
Arab SCtentljlc Research, J9 pp 137-149 (2001)

M AimuIJa, M AI-Haddad and H Loeper

An Ada...based Preprocessor Language for
Concurrent Object Oriented Programming

Abstract: In this paper, implementation issues of
concurrent programming using Ada 95
are addressed. Ada is not a pure ODleCl-Oflentea
in order to make it so, a uniform
object classes is proposed. The template constitutes a
basis for an Ada-based preprocessor language that
handles concurrent object-oriented programming. The

Ada-like
as

and produces Ada 95 concurrent object-oriented program
units as output. The preprocessor has the

of adding a new class
called the protocol, which the

order for methods of an object. The
preprocessor also touches on the extensibility of object
classes issue. It supports defining class hierarchies by
inheritance and In addition, the preprocessor
""E,y"t;~ supports the re-use of Ada packages, which are

not necessarily written according to the object-oriented
approach. The paper also the definition of

pnf'nnpnt object classes and proposes a solution
a collection of classes.

Introduction

Ada 95 offers tools for object classes
on abstract data In object-oriented

programming, the concept of abstract data types is
with the of inheritance,

polymorphism, and binding to derive new
object classes from parent object
these tools, with 95 does not

M. Almulla. M. AI-Haddad, and H.
Department ofMathematics and Computer Science
Kuwait University
Tel:481l188 Fax:4817201
e-mail:almulla@mcs.sci.kuniv.edu.kw

_ J~I

W.J ~I.J <.:...I.J.WI ~."JI ~ 4L...;.j ~I Uj., J;..iL;.;~1

.l..ii ~ w Ada 95 W.u.:; 'J Ada 95 . '...i..l..: '-<.l....c..oJl.,

w.J ~I ~.r;1l

~ ~I c~ , ~ ~" W;:,.."

~W'. ~~

,j~\-i

~I~ tIY~I;;J~"'4J,.........::,I..i
~.l,! • w", ~ <':"'I~ 1C"1j-! • Ada w ~~

.L.;.:.!J.;..,)o w.c. dJ..i". W.J ~<':"'I~ "'~j-! ~ ••~

'-<.4-~ uli uL...;,:J4 ' •.i...!. ~ J.:....liA
Ada 95..:,.. 41.... ~ U\.....o.., lli" ~ (t-"IJ-! ~L....JI ~

I.i...!. . ",L;>.y....S Ada 95 '...i..l..: '-<.l-..IC"Ij-! .J"""'" F...J . ""'~
,r.'"'< c..i~"""""".,J,",<.;..;-~~.;..;..JIG.JJ1 ~~

~I • .i...!. ~ . IC"wyll """" .lc..,:;....,1 ~;; 'j,,-'1 ~ Jfiy"."J4

"",4j":> ~fi ~ W' ..:,~I '-il"" ~ .I~i ..:,.. <..W4 ;;;~~I

,..I~I .Jlc.\-i <..WI W' . UI.....,JI ~ A..b...lj!

