J M Jaam and A M Hasnah

Improvement of the DSATUR Algorithm for Graph Coloring

Abstract

In this paper we discuss the deterministic Brelaz's DSATUR algorithm for graph coloring. We propose a simple modification that improves the performance of the algorithm. This modification consists of assigning the color that saturates the least number of uncolored vertices, to the selected vertex. Thus, we obtain valid k -colorings better than those obtained with DSATUR without modification. We show also that the DSATUR algorithm is optimal, for a given example, and for the bipartite graphs.

Keywords: Graph coloring, DSATUR, Algorithm, lipartite graphs.

$$
\begin{aligned}
& \text { الُشكال ذات الانجزأين. }
\end{aligned}
$$

Introduction

The graph coloring problem consists of coloring the vertices of a graph using the fewest number of colors in such a way that no two adjacent vertices are assigned the same color. This problem has a variety of applications involving scheduling and time-tabling, frequency assignments, computer register allocation, printed circuit board testing and pattem matching. Finding the fewest colors of a given graph is a typical combinatorial NP-complete problem (Garey and Johnson, (1979) and Marshall Hall, (1986)). Numerous deterministic and stochastic techniques that investigate the colorability of graphs have been published (See Johnson, (1974); Culberson, (1993) \& (1995); Prestwich, (1998) \& (2001); Karger, et al. (1998); Hertz and de Werra, 1987; Chams, et al. 1987; Joslin and Clements, 1999; Christofides, 1971;

[^0]Wilf, 1984; Skiena, 1990; Jaam, 1995 \& 1995 and Jaam, et al. 1995). The best known deterministic algorithms to color a graph require in the worst case an amount of time exponentially growing with the size of the graph instance. Brelaz's DSATUR algorithm (Brelaz, 1979), however, is still a good and efficient algorithm to color successfully the vertices of a graph. It is also considered as a standard to compare the efficiency of new graph coloring algorithms (Culberson, et al., (1995); Culberson, (1993) and Prestwich, (1998) \& (2001)).

In this paper, we discuss the Brelaz's DSATUR algorithm for graph coloring. We enhance it by a simple heuristic called the least saturated vertexfirst, which improves the performance of the algorithm. This modification consists of investigating all the coloring possibilities before assigning a color to the candidate vertex. It then selects the color that saturates the least number of uncolored vertices, and leads to valid colorings better than those obtained by DSATUR algorithm without modification.The paper is structured as follows. In Section 1, we give some necessary definitions and terminology of graphs. In Section 2, we present the DSATUR algorithm and we apply it on a simple graph of 9 vertices, while in Section 3, we show how the performance of DSATUR can be
increased by adding the least saturated vertex-first heuristic. In Section 4, we show that the DSATUR algorithm can be used to check if a given graph is bipartite or not, and finally, in Section 5 we conclude the paper.

1- Preliminaries

A graph $G=(V, E)$ consists of a set of points V (G) called vertices that are connected together by lines called edges. An edge connects exactly two vertices. The set of edges is denoted by $E(G)$. Two vertices are said to be adjacent if and only if they are connected by an edge. The degree of a vertex ν, denoted by $\operatorname{deg}(\nu)$, is the number of edges connected to that vertex. A clique of a graph is a set $V^{\prime} \subset V(G)$ of mutually adjacent vertices. A maximum clique is a clique whose number of vertices is at least as large as that for any other clique in the graph. The graph coloring problem is the assignment of colors to vertices so that no two adjacent vertices have the same color. A valid k-coloring of a graph G is an assignment $C: V \rightarrow\{1, \ldots, k\}$ such that if $C\left(v_{i}\right)=$ $C\left(v_{j}\right)$ then $\left\{v_{i}, v_{j}\right\} \notin E(G)$. The set $\{1, \ldots, k\}$ represents the set of colors. A graph can be colored using different numbers of colors according to the problem being solved and the problem constraints. The least number of colors used in a graph coloring problem is called the chromatic number and denoted by $X(G)$. Thus a valid k-coloring is optimal if $k=$ $X(G)$. Finding the chromatic number of a graph $X(G)$ is known to be an NP-complete problem (Garey and Johnson, 1979 and Marshall Hall, 1986), and there is not likely to be an efficient polynomial algorithm that can guarantee finding the chromatic number $X(G)$ for all graphs. However, practically, we relax the problem and attempt to obtain valid k colorings, where k is an approximation of X. Such colorings are called approximate colorings. Note that the size of the maximum clique of a graph is a lower bound on the number of colors needed to color the graph.

