
14

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

Hardware Performance Evaluation of SHA-3 Finalists - Blake, Keccak and Skein

National University of Sciences and Technology (NUST), Islamabad, Pakistan
K. Latif*, A. Aziz and A. Mahboob

A b s t r a c t

K e y w o r d s

Cryptographic hash functions are widely used in many information security applications like
digital signatures, Message Authentication Codes (MACs), and other forms of authentication.
In response to recent advances in cryptanalysis of commonly used hash algorithms, NIST
USA announced a publicly open competition for selection of new standard Secure Hash
Algorithm called SHA-3. One important aspect of this competition is evaluation of hardware
implementations of candidates. In this work we present efficient hardware implementations
and corresponding performance evaluations of three final round candidates of SHA-3: Blake,
Keccak and Skein. We implemented and investigated the performance of these candidates
on modern and latest FPGA devices from Xilinx. We show our results for most recently
released devices on which implementations have not been reported yet. This work serves as
performance investigation of leading SHA-3 finalists on most up-to-date FPGAs.

Introduction
A cryptographic hash function is a deterministic procedure

whose input is an arbitrary block of data and output is a fixed-
size bit string, which is known as the (Cryptographic) hash
value. Cryptographic hash functions are widely used in many
information security applications like digital signatures,
message authentication codes (MACs), and other forms of
authentication.

There is a long list of cryptographic hash functions but
with recent advances in cryptanalysis, many have been found
vulnerable and should not be used. A successful attack against
a weakened variant of an algorithm weakens the experts’
confidence, even though the hash function has never been
broken, that leads to its rejection.

In previous few years, cryptanalysis of several hash
algorithms has found serious vulnerabilities. In 2004, Wang
et al presented the collisions for MD4, MD5, HAVAL-128
and RIPEMD (Wang, et al., 2004). There was a breakthrough
in cryptanalysis of SHA-1 Hash Algorithm in August 2005.
Szydlo found that it is possible to find a collision in SHA-1 in
263 operations (Szydlo, 2004). Previously, it was thought that
280 operations are required to find a collision in SHA-1 for
a 160-bit block length. This attack is expected to find a hash
collision i.e. two messages with the same hash value in 263
operations. No attacks have yet been reported on the SHA-2
variants; however they are algorithmically similar to SHA-1.
Furthermore, Stevens reported a collision attack on MD5 in
2006 (Stevens, 2006).

To ensure the long-term robustness of applications that use
hash functions National Institute of Standards and Technology
(NIST) USA has announced a public competition in the

RECIEVED 27.12.2011
REVISED 26.03.2012
ACCEPTED 26.03.2012

Federal Register Notice published on November 2, 2007 (FR,
2007) to develop a new cryptographic Hash algorithm called
SHA-3. In response to NIST’s announcement 64 submissions
were reported, out of which 51 entries fulfilled the minimum
submission requirements and were selected as the First Round
Candidates. After review and analysis these candidates
were reduced to 14 in Round 2 of the competition. A whole
year was allocated for the public review, implementation
and analysis of these algorithms and the Second SHA-3
candidate conference was held on August 23-24, 2010 in
University of California, Santa Barbara. As a result of 2nd
SHA-3 conference, 5 out of 14 Round 2 candidates have been
selected and promoted to the Final Round on December 9,
2010. Five short listed candidates, advanced in final round are
BLAKE, Grøstl, JH, Keccak and Skein. The tentative time-
frame for the end of this competition and selection of finalist
for SHA-3 is in 4th quarter of 2012 (NIST, 2007).

This paper describes: efficient hardware implementations,
implementation results on latest FPGA technologies from
Xilinx and hardware performance evaluation of these
algorithms. The remainder of this paper is organized as
follows. Section 2 gives brief description of selected SHA-
3 finalists. In section 3 we present the efficient hardware
implementations of these algorithms. In section 4 we
give the results of our work and compare it with available
implementations in section 5. Section 6 presents performance
evaluation of selected SHA-3 finalists. Finally, we provide
some conclusions and directions for future work in Section 7.

