+b9,(b) ~arameter. 

R = P U.,hIIJo, The Reynolds number. 

Hal = O'B.lhl/~a The Hartmann number. 

Pr =J.I<,c"Ik. The Prandtl number. 

Ec = U.'/c,.(T,·T,) The Eckert number. 

t'L = (du Idy)y =-,IR The axial skin friction 
coefficient at the lower plate. 

k = (dw Idy)y =-,IR The transverse skin friction 
coefficient at the lower plate. 

't<u = (du Idy)y =-,IR The axial skin friction 
. coefficient at the upper plate. 

't<u = (dw Idj)y =-,IR The transverse skin friction 
. coefficient at the upper plate. 

NUL = (d9/dy)y =) y,/=, The Nusselt number at the lower 
plate. 

Nuu = (d9/dy)y =) y/=, The Nusselt number at the upper 
plate. 

Where (p) and (cp) are, respectively, the density 
and the specific heat at a constant pressure of the 
fluid. In terms of the above non-dimensional 
quantities Eqs. (1) to (4) read (the hats are dropped 
for convenience). 

~( "" .) _(x.y, z) p_ p (' " ") _(U,V.1V) B- T-TI G- dIl 
L ,y,Z ---h-' -pu;·u,v,w-u;-. -T

2
-T

1
' --~ 

Eq. (5) 
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Eq. (6) 

~ ? j d-lI' dfl (8) dw Ha -
Jj (8)- + --- - --(w- /Jell) = 0 Eq. (7) 

_ dy 2 dy dy I + /J i 
[y=-l : U=w=O, y= 1: u= 1, w=O] Eq. (8) 

r1:=-1 8-0. y= I : 8= TI Eq. (9) 

Equations (5), (6), and (8) represent a system of 
coupled non-linear partial differential equations 
which can be solved numerically under the initial 
and boundary conditions (7) and (9) using the finite 
difference approximations . The Crank-Nicolson 
implicit method is used (Ames, 1977). Finite 
difference equations relating the variables are 
obtained by writing the equations at the mid point of 
the computational cell and then replacing the 
different terms by their second order central 
difference approximations in the (y-direction). The 
diffusion terms are replaced by the average of the 
central differences at two successive time levels. 
The non-linear terms are first linearized and then an 
iterative scheme is used at every time step to solve 
the linearized system of difference equations. All 
calculations have been carried out for 

(G=5),(R=1), (Pr=1), and (Ec=0.2). 

Results and Discussion 

(Figures (1) and (2» present the profile of the 
velocity components (u) and (w), respectively, for 
various values of the parameter (~e) and (a) and for 
Ha=1. (Figure 1) shows that increasing (~e) 
increases (u) for all values of (a). 
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of (u) for various values of (a) 
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Fig. (2) (1) (a) and (b) Effect of (~e) on the 
profile of (w) for various values of (a) 

(a) ~e=1; (b) ~e=5 

This is because the effective conductivity 
decreases with increasing (~e) which reduces the 
magnetic damping force on (u). In Fig. (2), for small 
values (~e), of the velocity component, (w), 
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increases with increasing (Pe), since (w) is a result of 
the Hall effect. For large values of (Pt), increasing 
(Pt) decreases (w) since it decreases the source term 
for (w (Peu/(1+pe2». 

(Figures (1) and (2» show that increasing the 
viscosity exponent (a) increases both (u) and (w) as 
a result of decreasing the viscosity. It is also seen in 
Fig. (2) the influence of the viscosity exponent (a) 
on the symmetry of the profiles of (w) about the 
plane (y=O). It is clear from Figs. (1) and (2) that 
the effect of (Pe) on (u) or (w) is more pronounced 
for higher values of (a). 

Figure (3) (a), (b) & (c) presents the profile of the 
temperature (T) for various values of the parameters 
(Pt) and (a) and for (Ha=l). It is of interest to find 
that the influence of (Pe) on (T) depends on (y). 
Near the center of the channel (y=O), increasing (Pe) 
decreases (T), while away from the center of the 
channel, increasing (Pe) increases (T). This can be 
attributed to the fact that large values of (Pe) 
decreases (w) significantly near the center of the 
channel which, in turn, decreases the louie and 
viscous dissipations and then decreases (T) near the 
center. On the other hand, away from the center of 
the channel, the effect of large values of (P.) on 
increasing (u) is more important than decreasing 
(w), which increases the dissipations and then 
increases (T). It is clear from the figure that the 
effect of P. on (T) is more pronounced for higher 
values of (a). It is difficult to predict the effect of 
the parameter (a) on (T), because while increasing 
(a) increases the velocities and their gradients which 
increases the dissipation, it decreases the function 
(j,) which decreases the dissipation. In all cases, 
Fig.(3), indicates that increasing (a) increases (T). 
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Fig. (3) (a), (b) & (c) Effect of Pe on the profile 

of (T) for various values of (a). 
Table (2) presents the variation of the axial and 

the transverse skin friction coefficients and the 
Nusselt number, (Nu), at both walls of the channel 
with the Hall parameter (Pe) and the viscosity 
exponent (a). The results are estimated for (Ha=l). 

It is clear from the table that increasing the Hall 
parameter (Pe) increases the magnitude of the axial 
skin friction coefficient and the (Nu), while 
decreases the magnitude of the transverse 
component of the skin friction. Increasing the 
viscosity exponent (a) decreases the magnitude of 
the axial skin friction coefficient at the lower plate 
while it increases its magnitude at the upper plate. 
On the other hand, increasing the viscosity exponent 
(a) increases the magnitude of the transverse skin 
friction coefficient and the (Nu) at both plates. 

Table (2) Variations of the steady state skin friction 
coefficients and the Nusselt number at both walls of 
the channel with (PJ for: (a) a=O, (b) a=0.5, and (c) 
a=O 5 .. 

~.=O ~.=1 ~e=5 

4.0836 4.5572 5.3942 
'tZL 0.0 0.6679 0.3688 

(a) NuL 1.9289 2.1244 2.4656 

-2.7737 -3.3927 -4.3806 

0.0 -0.8225 -0.4319 

-0.6694 -0.7513 -0.9062 

3.9307 4.4042 5.4362 

0.0 0.7927 0.4964 

(b) 2.1678 2.4636 3.0761 

-3.8778 -4.8302 -6.6939 

0.0+ -1.4145 -0.8481 

-1.0385 -1.2204 -1.5979 

4.0744 4.4989 5.1419 

0.0 0.5436 0.2734 

(c) 1.7349 1.8594 2.0468 

-1.9916 -2.3778 -2.9082 

0.0 -0.4774 -0.2283 

-0.3961 -0.4196 -0.4659 
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Conclusion 

The steady Couette flow of a conducting fluid 
under the influence of an applied uniform magnetic 
field has been studied with temperature dependent 
viscosity, considering the Hall effect. It is found 
that the effect of the Hall current on the velocity 
components (u) and (w) and the temperature (T) is 
more pronounced for higher values of the viscosity 
exponent (a) . 

It is also shown that increasing the Hall 
parameter increases the velocity component (u), 
however, its effect on the velocity component (w) 
depends on whether it is small or large. 

It is of interest to find that the effect of the Hall 
parameter on the temperature (T) depends on the 
coordinate (y). The Hall term or the viscosity 
exponent has a marked effect on the axial and 
transverse components of the skin friction and the 
(Nu) at both walls of the channel. 
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