W" ~I ~."JI '-<.l-.. wfo ..:.,1 .bfo.; 'J ~I.J Ada W ,..jJ

~~~ ~fi t~J->.) u.....,J1 ~ , 

..:,.. i.£.~ f'!.li:> ~ J.>. c~ 4"1 uli uL...;,:J4 ' ~I 

result in well-structured object-
oriented programs, because 95 is not a pure 
object-oriented It is the 
programmer's task to comply with certain in 
order to maintain well-structured object classes in 
the Ada 95 design. In addition, 
extensibility, which means deriving a new 
concurrent object with new methods a 
given is an important of 
concurrent object-oriented programming. However, 
Ada does not integrate smoothly 
orientedness and concurrency. Neither the tasks nor 
protected of Ada are 
(Wellings, 2000). drawback of Ada 
already realized in (1997) 
(1998). These papers deal with a proposal for 

137 



138 

implementing concurrent object classes in a general 
well-structured manner, which in turn allows the 
definition of subclasses by extensions based on 
inheritance. In this work, new methods may be 
added to an object class by attaching a new task to it 
that implements the methods of the derived class. It 
should be noticed that a supplementary thread of 
control is added to the subclass, if the superclass is 
already defined as an active concurrent object class. 
Normally, active concurrent object classes are at the 
leaves of inheritance hierarchies when a concurrent 
system is designed. Therefore, in such cases the 
superclass is an abstract tagged type and no problem 
will arise when applying the suggested approach. 
Otherwise, in general , implementing concurrent 
object subclasses by extending the parent tagged 
record with a new task that implements the methods 
of the derived class may lead to synchronization 
problems. 

Wellings (2000) is also concerned with the 
integration of concurrency and object-oriented 
programming in Ada 95. It studies mainly Ada's 
protected type mechanism and works out a proposal 
for making Ada 95' s protected type mechanism 
extensible, which causes both syntactic and 
semantic variations to the Ada 95 language. 

The intention of the authors in this work is to 
avoid revising the current Ada 95 standard. They 
introduce a preprocessor language as an additional 
layer to the software design process with the aim of 
overcoming the drawback of the explained 
extensibility issue, as well as to support the well
structured object-oriented software design. In this 
paper, the authors investigate mainly the design and 
implementation of a preprocessor language based on 
Ada 95 for concurrent object classes, which will be 
roughly described. The preprocessor accepts Ada
like object-oriented program units (classes, 
subclasses, and a main program), and produces Ada 
95 concurrent object-oriented code, which is based 
on a proposed Ada 95 target code template of 
concurrent object classes. 

The preprocessor language allows creating 
hierarchies of object classes by either inheritance or 
aggregation. Object-oriented programming 
languages support inheritance; yet, the preprocessor 
language enhances the inheritance mechanism by 
allowing a subclass to revoke unnecessary methods 
while allowing its child classes to inherit those 
methods from their grandparent class. Aggregation 
means to compose an object class by other object 
classes. In object-oriented design methodology, 
class aggregation, as an important design principle, 

An Ada-based Preprocessor Language f or Concurrenl ... 

is often neglected or only indirectly provided. The 
preprocessor language provides a direct support for 
aggregation by allowing a class to have object 
classes as part of its state. An object in Ada 95 target 
code is represented as a single task regardless if it is 
an instant of a class or a subclass in case of 
inheritance, while aggregate objects have their own 
tasks. 

For the sake of well-structured object-oriented 
problem decomposition, it is desirable that each 
object class definition represents one compilable 
program unit of the preprocessor language. 
However. more than one object class must be 
defined together, if the object class definitions are 
recursively dependent. Therefore, the preprocessor 
language also provides "collection", which allows 
the programmer to write circular dependent classes 
in one compile-able program unit. 

The remainder of the paper is organized as 
follows. Section 2 introduces the general template 
for concurrent object-oriented programs, which is 
the basis for this investigation in designing and 
implementing a preprocessor language, as well as 
the layout of the Ada 95 target code produced by the 
preprocessor, which is discussed in Section 3. The 
concurrent object-oriented language definition that 
was called before the preprocessor language is 
described in Section 4. The beginning of the section 
describes object classes. Two separate constructs 
define classes, subclasses, and collections: the 
specification, which includes the necessary 
information for using the specified item, and the 
body, which contains the internal implementation of 
the methods. The section also describes the subclass 
definition in the preprocessor language. Subclasses 
inherit the state attributes and methods from their 
superclass. Subclasses have specification and body 
like classes but only additional attributes are 
specified in the state of the subclass, while the 
superclass attributes are automatically inherited. 
Methods that have different behavior in the subclass 