Brief Description of Selected SHA-3
Finalists
1-BLAKE

Aumasson et al. designed and proposed the BLAKE
Hash family for SHA-3 (Aumasson, et al., 2007). BLAKE is

*Corresponding Author: K. Latif
E-mail: kashif@pnec.edu.pk

Authentication, SHA-3, Blake, Keccak, Skein,
Cryptographic Hash Functions, High Speed
Encryption Hardware, FPGA.

15

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

based on Bernstein’s stream cipher ChaCha and uses iteration
mode HAIFA. Figure 1 shows the construction of BLAKE’s
compression function. BLAKE-224 and BLAKE-256 operate
on 32-bit words while BLAKE-384 and BLAKE-512 operate
on 64-bit words. The inner state of the compression function
is represented as a 4×4 matrix of words. We briefly explain
here the functionality of BLAKE-256 compression function.

The compression function takes four input values: a
chaining hash value , a message block, a
salt , and a counter . Each word is
32-bit long. Additionally, compression function utilizes 32-
bit constants and permutation
(Aumasson, et al., 2007). The output of compression function
is a new chain value . We can write
compression function as

Initialization
 The initialization component of BLAKE consists of
initialization of 4x4 matrix state of 16 words ,
as shown below:

Round Function
 After initializing state v, compression function iterartes the
round fuction 14 times. A round function consists of simple
transformations over state v. Each round computes following
8 G functions:

Where ⨁ is the bit-wise XOR operation, is the right
rotate operator and ⨁ is a permutation, indexed by round
number and type of Gi function ().
Here we specified the alternate G functions as described in
(Aumasson, et al., 2007). For actual specifications please
refer to (Aumasson, et al., 2007). The first four G functions

Figure (1) The local wide-pipe construction of BLAKE’s
compression function

Where Gi () is defined as:

G0, G2, G4 and G6 can be computed in parallel, because
each of them updates a distinct column of the matrix. This
is referred to as a column step. Likewise, the last four G
functions G8, G10, G12 and G14 update distinct diagonals of
the matrix and thus can also be computed in parallel. This
is referred to as a diagonal step. At round , the permutation
used is , for example, in the last round and the
permutation is used.

Finalization

 After the 14 round sequence, new chain value
 is calculated from state with

combination of the initial chain value and the salt
, as follows:

Iterated hash

To calculate hash of message greater than 512-bits (16 32-
bit words), BLAKE-256 compression function will be used
iteratively as follows:

Here we split the message into 16-word blocks. The
is the salt value and denotes the number of message bits
in current message block excluding padding bits. is
initialized with initial value . The new chaining value

 becomes the input of next iteration and finally after
processing of blocks, final hash value is returned.

Keccak

Bertoni et al. designed and proposed the Keccak Hash
Function for SHA-3 (Bertoni, et al., 2007). Keccak is a
family of sponge functions with members Keccak [r, c]
characterized by two parameters, bitrate r and capacity c. The
sum r + c determine the width of the Keccak- f permutation
used in the sponge construction and is restricted to values
in {25, 50, 100, 200, 400, 800, 1600}. For SHA-3 proposal
Keccak team proposed the Keccak [1600] with different r and
c values for each desired length of hash output (Bertoni, et

16

al., 2007). For 256-bit hash output r = 1088 and c = 512. The
1600-bit state of Keccak [1600] consists of 5x5 matrix of 64-
bit words. Each compression step of Keccak consists of 24
rounds. Let us denote the state matrix with. Each round then
consists of following five steps:

Theta (θ):

Rho(ρ) and Pi (π):

Chi (χ):

Iota (i):

In above listed equations all operations within indices are
done modulo 5. denotes the complete permutation state
array and denotes a particular 64-bit word in that
state. , and are intermediate variables.
The symbol ⨁ denotes the bitwise XOR, the bitwise
complement and the bitwise AND operation. Finally,

 denotes the bitwise cyclic shift operation, mov-
ing the bit at position into position (modulo the lane size
i.e. 64). The constants and are cyclic shift offset
and round constant respectively, and are defined in (Bertoni,
et al., 2007).