2- The DSATUR Algorithm

Brelaz's DSATUR algorithm (Brelaz, 1979) is a good and efficient algorithm to generate valid approximate k-colorings for graphs. It is considered as a reference to compare the efficiency of new graph coloring algorithms (Culberson, et al. 1995; Culberson, 1993 and Prestwich, 1998 \& 2001). This sequential algorithm is based mainly on two different heuristics: the maximal saturated vertex-
first and the maximal degree vertex-next. The first heuristic consists of coloring the most saturated vertex first, and if there are many vertices of the same maximal degree of saturations the algorithm makes use of the second heuristic which consists of coloring the first vertex of maximal degree as suggested in Matula and Beck (1983). A vertex v is said to be saturated by a given color c, if it is adjacent to a vertex of color c. The degree of saturation of the vertex v, denoted by $\operatorname{DSAT}(v)$, is the number of different colors assigned to its adjacent vertices. The DSATUR algorithm can be sketched as follows.

Step 1: Let V be the set of vertices $V=\left\{v_{l}, \ldots v_{n}\right\}$, and associate with each vertex ν_{i} of V a set of possible colors, ColorInterval $\left(v_{i}\right)=\{1,2, \ldots, n\}$, a set of saturated colors SatureSet $\left(v_{1}\right)=\varnothing$ with a degree of saturation for each vertex, $\operatorname{DSA} T\left(v_{i}\right)=\left|\operatorname{SatureSet}\left(v_{i}\right)\right|$

Step 2: Let SDSAT be the set of all non-colored vertices of the same maximal $D S A T$.
If $|S D S A T|>1$ Then select the first vertex v_{i} of SDSAT of maximal degree.
Else select the sole vertex v_{i} of $S D S A T$.

Step 3: Assign to v_{i} the first color c from its interval $\operatorname{ColorInterval}\left(v_{i}\right)$, and let $\mathrm{V}=\mathrm{V} \backslash\left\{\nu_{i}\right\}$.

For all u such that $\left\{u, v_{i}\right\} \in E(G)$ Do
Begin
$\operatorname{deg}(u)=\operatorname{deg}(u)-1$
If ($\mathrm{c} \notin \operatorname{SatureSet}(u)$) Then
Begin
SatureSet $(u)=\operatorname{SatureSet}(u) \cup\{c\}$
$\operatorname{DSAT}(u)=\left|\operatorname{SatureSet}\left(v_{i}\right)\right|$
End
End

Step 4: If $V=\varnothing$ Then STOP (a valid k-coloring is found). Otherwise go to Step 2.

2.1 Application of DSATUR

In this section, we apply the DSATUR algorithm on the simple graph G of 9 vertices
$v_{1}, v_{2}, \ldots, v_{9}$, given in Figure 1. In the beginning all the vertices are of degree of saturations
$\operatorname{DSA} T\left(v_{i}\right)_{i=1}, \ldots, 9$ equal to 0 .