other than that of the superclass are called 
overridden methods. Only new and overridden 
methods have declarations and bodies in the 
subclass. The preprocessor language also provides a 
facility to revoke unneeded inherited methods. The 
preprocessor language adds an important new 
component to the class specification called the 
protocol, which specifies the order in which 
methods of a class may be requested. Defining class 
hierarchies by inheritance · and aggregation and 
adding a new method needs to specify the 
appropriate entry point in the order in which the 



139 M Almulla, M AI-Haddad and H Loeper 

methods may be requested. This is achieved 
the protocol. all methods the 

ones must be specified in 
unless they are intended to revoked. addition, 

language allows defining part
objects as of the state of an object class 
specification. Part-objects are objects of a specific 
class or a subclass, which may themselves 

as well. At the end of 4, the 
in 	the preprocessor language is 

Dre~On)ce~ss()r language code 
translation is discussed in Section 5. The section 
starts with a description the preprocessor 
implementation and then focuses on the target code 
translation for object subclasses, 

and collections into Ada 
Section 6 discusses concurrent object-oriented 

programming using the preprocessor language for 
various examples. These examples demonstrate 
some the of the and prove its 
expressiveness and solidity. was 
fully implemented the GNU Ada Compiler 
Version 3.10 (GNAT 1997) on PC with 
Windows 97. 

Object Classes 

The object class is the conceptual modeling tool 
for generating objects (Khattab, 1997). An object 

a set data ( the state) and a set 
methods that operate on these data (Krakowiak, 
1 The notion object orientation is mainly 
based on the concepts of objects, object and 
class inheritance, combined with polymorphism and 
dynamic binding (Wegner, 1987). Composition 
(also referred to as is a mechanism 

an object as a whole other 
classes as its parts. It reduces the complexity 

by many object as one (Odell, 
1994). 

An object has a state, which holds all properties 
of object. Moreover, methods (procedures or 
functions) are with an object, which 
describe the operations on the 

An is a set of all objects the 
same structure and (Booch, 

structure of an object class according to 
Loeper (1998) is represented in Figure 1, with the 
following remarks: 

Figure 1: Structure an object class. 

receive messages 

specification 
part 

send messages 

.. Memory space is associated with object 
the for local constants and variables. 

constants and variables determine the state 
attributes) of the object at any 

moment. 

.. A protocol messages through the 
object The protocol the order 
in which the methods are arranged to 
accept incoming messages. object is able to 
receive messages In accordance with its 
method's protocol. 

of 
order in which to the 

messages uniquely on 
protocol's queue. 

.. Each request service from other 
the following: 

name. 

2. service or method name. 

3. The parameters of the method to be passed. 

.. 	 Objects are considered as concurrent entities that 
implement autonomous processes. object 
has an independent logical thread of control. 
Execution of a method performed on object's 
own (logical) processor may change the state 
the object. 

An object class may be seen as an abstract 
type when with the capability of 
new object classes based on a parent class by 
inheritance. In this context, objects of an class 
are considered as concurrent units; hence the equation: 

Object = 

Abstract + Inheritance + "-..Vll,-"iUl 




140 

A Template Design for Concurrent Object
Oriented Programming 

Task type is the Ada 95 implementation for 
concurrency. The proposed template design, Figure 
2, has a single task for each object regardless 
whether it is a subclass object or a superclass object. 
Inherited, new, and overridden methods are 
implemented by a single task of the subclass. 

with ... ; 

use ... ; 

package Classname is 


task type Classname_Class is 
entry Initialize ( .. . ); 

entry Methodl (X : in A_Type; .. . ); 
entry Method2(X: in out A_Type; . .. ); 

end Classname_Class 


type Classname_Class_Pointer is access 

Classname_Class; 

Type T_State_Classname is tagged private; 


private 
type T_State_Classname is tagged record 

State_Component : A_Type; 

end record; 
procedure Initialize( State: in out 

T State_Classname; ... ); 
procedure ~lethodl(State: in out 

X: in A_Type; ... ); 
procedure Method2(State: in out 

X: in out A_Type; . . . ); 

end Classname; 

Figure 2: The template of concurrent object classes 
- its specification. 

The state of the object is defined inside the task 
and the type of the state is defined in the package 
private part. Methods of the object are the task 
entries. Encapsulation is automatically provided 
since the state is part of the task implementation, 
which is hidden from the calling object. 
Furthermore, the "accept" statement of a method, 
which only modifies the state, may have only 
statements for copying the in-parameters from the 
calling object. In this case, a higher degree of 
concurrency is provided. If a method Method1 has 
only in parameters, then a Method1 's accept 
statement may be written as follows: 

accept Methodl(A: in A_Type); 

Aa ::= A; 

End Methodl; 

Methodl (Aa) ; 