Keccak hash function operation consists of three phases,
initialization, absorbing phase and squeezing phase. Initial-
ization is simply initializing the state matrix with all zeros.
In absorbing phase each -bit wide block of message is
XORed with current matrix state and 24 rounds of Keccak
permutation are performed. After absorbing all blocks of in-
put message in that fashion there comes the squeezing phase.
In squeezing phase simply the state matrix is truncated to
desired length of output hash. If more than -bit (bitrate)
hash value is required then more Keccak permutations are
performed and their results concatenated until hash width
reaches the desired length.

2.3 Skein
Ferguson et al designed and proposed the Skein family of

cryptographic hash functions for SHA-3 (Ferguson, et
al., 2007). Skein has three different internal state sizes:
256, 512, and 1024 bits. Each of these state sizes can
support any output size. Skein is built from these three
components:

•	 Threefish: Threefish is the tweakable block cipher at the
core of Skein, defined with a 256, 512 and 1024 bit block
sizes.

•	 Unique Block Iteration (UBI): UBI is a chaining mode
that uses Threefish to build a compression function that
maps an arbitrary sized input to a fixed sized output.

•	 Optional Argument System: This allows Skein to sup-
port a variety of optional features without imposing any
overhead on implementations and applications that do not
use these features.

Threefish

Skein’s compression function is based on Threefish,
which is a large tweakable block cipher (Ferguson, et al.,
2007). Tweakable block ciphers are ciphers that take
three inputs: a key, a tweak and a block of message,
instead of the usual block ciphers that take two inputs,
a key and a block of message. A unique tweak value
is used to encrypt every block of message. Different
tweaks create different permutations for each encryption
process. This technique eliminates the need for altering
keys if we want to have a different block cipher every
time.

The block and key sizes of Threefish are equal and can
be set to 256, 512 or 1024 bits, and they are designated as:
Threefish-256, Threefish-512, and Threefish-1024, respec-
tively. The tweak value is 128 bits for all block sizes. Threefish
structural design consists of round operations. Threefish-256
and Threefish-512 compression function is made of 72 con-
secutive round operations while the Threefish-1024 requires
80 rounds. Each round of the Threefish-256 block cipher is
made of two instances of a MIX function along with a permu-
tation module, while a round key is added to the data before
the first round and after each 4 consecutive rounds as shown
in Fig. 2. Subkeys or round keys consist of three contributions:
an input key word, tweak words, and a counter value. The key
schedule turns the key and tweak words into a sequence of
subkeys, each of which is equal to the size of the block. Tweak
depends upon number of factors including position and the bit
length of the message block. The mix operation consists of
addition modulo 264, XORs and left-rotates. These operations
are defined on the intermediate state organized in 64-bit words.
The MIX operation transforms two of these 64-bit words and
is common to all Threefish variants. MIX function has two
input words (and) and produces two output words (
and) using the following relations:

Where ⨁ is the bit-wise XOR operation and is
the left rotate operator and R (Rotation Distance) is a constant
value which depends on the Threefish block size, the round
index and the position of the two 64-bit words in the Threefish
block (Ferguson, et al., 2007). All Threefish rounds are similar
apart from rotation constant in mixing operation. These ro-
tation constants are defined in (Ferguson, et al., 2007). The
subsequent permutation operation reorders 64-bit words con-
structed from a Threefish block. This permutation is fixed for
a specific Threefish variant, defined in (Ferguson, et al., 2007).

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

17

Figure (2) First Four Round Operations of the Threefish-256 Cipher

64

Figure (3) Unique Block Iteration Construction

Unique Block Iteration (UBI) Construction:
The UBI construction is a variant of the Cascade or

(Merkle-Damgård) construction. It uses a tweakable
block cipher in Matyas-Meyer-Oseas mode to form
a compression function, and uses the bit offset of the
block being hashed as the tweak (Ferguson, et al.,
2007). An example of UBI mode is shown in Fig. 3.
The message M, shown in Fig. 3, comprises of three
message blocks M0, M1 and M2. UBI_IN is the first
Threefish encryption key which is used along with the
tweak value for the encryption of first message block.
The output of the Threefish block cipher is XORed
with message block itself and its output along with
new tweak value is used for the encryption of the next
block of message. It means that a new key is used for
the encryption of each block. As mentioned earlier, the
tweak values depend on the position and bit length of

3. Implementation
We have implemented the core functionality of 256-

bit variants of BLAKE, Keccak and Skein. Core
funtionality does not mean that we have implemented
compression function only. Our designs are fully
autonomus with complete I/O interfaces. We targeted
for efficient implementations but keeping in mind
the fair hardware performance comparison for these
candidates. We assure this approach by cattering for the
follwing constraints:

•	 Common Environment: It is concerned with the imple-
mentations, in terms of the level of expertise, language,
coding techniques, design methodoly, and development
tools. We assured it by keeping: common implementer for
all candidates, using Verilog as common language, com-
mon design methodology (discussed in next point) and
using Xilinx’s ISE 13.1 as the common development tool.

