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ORIGINAL PAPER

A A Mhassin

A Nine Point Formula to Approximate the
Laplace Operator for Irregular Domains

Abstract: A nine point formula to approximate the
Laplace operator for irregular domains has been derived
using the Taylor series. This formula proved to be of order
O(h". A comparison with those methods on finite
difference and finite element has shown that the above
formula is more accurate.
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Introduction:

Let H and X be partial differential operators associated with the Laplace differential operator in two

dimensions defined by

HFE x, vi=F (x+h )+ F(x-h V) + F(x, v+l + F{x, y-h) -4 F (x,y)

XF{x, y) = {(UDF (x+h, v+ I)+F (x-hy+h)+F (x-hy-h)+F (x+h, y-h) -~ 4 F (x, y}]

each of them approximate V? in a regular domain i.e.
WViu=Hu +0(h) [6]
RVu=Xu +0(h) [6]

Another operator depending on nine points given by

RV u=Ku + O (h)where K=4H +2X

is more accurate than both A and X.

[31, {61

In irregular domains H and X were presented, [6], as follows:

1) H=

2 u(x + by, vi-ulx,y)  u{x-hy v)-ulx y)
+ ]+

By + hy h,

2 u(x,y + hy) - ulx, y)

h;

uix, v - iy - ulx, y) ]

hy + h, hs h,
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— 1 ulx + hs, y+ hs) - w(xy)  uw(x-hn,y+ ) -ulx,y)
(2) X= + +
hs + b, s h,
1 wx - hgy + hg) - ul(x, y)  ulx + hg y-hg) - ulx, y) }
+
hs + hy hy hy

together with many methods that approximate points near the boundary for irregular domains, which, in
applications, causes calculation difficulties.

In this work an operator depending on nine points, seven of which may be non-nodel points, has been
produced. This operatoris K =4H + 2X, 1. e.

o 8
(3) Ku=Viy= Z o, where
i=0

8 8 8

1E e O E e, Oy
h2 s, (s, +53) 28, (s5 + 54) A2 s, (534 5,)

4)

8 2 2
4=—?a5:—_—‘7a6=_—
W sy (s, +55) HL S {855+ 55) h2 54 (55 + $g)

2 2
?=+,a8:_,3nd
H2 Sq (57 + 55) h? S (38 + 56}

8
o=~ Z oy where his by =35k, 0<s,51,1=1,2,34,5,6,7,8, and £ is the step length of the grid.
i=0

K proved to be of order O (#°). By applying KX to Laplace and Poisson equations in different irregular domains,
it has been shown that the results are more accurate than those in other methods based on finite difference and
finite element.

The —K—operator

The operator K is derived as a linear combination of H and X for the domain with curved boundary and
irregular nodal points near the boundary. The Taylor series was used to approximate eight points, u(x+h,,y),
u(x-hy,y), u(X,y+hy), u(x,y-hy), ulx+hs,y+hs), u(x-he,y+hg), ulx-h,,y-h;), and u(x+hg,y-hg) as follows:

Let Oc"=ai: , ﬁ:a})—;,izl,fl,ii,....,then;

2.h uy=u{x+hyy=u+hou+h2/20a2u+ (h2 /300 %u +...
(2.2) wy=u (X y+h)=u+hfu+ (B2 12582+ (b3 13D 3u +....
(2.3) Wy =0 (X - Ag,y) =i - haow + (A2 1 2000 2u + (B3 7 30e3u +.....
(2.4) U= (X y-hy)=u-hfu+ (h21 208+ (313033 +....
(2.5) Us=u(x + hsy+ hs) =u+ hs(a+ Pu+ (A2 /20 + ) 2u+ ...
(2.6) g =t (x-hey + hg) =t + hg (-0 + Pu+ (h? /2D + B 2u + ...
2.7 = u(x-hyy - hy) =u+ hy(-o— B+ (h2 7 2DGa -f) 2u + ...
2.8) Ug =t (x - hg,y - hy) = u + hs(or — By + (he 1 20 - 2u + ...
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The Laplace operator is obtained from the equations (2.1) - (2.4) and from (2.5) - (2.8) and by multiplying
the first by 4 and the second by 2, we can add the two results to get the following equation:

8
(2.9) Z au, = 6{(a? + f2u + K., where
i=0
2.10) 8 8 S 8
. = y 0 = s Qg T s 3 (TR 2
o 5,8, + 53 W25y (5, + 84) P 5y(83 +5y) T 54 (84 + 85)
2 2 2 2
— , O = ’az?z__‘,o;&_—,m——l,and
h? 55(55 + 34) h? 545 (55 + 53) h? 55 (55 + 55) h? 54 (Sg + Sg)
8
2.1 Oy = - Z &, where iy = s; 1, 0 <5,51, 1= 1,2,3,4,5,6,7.8, and h is the step length of the grid.
=1

Now we have

8
(2.12) Li=Ku= D, o u=06(+Fu+..
i=0

Solvability of the difference equation by;(*_
Consider the linear second order partial differential equation of the form
3.0 Lju=u, +u,+G

In the application of the finite difference [9] one replaces the region R by a set of points R, where R, < R
and also replaces the boundary S by §,. R,* represents the set of all regular points, and R, represents the

irregular points. The application of K to the Laplace or Poisson equations with boundary conditions, leads to
a system of linear algebraic equations of the form

(3.2) Au=Db,

where A is an X nmatrix, b is a known n X 1 matrix, and # is a solution n X 1 matrix. Here n is the number
of interior points in the grid, Thus, it follows from (2.10) that in the difference equation (2.9) we have

8
(3.3) -0y =- 2 o, >0, i=1,234,506,78.
i=/]

The uniqueness of the solution can be easily proved (see [9]).

Accuracy of the difference equation in K

We now investigate the accuracy of the solution of difference equation. Our analysis is [4], and we assume
that the exact solution of the differential equation has partial derivatives of all orders up to and including the
fourth which are bounded in R + §. We need the following Lemmas, which are useful later.

Lemma 1: Let L [u] be a discrete operator of the form
8

4.1 Ljul = 2 o, i, = G, where -0, @, ..., (4, are positive functions such that
i=0
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(4.2) -0 2 O + .+

fuz0ons8, and ~L,[u]20o0n R, ,then v20inR,

Proof:

If u > O for some point of R,, then for some point (x, y) of R, we have u(x, y) < u(xy) for all (x,y) € R, and

u(x, y)<0.

Let M = -ulx, y). We seek to show that a%x,+ hov), ulx vy + k), ., are equal to —M. But since L,[u] u(x y) <0,
we have

o 8 e
(4.3) -y ulx, y) 2 2 o U
i=1
therefore

(4.4) 02 ZS C‘v'i“izi o [, + M]

i=1 i=1

since o > (O, ;i + M 20,1 = 1,2,...,8. The last expression can be nonpositive only if ;;=-M ,1=1,2,...8.
In a similar way, we can show that u(x + 2h,y), u(x, y - 2h), u(x - 2h,y), u(x, y - 2h), u(x + 2h, vy + 2h), u(x -
2h,y + 2h), u(x - 2k, y - 2h), and u(x + 2k, y - 2h) are equal to —M for all (x, y) in R,+S,. But since # 2 0 in

S, » we have a contradiction. Hence ¥ 2 0in R, + §,.

Lemma 2: Let u satisfy L[u] = G, and satisfy the boundary condition u = g. Let u satisfy L,[u] = G in R, if

u has partial derivatives of all orders up to the fourth order which are continuous and bounded in R + §, then

a1 et I'#34
(4.5) Lyl -u1 < 12 M where 4, = max { max 2% . max 2% }
S 6 ReS 0 3xt | gas  Oayd

{(For the proofs see [9] ch. (10) and (15)).

Theorem : Under the hypotheses of lemma 2, for all (x,y)e R,+$, we have

46wy -utey) € BT MAX (M +MAX ulny) - ulxy)
i i i R+ 531 i

where r is the radius of the circle which contains R + S.