An Ada-based Preprocessor Language for Concurrent ... 

The template specifies that the only interface to 
objects of an object class is througb their task 
entries. Outside objects cannot access internal 
procedures, because they are defined in the private 
part. Moreover, outside objects cannot access the 
state of the object, although the state type 
T_State_Classname is defined in the non-private 
part of the package specification. However, the state 
itself is defined as an instance of T_State_Class 
inside the task body. Therefore, the state of the 
object is encapsulated. 

The concurrent object-oriented template defines 
object classes as task types. Declaring the state as a 
tagged record supports inheritance. Because an 
object may be accessed only through its task entries, 
the new template provides the ability to revoke 
some methods for a new subclass. This could be 
accomplished by not specifying task entries for such 
methods. Hence, the outside objects cannot perform 
these methods. However, new grandchild classes 
may inherit these methods from their grandparent 
class, although their parent class did not inherit 
these methods. 

The Concurrent Object-Oriented Preprocessor 
Language Definition 

In Section 3, a design of an Ada 95 template for 
representing concurrent object classes was 
discussed. In this section, a concurrent object
oriented programming language suitable as source 
language of a preprocessor producing Ada 95 code 
is introduced. The preprocessor acts like a compiler; 
it accepts Ada-like object-oriented code as input and 
produces Ada 95 concurrent object-oriented 
packages and programs. The produced target code 
has the structure of the template that was suggested 
earlier. The preprocessor language forces the use of 
the object-oriented paradigm. It comprises the 
definition and the use of program units such as the 
main program, classes, and subclasses. In addition, 
the Ada-like object-oriented preprocessor language 
not only accepts object-oriented code, but also 
allows the reuse of the existing Ada 95 code. 

An object class in the preprocessor language 
consists of two parts: specification and body. The 
specification includes the state, methods and the 
methods' protocol. In Ada 95, task entries are 
specified in the package specification. However, 
without referring to the package body it does not 
give a complete picture of the defined order to 
access these entries. In the preprocessor language, 
the protocol specifies the proper order for calling 



- - -

M AlmuUa, M AI-Haddad and H 

the methods of an object class. the user 
an object class has all information 

objects this class the class 
specification. The uses the protocol to 

the code for task and 
body. Therefore, the body only specifies the 
details the methods implementation. 

The preprocessor allows separate definitions 
object subclasses, and main 
Moreover, definitions of 

have to be put into a 
collection. The preprocessor two 
kinds of class namely and 

Inheritance provides the use of classes 
in subclass definitions. allows defining 
a new object class of already 
defined object \.cAU".:>,",.,. 

provides of object 

have circular dependency on each other. 


Object Classes 

The object class of the is 
its objects that any access to an object's 
components is permitted through its protocol. 
An object class is a set An object 

two parts: 
provides the information, 
which provides the hidden details. 

Syntax: 

class_specification := 

class classname is 

[type_declarations(3.2.ll] 

[state_declarationl 

methods_declarqtion 

protocol 

end [classnamel; 

The state of an object class is in the 
A.... UUV'C1. but preprocessor does not provide 

access the state from outside as 
mentioned state declaration is optional, 
but if reserved word state is then at 
least one declaration must exist. If it is intended to 

then the state declaration 
and dynamic attributes 

the state as 
variables and/or constants. 

Syntax: 


state declaration :: 


state 

variables_and_constants declarations 


end state; 

variables and constants declarations 


var_and_const_declaration; 


14J 

{var_and_const_declaration;} 


var_and_const_declaration .. 


object_declaration (3.3 .1) UUll"-",.L_U'C,-.''''L'''~J.V' (3.3 


An object provides 
through its 
object class is the list specifications 
methods that will be defined in the body. 

Syntax: 

methods declaration :: 

; } 
method_specification :: 

method method name parameter-profile(6.1) 

The methods' protocol, or called 
protocol, is necessary concurrent objects. It 

the order in which the methods of an 
may be requested. 

Syntax: 

protocol .. 


protocol 

sequence_of_controls 


end protocol; 


The protocol of a sequence of controls in 
the preprocessor language. The preprocessor has 
four kinds of controls: method_specification, exit, 

and loop controL 
control is used to accept me:Ln()OS 

points. 
as the statement 

control is to indicate 
control provides alternative controls to be selected. 
Loop control is used for repetitive controls. 

Syntax: 

sequence of controls::= 


cont-rol {control} 

control :: = 


simple_control i compound_control 

Simple_control :: 


exit; I method_specification; 

compound_control :: 


select control I loop_control 

select control :: 


select 
sequence of controls 
{or sequ~nc~_of_controls 

end select; 

loop_control : 


loop 

sequence_of_controls 


end loop; 