•	 Design Methodology: For fair comparison it is necessary
to utilize same set of harware recources for all candidates.
We assured it by forcing our designs to map on LUT based
logic and not to use dedicated hardware resources like
BRAMs, Multipliers and DSPSlices. Memories are also
implemented using distributed RAMs/ROMs because
they utilize the LUT resources and memory requiremet
of a candidate will be reflected in terms of utilized area.

•	 Common I/O Interface: Using common Input/Output in-
terface assures the identical flow of data for all candidates
in investigation. It also assures modular approach by re-
using the same module wherever possible.

•	 Overhead suppression: We do not implement the optional
parameters of the candidates like salt input, Hash Tree
functionality and HMAC etc. Furthermore, we assume
that input message blocks are already padded outside.

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

the respective message block. UBI is used in Skein not
only for compression and the output transformation,
but also for other optional operation modes (e.g. tree
hashing, keyed hashing).

18

Figure (4) Common Input/Output Interface

Figure (5) Datapath of BLAKE

3.2 Implementation of BLAKE
Implemented data path for BLAKE is shown in Fig. 5. All

nets represent data width of 512-bits. The V_Reg represents
the V matrix register, on which processing of BLAKE
algorithm takes place. The CV_Reg stores the intermediate
chaining hash values. Initialization module initializes the
V_Reg by taking IV (Initial Value) or chaining hash value as
input. Core functionality of BLAKE algorithm is represented
by G Function module. Four instantiations of G function
module are utilized to compute 4 G operations in parallel.
These instantiations are represented as G1, G2, G3 and G4.
Each G function instance computes a different G function
on alternate clock cycles. G1 instance computes G0 and G8,
G2 computes G2 and G10, G3 computes G4 and G12 and
similarly G4 computes G6 and G14 on alternate clock cycles.
G Function module is implemented using pure combinational
logic. Add and Xor operations are implemented using Verilog
operators ‘+’ and ‘^’ respectively. Circular shift operations
are performed through rewiring of the nets. Each round takes
2 clock cycles to complete, therefore 28 clock cycles are
required to complete 14 rounds of BLAKE algorithm. After

completion of 14 rounds, finalization module computes final
or next chaining hash value by taking contents of V_Reg and
CV_Reg as input.

3.3 Implementation of Keccak
Implemented data path for Keccak is shown in Fig. 6. The

A_Reg represents the A matrix register, on which processing
of Keccak algorithm takes place. Keccak data path is fully
parameterized, such that the design may be synthesized for
any value of r (bitrate) and c (capacity). For that reason, the
width of each net is highlighted as r, c or r + c in Fig. 6.
The length of A_Reg also varies according to r and c and
it is defined as r + c (bits). For Keccak-256, r is specified
as 1088-bits and c as 512-bits. Accordingly A_Reg will be
of 1600-bits. In beginning of every hash process A_Reg
is initialized with all zeros. First message block is directly
copied to A_Reg after concatenating it with c wide stream of
0’s. The concat. block in Fig. 6 represents the concatenation
operation. Compression function of Keccak consists of five
steps. In Fig. 6 each step is denoted by the symbol as specified
in Keccak specifications. These steps are and i. We
show here all steps just for clarity of algorithm representation.
In fact, we have combined these steps during implementation,
wherever possible. We have implemented and as a single
step. Similarly we have combined and i as a single step.
These five steps or a single round of Keccak algorithm are
accomplished in one clock cycle. Therefore 24 clock cycles
are required to complete 24 rounds of Keccak algorithm.
After completion of 24 rounds on a message block, resulting
state of A_Reg is XORed with next message block and same
round sequence is repeated again. This process continues till
the end of all message blocks. At the end, state of A_Reg is
truncated to the desired length of hash output.