Figure 1: A simple graph of 9 vertices.
The algorithm starts first to color the vertex ν_{3} of maximal degree equal to 5 by the color c_{l} as all the vertices are not yet saturated. The adjacent vertices to v_{3} are $v_{2}, v_{5}, v_{6}, v_{7}, v_{9}$, they will be saturated by the color c_{1}. The second vertex to color is v_{2}, which is of maximal degree 3 (as all the current saturated vertices are of the same maximal degree of saturation DSAT =1) It will have the color c_{2}, and its adjacent vertices, v_{s}, v_{6}, v_{9}, will be saturated by the color c_{2}. The third vertex of DSAT maximal and degree maximal is v_{6} (with $\operatorname{DSAT}\left(v_{6}\right)=2$ and $\operatorname{deg}\left(v_{6}\right)$ $=2$). We assign to it the color c_{3}, and its adjacent vertices ν_{4} and ν_{8}, will be saturated by the color c_{3}. We don't need at this stage to add an extra color as we don't have non-colored vertices which are adjacent to all colored vertices v_{2}, v_{4} and v_{6}. Of the remaining non-colored vertices, we have v_{9} of maximal DSAT and maximal degree (with DSAT v_{g}) $=2$ and $\operatorname{deg}\left(v_{9}\right)=2$), it will have the color c_{3}, and its adjacent vertex v_{1} will be saturated by c_{3} (the vertex v_{8} is already saturated by c_{3}). The sole non-colored vertex of DSAT maximal is v_{5} (with $D S A T\left(v_{5}\right)=2$). It will be also assigned the color c_{3}. Note that v_{5} has no adjacent vertices in the induced sub-graph of non-colored vertices. The next candidate vertex to color is v_{7} of maximal degree 3 (as all the noncolored vertices, v_{1}, v_{4} and v_{8} are all of the same maximal DSAT equals to 1). It will have the first possible color c_{2}. Its adjacent vertices v_{p}, v_{4}, and v_{8},
will be saturated by the color c_{2}. The only possible color that we can assign to v_{8} of maximal degree 2 , is c_{p}; consequently, its adjacent vertices v_{i} and v_{4} will be saturated by c_{f}, and they should be colored by a new color c_{d}, as they are all saturated by the colors c_{1}, c_{2}, and c_{3}. The order of saturation of the vertices is as follows: $v_{3}, v_{2}, v_{6}, v_{9}, v_{5}, v_{7}, v_{8}, v_{7}, v_{4}$ and the valid approximate 4 -coloring for the graph G is the following: $\left\{\left(v_{3}, v_{8}\right),\left(v_{2}, v_{7}\right),\left(v_{s}, v_{6}, v_{9}\right),\left(v_{l}, v_{4}\right\}\right.$.

Note that the DSATUR algorithm starts first to color the vertices of the maximum clique presents in the graph. In fact, after coloring the first vertex, DSATUR colors, with a new color, a vertex adjacent to it, then searches a vertex adjacent to both colored vertices and assigns to it a new color, and so on. It is clear that the number of used colors k will be greater than or equal to the size of the maximum clique MaxSize ${ }_{c}$ of the graph. Thus, if the algorithm generates a valid k-coloring with k equal to MaxSizec, then this k-coloring is optimal, and we have $k=X(G)$.

3- Modified DSATUR Algorithm

In this section, we show how the least saturated vertex-first heuristic can improve dramatically the efficiency of the DSATUR algorithm. This modification consists of coloring the selected vertex with the color that saturates the least number of noncolored vertices whenever possible. For example, if we have to color a vertex v_{i} with c_{1} and c_{2} (with $c_{1}<$ c_{2}, and there is a non-colored vertex v_{k} already saturated by c_{1} and not yet by c_{2}, and the color of v_{i} will affect v_{k}, we should color v_{i} with c_{2} and not with c_{l} even if c_{I} is lower than c_{2}. This choice will relax the vertex v_{k} and avoid its being saturated by both colors c_{1} and c_{2}. We then adjust the Step 4 of the DSATUR algorithm taking into consideration the least saturated vertex-first heuristic.

Step 4:

If v_{i} is saturated by all used colors or v_{i} is the first vertex to color Then
assign to it the first color c from its interval ColorInterval(v_{i}).

Else color v_{i} with the color c that saturates the least number of non-colored vertices.