The preprocessor language supports generic 
classes in the same syntax and semantics as the Ada 
95 For each class, 
the automatically 

the types CLassname_Class and 
Classname_Class_Pointer. These are used to 
declare objects the object or pointers to 
objects of object class, respectively. These 

http:type_declarations(3.2.ll


142 

are described in more detail in Section 4.2. 
Moreover, the preprocessor language supports two 
kinds of service requests: requests of objects' 
methods, and requests of procedures and functions 
written in Ada 95. 

The Main Program 

A complete program in the preprocessor 
language is conceived as a parameter-less method 
(subprogram), which calls upon the services of 
objects through their methods. A method is a 
program unit or intrinsic operation whose execution 
is invoked by a method call. A method call is a 
statement. The definition of a subprogram can be 
given in two parts: a method declaration defining its 
interface, and a method body defining its execution. 

Syntax : 
metho d dec l a ration 

method_spe cifica tion; 
method_spe c ification: : = 

method method_name parameter~rofile ( 6 , 1 ) 

pa rameter~rofile ::= 

[formal~art ( 6,1 ) ] 

formal~art ,. 
(para met e r s pec ificatio n (6 . l ) 

{; paramet~r_specification} ) 


me t hod_body: : = 

me tho d_specifi catio n is 
[variables_and_constants_declaratio ns] 
begin 

sequence of s tatements(S.l ) 
end [metho d_name]; 

Methods in the preprocessor language have the 
same semantics as Ada 95 procedures. The main 
difference in the syntax of a method is replacing the 
reserved word procedure by method. 

Subclasses and Inheritance 

Subclasses like object classes have two parts: 
subclass specification and subclass body. 

Syntax: 
subclass_spec ification: := 

subclass subclass_name of subclass_indication is 
[type_declarations(3 .2.l)] 
[sta te_ dec.1aration] 
methods_de c laration 
pro t o c o l 

end [subc las s_name ]; 
subc lass indi catio n ::= 

class n a me I subclass_ name 

Inheritance is a mechanism that allows the 
definition of a subclass by extension of a class with 
new methods and data, while retaining the methods 
and data of the present class. It provides the ability 
to reuse and override methods and properties 

An Ada-based Preprocessor Language for Concurrent.. . 

belonging to a parent class (Wong, 1995, Miller, 
1998). Most object-oriented programming 
languages, including Ada 95 do not allow deleting 
either a property or a method of the new derived 
class (Loeper, 1998). The preprocessor language 
adds a new feature to the object-oriented paradigm, 
It allows revoking some methods, if needed , for new 
subclasses. 

Overriding a method in the preprocessor 
language is not accomplished by only having the 
same method name. A method is overridden by a 
new method only if the new method has the same 
name and parameter profile. For example, if Y is a 
subclass of X, and X has the method 

method Methodl (A: in Integer ) ;, 

and Y has the method 


method Methodl(A: in Float);. 

Then Y may have two methods called Method1: 
one with an Integer parameter and the other with a 
Float parameter. The protocol of subclasses has the 
same syntax and semantics as the class protocol. 
The only difference between them is that the class 
protocol refers only to methods that are declared 
inside the class itself, while the subclass protocol 
refers to methods of the superclass as well as the 
methods that are defined in the subclass. The 
protocol specifies the order for requesting methods 
of object classes. Therefore, the specification part 
contains all necessary information for using the 
object class, while the class body contains the 
implementation details. Moreover, two new features 
augment the class inheritance of the object-oriented 
paradigm, they are abstract methods and selective 
revoke of methods ' inheritance. For example, an 
object class, say X, may have the following class 
specification: 

class X is 
state 

Varl: A_Type; 
end state; 
Methodl (A: in Pl_Type ) ; 
Metho d2(B : in P2_Type); 
protocol 

Metho dl (A: in Pl_Type) ; 
Method2(B: in P2_Type ) ; 

end protocol; 
end X; 

subclass Y of X is 
state 

Var2:A_type; 
end state ; 
Method3 (C: in P3_Type); 

I subclass Z of Y is 
protocol 

Methodl (A: in Pl_Type); 
Me thocl.2 (B: in P2_Type ) ; 
Method3 (B: in P3_Type); 

protocol 
Method3 (C: in 
Meth0d2 (B: in 

end protocol; 
end Y 

end 
P3_Type ); end Z 
P2_Type) ; 

protocol; 

I 



143 M Almulla, MAL-Haddad and H 

The subclass which is a child class of X, may 
revoke Method] by not it as part the 
protocol. Yet which is a subclass of Y, may 

Method] from X. 

Object-oriented programming languages have 
of support for whole/part and 

generalization/specialization hierarchies. Most 
,_ .. ,...,_.~,...,_~, including 

support for 
whole/part relationships. Nevertheless, whole/part 
hierarchies are most object-oriented 
designs (Wampler, 1998). The preprocessor 
language SUppOlts whole/part hierarchies. 

property in the preprocessor 
is not simply a to 

have not defined special 

a new It is actually defining a new 
object class based on but the new 
object class may have own behavior. For 
example, an Automobile object is not a collection 
Engine, Body, and Tires only. It has some 
behaviors, which these to provide 
final Automobile behavior. In rnf1.r1p,rn 

when the driver park, 
the Automobile object performs two requests to 