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

3.1	 Common I/O Interface
Developed input/output interface is shown in Fig. 4. All

I/O transactions are synchronized. Each I/O is sampled at
the rising edge of clock cycle. The input cycle is initiated by
I/O interface by putting load signal to high. Hash Module
acknowledges the request if it is able to receive data by
putting ack signal to high. After receiving acknowledgment,
I/O interface make available 64-bit word of data at each rising
edge of clock cycle. During the transaction of data, ack signal
remains at logic high. After receiving desired amount of input
words Hash Module put the ack signal to low. Accordingly I/O
interface pulls the load signal to low if no more transactions
are required. If message blocks are still present, load signal
will remain high but Hash Module acknowledges it after one
clock cycle from the previous transaction. In the same way
when Hash Module is ready with a valid hash value it signals
the I/O interface by putting Hash_Valid signal to high. After
putting Hash_valid signal hash module outputs 64-bit words
on each rising edge of clock cycle until the desired hash
length is achieved. I/O interface is designed in a way that it
does not affect the ongoing processing of hash module. That
is, we can make I/O transactions at the same time while hash
of a message block is in progress.

19

Figure (6) Data path of Keccak

Figure (8) Details of Round_E and Round_O Modules

Figure (9) Hardware Architecture of Key Schedule Module

Figure (7) Data path of Skein-256

If S2 is at logic 1, the data path through module Round_E will
be selected otherwise data path through module Round_O is
selected. Each round consists of MIX and Permutation opera-
tions as described in Fig. 2. Round_E and Round_O modules
are same, except the values of left rotate constant R involved
in MIX operations. Internal designs of modules Round_E and
Round_O are shown in Fig. 8. The key scheduling can be

implemented in several ways. The simplest one is to store the
extended key and extended tweak in two shift registers and
clock and rotate the shift registers once for each subkey (Fer-
guson, et al., 2007).

Hardware architecture of key schedule module is shown in
Figure 9. A preprocessing circuit generates and provides ex-
tended key k4 and extended tweak t2 to key schedule mod-
ule. We had supposed that the two parameters k0,…,k4 and
t0,…,t2 are available at the start of the circuit operation and
are loaded into the circular shift registers k (320 bit) and t
(192 bit). Key Schedule module generates subkeys on ev-
ery falling edge of clock on the basis of initial key (k0, k1,
k2, k3) and tweak value (t0, t1). Add_Subkey, Round_O, and
Round_E modules give output on the rising edge of each
clock pulse. Next subkey is available on falling edge of the
same clock pulse. In this way one clock cycle is required to
complete four rounds, subkey addition and subkey genera-
tion. Therefore to complete 72 rounds and 19 subkey addition
of Skein-256, 19 clock cycles will be required. Final hash
value will be available after 19 clock cycles at the output of
the XOR gate, as shown in Fig. 7.

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

3.4	 Implementation of Skein
Implemented data path for Skein is shown in Fig. 7. Add_

Subkey module is a 256 bit adder having inputs from key
schedule module and Mux_1. Select input S1 of the Mux_1
will be at logic 0 only for the first clock cycle and pass the
original message block to Add_Subkey module to add it
with subkey0. After first clock S1 remains at high logic and
passes the result of the previous round to add it with the next
subkey. Output of Add_Subkey is used as input of Demux_1.
Demux_1 and Mux_2 have same select input S2.

20

5. Comparison with previous work
We have taken this opportunity to report SHA-3 candidates’

hardware implementation results, for very first time, on latest
Xilinx FPGAs. Before this no results have been reported on
Virtex 6 and Virtex 7. All reported work to date utilized Virtex
5 at most. In order to compare efficiency of our designs we
have processed and compiled results for Virtex 5. Table 5
summarizes and portrays the complete picture of all reported
works up till now.