Proof: The first term on the right side was already computed in [9]. To the second term, we use in R, the
equation: '

8
“.7) Liul=2, &u=0G.
i=0

Solving for u(x,y) we have

85,8455565755 53 s 85,535556575% $4 S,
(4.8) ul(x,y) = —= —— uy f + Hy + u, {+
Q §p =5 Spdsy Q
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251525384555 | 87 S5 ) 25)5,85848587 [ Sy g
u5 + M‘;} -+ } MQ +
Q i 8y = 85 Sg 4+ 84 ) Q ‘56+58 $g + 53

H
i

MS}? ¥

where, = 85,5,5585:5¢55 + 855155575685 + 25,5:835,5585 + 2515585454558 .

The first expression in the brackets corresponds to the linear interpolation in the points u(x+h,,y) and u(x-
hs,y), the second corresponds to linear interpolation in the points u{x,y+#,) and u(x,y-#,}. The third is the
linear interpolation in the points u(x+hs,y+hs) and u(x-h,.y-h;), and the fourth is the linear interpolation in the
points wu(x-hg,y+hg) and ulx+hgy-hg). The overall expression represents linear interpolations in two
interpolated values. By the properties of linear interpolation we have:

_ . S, hA(s 532
(4.9 (x,y) - S [y A e P S T M
;) (xy) Si+8, s+ 3; 8 :
[ s s ha(s, , 8402
S+ 5, Sy + 8y 8
s s h(sq . 5402
Ay - —Lom e 5 g <M,
S5+ 5, ss+s7 8
s $, hi(sg . s9)?
w(x,y) - o+ —— 7 g__MMQ
Se+ Sg S + Sg 8

where u, = u(x +h,y), iy = u(x,y - hy), s = u(x - hy,y), ty = u(x,y - hy), tts = u(x + hs, v + hs), g = u(x - hg, y
+ hg), g = u(x - by, ¥ - hy), g = u(x + hg, ¥ - hg) and

o

|
M, = max ==
| ox2 ayQ
— 85,5455865785 | S5 _ S
(4.10)  uxy) - | A+ b
Q i\S} + §x 5 + A J
85,5:5556578g | 54 _ LY
- ! + Uy
Q iS:}_ + 54 52 + 54
25,5,54555655 | $7 ss |
- { s+ iy )
o 1S5+ 55 S5+ 54
L !
2515555845585 | Sy sg | . <P Iy
- ¢ 6t !S5 M
0 1S5+ S Sg+ g |
since 5,< 1,i=1,2,...,8 Thus we have
@10 @ y) - ulx YIS Y elx +hy, )+ elx y + hy)
3 ! +

*elx - hy Y)Yy ety - h)

%

H

e(x+fz5,y+h5)+}{/Je(x—h(},y+h6);

“‘"?"f'\e(x “hyy - ho) R elx + b }’-hg)§+—;§M2
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where e(x, y) = uf(x, y) - u (x, y), and

/ ; (
412 _ By8858685 | Sy | _ B5y548556575g | S
(4.12) Y= T 5 { 3 Q LS 4 o5l
0 (17 8 511 53
8518385565758 | S | v = 8515155854555 J s
2 - (] ! 4 e Y y ‘.’
o) [S2F 54 | Q lsy+ sy
4 . I3
= 25,5,53545¢S% Pos ) = 25,5,53548¢55 | S5 |
y ¢ 5,55+-f? ( ’ ) ;‘55'*'5?;‘
{ ) ¢ \
vom 255254545557 J Sg Y= 255752848557 ;86 |
6 8 A i
0, Lsg+ 55 o | Se + 53]

I

We now seek to show that for (x.y) € Ry, .

; - 4 k2
4.13) (o -ulx, y) S—max elx, y) + — M,
i 5 Ry 2

To do this, first consider the case that one of the points, say (x+#,,y} is in S and the other points are not. Hence

8
S;=5y= .= 8= 1, inthis case e(x + A, y) = 0 since 2 , Y= 1, and since
i=0
855355845755 855455545753
(4.14) Y+ Y= < = =Y + 7
¢ 0
2 e
wehave y, +% 2 5 Moreover, since
(4.15) 5 > S gehavey, 27 and 7 2 —
' S§+S3~Sl+53 ’}/I_y'? ?}_ 5
i 4
<
Thus Z 7 < =, then (14) holds.
i=2

Now consider the case where two of the points are on S. There are essentially two different cases. In the first
case (x+#,,y) and (x-h;, ¥) are in S and the other six points are not. We have