parts, i.e. shift gear, which is sent to the Gear object, 
and lock doors, which is sent to Body object. 

Whole/part implementation in the preprocessor 
is provided by including the definition 

an class the state the new 
object class. Therefore, object class and subclass 
definitions may contain the other object 
classes. Hence, both whole/part and 

may 
used together in preprocessor language at the 
same preprocessor allows to use 

defined in their parent classes and/or their 
The Automobile object class, for 

example, uses the type which is defined 
in the Gear object class. preprocessor '_",",_'<""~ 
does not allow an object to access its 
directly. 

Collections 

The preprocessor collection provides the feature 
a set of object classes in one collection. 

is a of a list 
Objects may 

example males and females are related 
classes in the following sense. Each object of these 

object classes has a reference to a father and mother 
object Therefore, female object class is 
dependent on the definition of object class 

each object has a father, which is an 
of the male object class. Also the male object 

class is on the of 
object class each male object has a mother, 
which is an object female object class. 

The collection in the preprocessor language 
slightly from the 95 package in the sense 

that it contains only A library unit may 
related or a 

The collections 
classes are transformed into packages as 

Collections in preprocessor language are 
composed of two parts: the specification, 
gives the information to the world, 
and the body, which the hidden details. 

Syntax: 
collection_specification .. 

collection collection name is 

end [collection_name] ; 
collection_body:: 

collection body is 
{class_body I 
end [collection_name]; 

Although a collection may define many classes, yet 
is 

A GCD Example Written in the 
Language 

In this a well-known algorithm 
and concurrent object-oriented coding the 
preprocessor language will be 
example is concerned with the concurrent solution 

the common divisor (GCD) of N natural 
in (Mattern, 1989). To determine 

xn) where: 

GCD{Xl' 
= 

GCD(Xl' GCD{x2, ... , GCD(xn_j, xn) ... )) 

A of N concurrent processes for Gcd objects 
with initial states x j' x2' ... , where Xi € N N 

> 1 is Each sends a message to its 
and neighbor objects to current state 
y. 	 If object is in state x, then the use 

the equation: 

ifx=y 

GCD(X,y){ ~CD 1) mod + 1) else 

leads 	 to the following pattern of behavior the 
in the state x and a message y: 



144 

The message will be accepted if x> y. 


- The new state of the receiving object is 

determined by (x-I) mod y + 1. 


- The new state is sent to the neighbor objects. 


3 a of three Gcd 
determining the common divisor (210, 

Figure of Gcd objects 

A possible process for state transitions this 
of Gcd is shown in Figure 4. It is 

assumed that bold arrows represent those messages 
that arrive at the neighbor first andlor cause a state 

As one can see, the ends up in a 
point. That when all objects have 

the same state, but they still are messages to 
their neighbors. Although the process of 
messages does not terminate, the stable state is the 

common divisor. A proof can be found in 
(Best, 1995). 

Figure 4: State transitions ID the flng GCD 
objects 

An Ada-based Preprocessor LUllj{UUj{t: Concurrent.. 

The investigation will concentrate on 
implementing this example as concurrent object 

Since the Ada is synchronous 
and the of 
example needs more detailed analysis of 
communication 3 shows how 
neighboring objects communicate with each other 

messages. Each object behaves according to the 
same pattern: 

Sending the object's state to its as 
messages. 

the states of the object's neighbors as 
messages. 

- Calculating the new state of the object. 

Assume two Gcd objects are 
sending messages of their states to each other. This 
leads to a deadlock situation where one Gcd object 
is waiting for accepting the entry call from the other, 
while the other Gcd is waiting the 

signal. objects are 
un)'""",-,,,,,, each other by circular waiting. To prevent 

u"-,,uv,.v'-'ft situation, an additional object 
Dst is attached to Gcd object Figure 5). 
Dst is responsible receiving the updated state of 
the Gcd and providing these states to 
Gcd 

---. Repol:t state -------. Take state ---...;.. Give 

Figure 5: solution the 
problem 

classes 
are in one It is not 
necessary in this case to have both object 
one collection since there is no cyclic aelDeIlac~nc 
between and Dst object classes. the 

in way to show the 
the 

6 represents the collection 
contains the specifications for the Gcd and 

Dst object classes. The implementation of these 
object is included in the collection body, 
which is given in 7. 



145 M Almulla, M AI-Haddad and H Loeper 

with Text_Io, Int_Io; 
use Text 10, Int 10; 
collection Gcd Dst is 

class Dst is 
state 


Left Gcd State : Natural; 

Right Gcd State : Natural; 


end state; 
method Take Left(S: in Natural); 

method Take-Rlght(S: in Natural); 

method Give Left(S: out Natural); 

method Give=Right(S: out Natural); 


protocol 

select 

method Take Left(S: in Natural); 

method Take=Right(S: in Natural); 


or 

method Take Right(S: in Natural); 

method Take=Left(S: in Natural); 


end select; 
loop 

select 
method Take_Left(S: in Natural); 

or 
method Take_Right(S: in Natural); 

or 
method Give_Left(S: out Natural); 