Table 2. Results for SHA-3 Candidates (256-bit variants)

Table 3. Throughput Results for SHA-3 Candidates (256-bit
variants)

Table 4. Throughput per Area Results of SHA-3 Candidates
(256-bit variants)

4.1	 Througput
From these results we can calculate throughput of our designs.
The throughput of a given design can be calculated by:

Where is the block size of message in bits. is the total
time required to calculate hash value which is given by:

Where is the time period of the system clock and
is the number of clock cycles required for a valid hash output.
Table 3 shows these parameters for each candidate.

4.2 Througput Per Area
Throughput per area is a significant performance measure,
such that it combines the performance effect of both area and
speed in a single value. It measures the contribution of each
unit area to throughput and hence the efficiency of the imple-
mentation. In evaluation of hardware performance of SHA-3
candidates in second round, NIST has considered throughput-
to-area ratio as a major deciding factor (NIST, 2010).

4. Implementation Results
As mentioned earlier, for implementations and hardware

performance evaluation of SHA-3 candidates, we aimed to
target the latest and up-to-date FPGA technology from Xilinx.
The latest 7 series release from Xilinx was of main interest.
From this series we chose Virtex 7 for our implementations.
We also implemented our designs on Virtex 6, latest before
the release of 7 series in June 2010. We coded our designs
according to the optimized techniques specific to these devices
and mentioned in relevant XST documents of these devices.
Detailed device specifications are: Virtex 7 585T, speed grade
3, package FG1157 (7v585tffg1157-3) and Virtex 6 LX365T,
speed grade 3, package FF1156 (6vlx365tff1156-3). The
resulting clock frequency and area utilization after place and
route are reported. Table 2 shows achieved area consumption
(), clock frequency () and time delay ()
for implemented designs.

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

From the results given above, we can calculate throughput
per area of our designs. The throughput per area of a
given design can be calculated by:

Where is the throughput of the design. is the
occupied area of the design on the chip. In our case we have
chosen the number of slices as a unit of area consumption.
Table 4 shows throughput per area results.

21

* Figures are extrapolated or estimated from published results as explained in text

Table 5. All reported results to date (256-bit variants)

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

In case of BLAKE all previously reported results are
for 10 rounds of the algorithm. However, in final round
specifications, BLAKE-256 has been tweaked from 10 to 14
rounds. The results listed here have been calculated again for
14 rounds based on the reported clock frequencies and number
of cycles consumed for respective designs [6, 10-13]. Baldwin
et al (Baldwin, et al., 2010) reported their work only for the
Skein-512 variant. We estimate their results for Skein-256.

Our results for Virtex 6 and Virtex 7 are far ahead from all
previously reported work in terms of throughput per area. But
comparison on different devices is not justified due to various
technological differences between these devices. Virtex 5
results show that our designs for BLAKE and Keccak are top
performers in terms of throughput and placed third in case of
Skein. In terms of throughput per area ratio, all of our Virtex
5 designs are placed second with very marginal differences in
all cases.

22

7. Conclusion
In this work we have presented efficient hardware

implementations of SHA-3 finalists: BLAKE, Keccak
and Skein. We reported the implementation results of 256-
bit variants on most up-to-date Xilinx FPGAs i.e. Virtex
6 and Virtex 7. We reported the performance figures of
our implementations in terms of area, throughput and
throughput per area and compared it with available results.
Results achieved in this work are exceeding the various
implementations reported so far. We compared and contrasted
the performance figures of subject candidates on Virtex 5,
Virtex 6 and Virtex 7.
We used the 256-bit variants for our implementations. Other
variants are 224, 384 and 512, as specified by NIST for SHA-
3. Present work may easily be modified for all these variants.

References

Akin, A., Aysu, A., Onur, C.U., Savas, E. (2010) Efficient Hardware
Implementations of High Throughput SHA-3 Candidates Keccak, Luffa
and Blue Midnight Wish for Single- and Multi-Message Hashing. 2nd
SHA-3 Candidate Conference, Santa Barbara, August 23-24, 2010, pp.
1-12, USA

Figure (10) Performance Comparison of SHA-3 Candidates

Aumasson, J., Henzen L., Meier, W. and Phan R., W., (2007) SHA-3 Proposal
BLAKE version 1.3, http://131002.net/blake/blake.pdf, pp. 1-79