3.1-Application of DSATUR with Modification

As we have seen in the previous section, the DSATUR algorithm selects a candidate vertex v to color based first on its saturation degree $\operatorname{DSAT}(v)$ and on its adjacency degree "deg(v)" second. It then assigns to this vertex v the first possible color c from its set of colors ColorInterval(v) (i.e., the minimum possible value) regardless of the effect of this choice on the other non-colored vertices not yet saturated by the color c. In other words, the algorithm doesn't investigate all the possibilities to color the selected vertex v. Some selected vertices, however, may be colored with more than one possible color as, for example, the vertex v_{7} of the graph of Figure 1 , which could be colored with the colors c_{2} and c_{3}. The DSATUR algorithm has blindly assigned to v_{7} the first color c_{2} (as c_{2} is lower than c_{3}), and has totally ignored the color c_{3}. However, coloring v_{7} with c_{3} leads to a valid 3 -coloring instead of a valid 4 -coloring generated previously by DSATUR. In fact, assigning c_{3} to v_{7}, relaxes its adjacent vertices v_{1}, v_{4}, and v_{8}, which are already saturated by c_{3} and not yet saturated by c_{2}. The least saturated vertexfirst heuristic enforces DSATUR to color v_{7} with c_{3} and not with c_{2}. As concerning the previously colored vertices $v_{3}, v_{2}, v_{6}, v_{9}, v_{5}$, the algorithm had only one possibility to color them, so the least saturated vertex-first heuristic cannot be used at this stage. The next vertex to color which is of maximal DSAT and maximal degree is v_{8}.

It can be colored with either c_{1} or c_{2}. As the noncolored vertices v_{l} and v_{4} are not yet saturated by c_{1} and c_{2}, we can assign to v_{8}, either the color c_{1} and both v_{1} and v_{4} will have the color c_{2}, or the color c_{2} and both v_{1} and v_{4} will have the color c_{l}. Thus a valid 3 -coloring is generated for the same graph, which is the following: $\left\{\left(v_{3}, v_{8}\right),\left(v_{l}, v_{2}, v_{4}\right),\left(v_{5}, v_{6}\right.\right.$, $\left.\left.v_{7}, v_{9}\right)\right\}$. In addition, this 3 -coloring is also optimal for this graph as it has a maximum clique of size 3 .

4-DSATUR for Bipartite Graphs

In this section we show that the DSATUR algorithm can be used efficiently to check if a given graph is bipartite or not.

Definition 1

A graph $G=(V, E)$ is called bipartite if its set of vertices $V(G)$ can be partitioned into two disjoint non-empty and independent sets $V_{1}(G)$ and $V_{2}(G)$ such that an edge of $E(G)$ connects only a vertex of $V_{1}(G)$ with a vertex of $V_{2}(G)$.

Definition 2

A graph is called a cycle of length n, and denoted by C_{n} (with $n>2$), if it has n vertices $v_{p}, v_{2}, \ldots, v_{n^{\prime}}$ and n edges $\left\{v_{l}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v n_{-}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}$.

Proposition 1

A graph is not bipartite if DSATUR algorithm colors it with more than two colors.

Proof: The DSATUR algorithm assigns to a vertex v a new color if v is adjacent to a colored vertex (except for the first vertex), and as we have seen, DSATUR searches to color first the clique of maximal size. Thus, if DSATUR generates a valid k-coloring (with $k>2$), this means the graph contains a cycle C_{n} of odd length (with $n=(m \bmod 2)+1$ and $m>3$). Thus, the graph is not bipartite, as any odd length cycle is not bipartite.

Conclusion

We have improved the performance of Brelaz's DSATUR algorithm for graph coloring by adding to it a simple heuristic called the least saturated vertexfirst. This heuristic consists of investigating all the possible colorings, whenever possible, and assigns then to the selected vertex the color that saturates the least number of non-colored vertices. Thus, DSATUR with this heuristic can generate valid k colorings better than those generated without the heuristic, as shown in the paper. In addition, this heuristic is not expensive as the complexity of the algorithm is still $O\left(n^{2}\right)$. We have also shown that the DSATUR algorithm can be used to check if a graph is bipartite or not.