or 
method Give Right(S: out Natural); 

or 
exit; 

end select; 

end loop; 

end protocol; 


end Dst; 

class Gcd is 
state 


Current State : Natural; 

Dst : Dst Class Pointer; 

Left Dst ~ Dst Class Pointer; 

Right Dst : Dst Class Pointer; 


end state; - 
method Initialize(S: in Natural;L:in 

Dst Class Pointer; R:Dst Class Pointer; 
D:Dst Class Pointer) ; - 

method Calc Gcd; 

method Report State(X: out Natural); 

protocol 

method Initialize(S : in Natural; L: in 
Dst Class Pointer; R: Dst Class Pointer;

D: Dst-Class Pointer);- 
method Calc Gcd~ 
method Report State(X: out Natural); 

end protocol; 
end Gcd; 
end Gcd_Dst; 

Figure 6: Collection specification for the GCD and 
DST object classes 

The Gcd object class has four attributes as part of 
its state: a natural number to store the current state, 
and three pointers to Dst objects. The first pointer is 
to the owned Dst object, while the other two 
pointers are to the Dst objects of the neighboring 
Gcd objects. The Gcd object class has three 
methods: Initialize, Calc_Gcd, and ReporcState. 
Initialize is responsible for initializing the Gcd 
objects and linking each Gcd object with the proper 
Dst objects. Calc_Gcd is responsible for getting the 
neighbors' current states from the owned Dst object, 
then calculating the new greatest common divisor 

based on the neighbors' states until the current state 
matches both neighbors state. The method 
ReporCState is responsible for reporting the current 
state to the main program. 

State.Right Gcd State := S; 
end Take Right; 
method GIve Left(S: out Natural) is 
begin 

S := State.Left Gcd State; 
end Give Left; - 
method GIve Right(S: out Natural) is 
begin 

S := State.Right Gcd State; 
end Give Right; - 

end Dst; 
class body Gcd is 

method Initialize(S: in Natural; L: in 
Dst Class Pointer; 

collection body GCd_Dst is-
class body Dst is 


method Take Left (S: in Natural) is 

begin 

State.Left_Gcd_State := S; 
end Take Left; 
method Take_Right(S: in Natural) is 
begin 

R: in Dst Class Pointer; 
D: in Dst Class PoInter) is 

begin 
State. Current_State := s; 
State.Left Dst := 1; 
State.Right Dst := r; 
State.Dst :-: d; 
State.Left Dst.Take Left(s); 
State.Right Dst.Take Right(s); 

end Initialize~ 
method Gcd(X: in Natural; Y: in out Natural) is 

Z : Natural; 
begin 


if X /= Y then 

Z : = Y; 

Y := (x-I) mod z + 1· 

Gcd(State, Z, Y); 


end if; 

end Gcd; 


method Calc Gcd is 
Neighbor-State: Natural; 
Left Ok,-Right Ok : Boolean := False; 

begin - 
while not Left Ok or not Right Ok loop 

Left Ok := False; 
Right Ok := False; 
State~Dst.Give Left (Neighbor State); 
if Neighbor State = StateCurrent-State then 

Left_Ok- : = True; 
else 

Gcd(State,Neighbor State,State. 
Current State);- end if; 

State.Dst . Give Right(Neighbor State); 
if Neighbor State = State.Current State then 
Right Ok :=-True; 

- else 
Gcd(State,Neighbor State, 
State .Current State); 

end if; 
State.Left Dst.Take Right(State.Current State); 

State.Right Dst.Take Left (State. Current-State) ; 

end loop; - 
end Calc Gcd; 
method Report State(X: out Natural) is 
begin 

x := State.Current State; 
end Report State; 
end Gcd; 

end Gcd_Dst; 

Figure 7: The collection body for the GCD and 
DST object classes 



146 

The state of the Dst object class has two 
attributes for storing the states of the Gcd objects. It 
has four methods to take the state of the neighboring 
Gcd objects and to give these states to the owner 
Gcd object based on its request. The protocol 
specifies that the Dst object must take the state of 
both neighboring Gcd objects before providing any 
result to its Gcd object. This confirms that the Gcd 
object will not receive non-initialized values. The 
main method Gcd_Example, given in Figure 8, uses 
the collection of the Gcd and the Dst object classes . 
The target code for the collection and the main 
method is shown in Appendix A. Note the 
difference in size and complexity between the 
source and target code. The program test results are 
provided in the same appendix. 

with Tex t_I o , Int_Io , Gcd_Dst; 
use Text_Io, Int_ I o , Gcd_Ds t; 

metho d Gcd_Example is 
Gl , G2, G3 : Gcd_ Class_Po i n te r : = new 

Gcd_Class; 
Dl, D2 , D3 : Dst Class Po inter .- n ew 

Dst_Cl ass; 
AI, A2, A3 : Natural; 
Final, Resul t : Nat ural ; 
Finish: Boo l ean .- False; 

b e g in 
New_Line; 
Put ("en t e r thr ee numbe r s f or greate r commo n 

diviso r : ") ; 
Get (AI ); Ge t (A2) ; get (A3 ) ; 
GI.lnitiali z e (AI,D3 ,D2 , DI ) ; 
G2 .Initialize (A2 , Dl , D3,D2 ) ; 
G3. I n itialize (A3 ,D2, Dl,D3 ); 
Gl. Ca lc_Gcd; 
G2 . Cal c _ Gc d; 
G3.Cal c _ Gc d ; 
New_ Line ; 
Put ("The Gr e atest Common div i sor f or: ") ; 
Pu t (AI,4 ) ; Put (A2 ,4 ) ; Put (A3, 4 ) ; 
while not Fini s h l oop 

Fini sh := Tru e ; 

Gl.Repo rt_Stat e ( Final ) ; 

G2. Rep o rt_St a te (Re s ult ) ; 

if Final / = Result then Finish .- False; 

end if ; 

G3 .Repor t_State (Resul t) ; 

if Final / = Re s ult then Fini s h .- False; 

end if; 


end l oop ; 
Put ( " i s : " ) ;Put (final , 4 ) ; 

e nd Gcd_Example; 

Figure 8: The main method Gcd_Example 

Conclusion 
Although Ada 95 has all the features for building 

object-oriented programs, the user is not forced to 
use the object-oriented methodology with Ada 95 . 
In this paper, the authors have proposed a uniforrn 
template for the structure of concurrent object 
classes. The paper has also investigated the design 