Baldwin, B., Hanley, Hamilton, M., Lu, L., Byrne, A., Neill and Marnane
(2010) FPGA Implementations of the Round Two SHA-3 Candidates,
2nd SHA-3 Candidate Conference, Santa Barbara, August 23-24, 2010,
pp. 1-18, USA

Bertoni, G., Daemen, J., Peeters, M. and Assche (2007) The KECCAK
SHA-3 Submission version 3, http://keccak.noekeon.org/Keccak-
submission-3.pdf, pp. 1-121

FR (2007) Federal Register / Vol. 72, No. 212 / Friday, November 2, 2007
/ Notices http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_
Nov07.pdf, pp. 1-9

Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, Kohno, Callas,
and Walker, J. (2007) The Skein Hash Function Family Version 1.3,
http://www.skein-hash.info/sites/default/files/skein1.3.pdf, Oct 2010,
pp. 1-100

Gaj, K., Homsirikamol, E., and Rogawski, M. (2010) Fair and Comprehensive
Methodology for Comparing Hardware Performance of Fourteen Round
Two SHA-3 Candidates using FPGAs. In: Proceedings of Cryptographic
Hardware and Embedded Systems workshop (CHES 2010), Santa
Barbara, August 17-20, 2010, pp. 1-15, USA

Long, M. (2009) Implementing Skein Hash function on Xilinx Virtex-5
FPGA platform http://www.skein-hash.info/sites/default/files/skein_
fpga.pdf, pp. 1-15

Matsuo , S., Knezevic, M., Schaumont, P., Verbauwhede, Satoh, A., Sakiyama
and Ota, K. (2010) How Can We Conduct Fair and Consistent Hardware
Evaluation for SHA-3 Candidate?, 2nd SHA-3 Candidate Conference,
Santa Barbara, August 23-24, 2010, pp. 264--278, USA

NIST (2007) National Institute of Standards and Technology (NIST)
Cryptographic Hash Algorithm Competition. http://www.nist.gov/itl/
csd/ct/

NIST (2010) NIST Interagency Report 7764, Status Report on the Second
Round of the SHA-3 Cryptographic Hash Algorithm Competition’,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Round2_
Report_NISTIR_7764.pdf, pp. 1-38

Szydlo, M. (2005) SHA-1 collisions can be found in 263 operations,
CryptoBytes Technical Newsletter

Stevens, M. (2006) Fast collision attack on MD5, ePrint-2006-104, http://
eprint.iacr.org/2006/104.pdf, pp. 1-13

Sklavos, Nicolas and Kitsos, Paris. (2010) BLAKE HASH Function Family
on FPGA: From the Fastest to the Smallest. In: Proceedings of IEEE
Computer Society Annual Symposium on VLSI (IEEE ISVLSI’10),
Kefalonia, July 5-7, 2010, pp. 1-4, Greece.

Strömbergson, Joachim (2009) Implementation of the Keccak Hash Function
in FPGA Devices http://www.strombergson.com/files/Keccak_in_
FPGAs.pdf, pp. 1-4

Tillich, S. (2009) Hardware implementation of the SHA-3 candidate Skein,
ePrint-2009-159, http://www.eprint.iacr.org/2009/159.pdf, pp. 1-7

Wang, X. L., Feng, D. and H. Yu (2004) Collisions for hash functions MD4,
MD5, HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report
2004/199, http://eprint.iacr.org/2004/199, pp. 1-4

6. Performance Comparison
In evaluation of hardware performance of SHA-3

candidates in second round, NIST has considered throughput
per area ratio as a major deciding factor (NIST, 2010).
Keeping this criterion in mind we chose best results for
each candidate, against each device, from Table 6. Fig. 10
represents the performance comparison in a graphical view
based on these results. It is clear from graph that Keccak is
far ahead of other two candidates in terms of throughput per
area ratio. Skein stands second in terms of throughput per
area on all devices. But still the difference is large, almost
5:1 ratio between Keccak and Skein on each device. BLAKE
and Skein are computationally intensive designs as compared
to Keccak. Keccak’s computational over head involves
simple XOR, AND and rotate operations, which leads to high
frequency designs. Moreover, Keccak single compression
operation operates on large block of message, which yields
high throughput per area results.

AGJSR 30 (1) 2012: 14-22 K. Latif et al.