References

Brelaz, D.(1979) New Method to Color the Vertices of a Graph. Communications of the ACM 22(4): 251-256.
Christofides, N. (1971) An Algorithm for the Chromatic Number of a Graph. Computer Journal 14: 38-39.

Chams, M., Hertz, A. and de Werra, D. (1987) Some Experiments with Simulated Annealing for Coloring Graphs. European Journal of Operational Research 32(2): 260-266.
Culberson, J., Beacham, A. and Papp, D. (1995) Hiding our Colors. Proceedings of CP'95International Workshop, Studying and Solving Really Hard Problems (SSRHP), Cassis, France, 31-42.
Culberson, J.C.(1993) Iterated Greedy Graph Coloring and the Difficulty Landscape. Technical Report, TR 90-07, Univ. of Alberta.
Garey, R. M. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of $N P$-Completeness. Freeman and Company, New York.
Hertz, A. and de Werra, D. (1987) Using Tabu Search Techniques for Graph Coloring. Computing 39(4): 345-351.
Jaam, J. (1995) Ramsey Numbers by Stochastic Algorithms with New Heuristics. Combinatorics and Computer Science. Springer Verlag, LNCS 1120: 161-181.
Jaam, J. (1995) Coloring of Hypergraphs Associated with Ramsey Numbers by Stochastic Algorithms. Proceedings of $4^{\text {ih }} 7$ wente Workshop on Graphs and Combinatorial Optimization, Twente, The Netherlands, 153-157.
Jaam J., Fiti, T. and Hussain, D. (1995) New Bounds of Ramsey Numbers Via a Top-Down Algorithm. Proceedings of CP'95-International Workshop, Studying and Solving Really Hard Problems (SSRHP), Cassis, France, pp. 110-118.
Johnson, D.S. (1974) Worst-Case Behavior of Graph-Coloring Algorithms. Proceedings of $5^{\text {th }}$ Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 513-528.

Joslin, D.E. and Clements, D.P. (1999) Squeaky Wheel Optimization. Joumal of Artificial Intelligence Research 10: 353-373.
Karger, D., Motwani, R. and Sudan, M. (1998) Approximate Graph Coloring by Semi-Definite Programming. Journal of the ACM 45(2): 24665.

Marshall Hall, J.R.(1986) Combinatorial Theory (Second Edition). John Wiley and Sons.
Matula, D.W. and Beck, L.L. (1983) Smallest-Last Ordering and Clustering and Graph Coloring Algorithms. Journal of The ACM 30(3): 417427.

Prestwich, S.D. (2001). Local Search and Backtracking vs Non-Systematic Backtracking. AAAI 2001 Fall Symposium on Using Uncertainty within Computation.
Prestwich, S.D. (1998) Using an Incomplete Version of Dynamic Backtracking for Graph Colouring. CP'98 Workshop on Large Scale Combinatorial Optimisation and Constraints, Electronic Notes in Discrete Mathematics, Vol. 1.

Skiena, S. (1990). Finding a Vertex Coloring. §5.5.3 In: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Addison-Wesley, Reading, MA, 214-215.
Wilf, H. (1984). Backtrack: An O (1) Expected Time Algorithm for the Graph Coloring Problem. Information Processing Letter 18: 119121.

Ref. 2200
Received 07/09/2002.
In revised form 08/02/2003

[^0]: Jihad M. Jaam and Ahmad M. Hasnah
 Computer Science Department
 College of Science
 University of Qatar
 P.O. Box 2713, Doha, Qatar

 Tel:(00974)-4-852145, 852962
 Fax: (00974)-4-852961, 835061
 E-mail: jaam@qu.edu.qa / hasnah@quedu.qa