8

Y +%2% + Y . Since Z =1,and 3, + };+7/5+)g+y7+};;s%,’rhuswehave
i=)
: § P 2 R
@160 u(xy) -l y)iﬁgmﬁx ex. y) 1+ = M,
: ; h

A similar arrangement holds if (x,y+h,) and (x,y-hy) are in S, or (x+hs,y+hs) and (x-h,,y-h;) are in S, or (x-
hey+he) and (x+hy,y-hg) are in S.If (x+h,,y) and (x-hy,y) are in Swe have y,2 7, p2pand 1+ B 2 9 +

Y S0 that v + }/22% and

(4.17) y3+%+%+yé+y;+y8.<_%max e(X,y)§+%M2.
h
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Similarly in the other cases it holds if any two different points lie on §.
Next, let us consider the case where only one of the points, say (x+#,,y) is not in S. Evidently

!

85,5,858565253 | Sy |
(4.18) S APLFLELI L N B N P
v ¢ LSt S

1

S < L
(T3

15+ 83

UII [

since  85,5,8:545;5¢ (@' is an increasing function of §,5,5:8¢5,55 and §,5,858¢5,85 €1, and since s;(1+s,)! is an
increasing function of s, and s, € 1. Thus we have

2

- o1 ; 2
(4.19 wAx, yi=uly v} S max elx v+ — M,
5 gy P2

A similar discussion is used for when three or more, up to seven points do not lie on §. Finally, if all eight
points (x+#,,¥),..., €tc are on § we have

2

| |
u(x, y)-ulx, y) < 5 M

Therefore {(4.13) holds in all cases.

We now let

(4.20) v =max e(x y,}i, 1= max e(x, v)
Ry E Ry :

Evidently, from (4.14)

< M, G

4
(4.21) vE—og +;£,m5-5~max{v,g}+—2—M2
4 h?
If v<u, then ysg—w»?Mz, and
h2r? 4 h?
(422) L’g-EI‘M4+—5'”V+—2‘M2
or
Sh2r? 5 ,,
(423) VS—EZL——MJ'-*-_Q,-}; Mz.
On the other hand, if ;£ 2 v, then
2
(4.24) us 4 3] +i?— M,, and
5 2
4
(4.25) IS 5 h2 M.,
therefore since g svorelse 4 < El h? M,, we have,
4
- Shirt 5
(4.26) max ey - uleyy € 5 M,+—h' M,
R 24 2
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Implementation:

In the following, different methods have been implemented for different examples that have curved
boundaries and the results are presented in tables.

1- Laplace equation V?u = 0 in the first quadrant bounded by the circle X+ y*= 1, where the exact solution
and the boundary conditions are given by the equation u(x, y) = exp(-2x) cos(2y).

Step length Max. absolute error in H Max absolute error in K
0.25 2.3409123E-03 8.961037E-04
0.125 6.51036E-04 6.16542E-05
0.0625 1.34793E-04 6.107614E-06
0.03125 4.41378958E-05 1.8039060E-06
0.015625 1.01590804E-05 2.234243580E-07

2- V2y = fin the first quadrant bounded by x*+y*= 1, where the exact solution and the boundary conditions
are given by u(x,y) = sin{fx) sin{my}).

Step length & Max. absolute error in H Max. absolute error in K
0.5 : 1.039023E-01 3.2436646E-02
0.25 3.135872E-02 2.3620913E-02
0.125 8.944179E-03 3.7283951E-03
0.0625 2.384006E-03 5.4587562E-04
0.03125 6.097213E-04 7.0241315E-05
0.015625 1.511102E-04 9.7525401E-06

3- Quarter moon with the exact solution and boundary conditions given by, u(x,y)=sin (1tx) sin(my).

Method of Solutions Max. absolute error
q 1.20457E-03

K 2.787202E-04
Finite element method 7.54E-03

(PLTMG package)

Conclusion

In this work a finite difference operator K has been derived. This operator has been implemented in different
cases together with the method based on finite difference and finite element and shown to be more accurate.
Also in regular domains, K will be reduced to K. K may be used to compute the eigen values for irregular
domains, in particular the wave guides for eccentric circles.
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