An Ada-based Preprocessor Language for Concurrent ... 

and implementation of a preprocessor language 
based on Ada 95 for concurrent object classes. The 
preprocessor accepts Ada-like object-oriented 
program units (classes, subclasses, and a main 
program) written in the object-oriented preprocessor 
language and produces Ada 95 concurrent object
oriented code, which is based on the proposed 
template. 

It has been shown that the preprocessor language 
supports the object-oriented design process of 
concurrent programs by keeping the programmer 
away from details necessary for implementing 
concurrent object-oriented units in Ada 95. This is 
done mechanically by generating the concurrent 
program units by the preprocessor. The object
oriented preprocessor language has an advantage 
over other object-oriented languages by adding a 
new component to the class specification called the 
protocol. The protocol specifies the order for 
requesting methods of object classes. Therefore, the 
specification part contains all necessary information 
for using the object class, while the class body 
contains the implementation details . In addition, the 
preprocessor language supports two different ways 
for defining class hierarchies: class inheritance and 
aggregation. Moreover, two new features to 
augment the class inheritance of the object-oriented 
paradigm have been discussed: abstract methods 
and the selective revoke of methods inheritance. The 
research also investigated the definition of circular 
dependent object classes and proposed a solution by 
introducing the collection of classes. 

The comprehensiveness and solidity of . the 
preprocessor language and its implementation have 
been demonstrated in three distinct examples. The 
examples have shown the direct and simple 
conversion of the problem analysis to the program 
coding in the preprocessor language. The 
preprocessor language supports the re-use of Ada 
packages, which in turn are not necessarily written 
according to the object-oriented approach as noticed 
in the examples . Finally, the difference in size and 
complexity is noticeable between the source code of 
the preprocessor language and its Ada-95 target 
code. These examples are the greatest common 
devisor of n natural numbers (called Gcd), the prime 
number sieve of Eratosthenes (called Prime), and , 
last but not least a simulation program for customers 
entering a bank, standing in line, being served by 
tellers , and leaving the bank (called Bank). The 
following table shows the noticeable difference in 
size and complexity between the source code 
written in the preprocessor language and the Ada 95 



- -

147 M Almlll/a, M AI-HlU/dtui and H 

target produced the preprocessor for 
examples. results point out a much 

of compactness combined with clarity in the 
structure of program units their 
interrelations can reached in describing object-
oriented problem the preprocessor 

than that of Ada 95. 

Source Ratio 
Code Size Code Size Source Code 

to Code 

5012 8951 
Prime 1598 2633 61 % 

9081 15141 60% 

Total 15691 

Appendix A: The Code for the 

The code the collection 
specification: 

with Text 10 , Int_Io ; 
use Text 10 , Int Io ; 

package Gcd Dst type Dst_Class 
type Dst_Class_Pointer is Dst Class 

type Gcd_Class_Pointer is access Gcd Class 
task ty~e Dst_Class is 

entry Take_Left ( : in Natural ) ; 
entry Take_Right ( : in Natural ) ; 
entry Give_Left ( S : out Natural ) ; 
entry Glve Rlght ( S : Natural ) ; 

end Dst_Class ; 

type T_State_Dst is tagged private ; 

task type Gcd_Class is 
entry ize ( in Natural 

L in Dst_Class Pointer ; 
R Dst_Class Pointer 

Dst Class_Pointer ) 
entry Calc_Gcd ; 
entry Report_State ( X : Natural 

end Gcd_Class ; 
type T_State_Ged is tagged private 

private 

type T_State_Dst is tagged record 

Left_Gcd_State : Natural ; 

Right_Gcd_State Natural 


end 

procedure Take_Left (State : in out 
T State_Dst; S : in Natural); 

procedure Take_Right (State : in out 
T_State_Dst; S : in Natural); 

procedure Give Left (State : in out 
T_State_Dst; S : out Natural) ; 

procedure Give_Right (State , in out 
T_State_Dst; S : out Natural); 

type T_State_Gcd is tagged record 
Current_State Natural; 

Dst : Dst_Class Pointer ; 

Left_Dst : Dst_Class_Pointer 

Rlght Dst : Dst Class Pointer 


end record ; 

procedure Initial ( State in out 
T_State_Gcd ; 

S in Natural 
L : in Dst Class_pointer ; 

R Dst_Class Pointer ; 

D : Dst_Class_Pointer ) 

procedure Calc_Gcd (State in out 
T_State_Gcd ) ; 

procedure Report_State : in out 
T State Gcd 

X : out Natural ) 
end GCd_Dst ; 

The Target code for the package body: 

package body Ged_Dst is 
procedure Take Left (State in out 

T_State Dst ; 
S 	 : in Natural ) is 

begin 
State Left Gcd State: S 


end Take_Left ; 

procedure Take Rlght ( State in out 


T_State_Dst ; 
S : in Natural ) is 


begin 

State Right_Gcd_State:= S ; 


end Take_Right ; 

procedure Give_Left ( State : in out 


T 	State_Dst ; 
: out Natural 
begin 

S : = State 

end Give Left 

procedure Give_Right ( State : in out 


T 	 State_Dst ; S out Natural ) is 
begin 

S: State 

end Give_Right 

task body Dst_Class 


State : T_State Dst 

ReservedOl Natural 

Reserved02 Natural 

Reserved03 Natural 

Reserved04 Natural 

Reserved05 Natural 

Reserved06 Natural 


begin 
select 

accept Take Left ( S in Natural ) do 
ReservedOl: S; 

end Take_Left ; 
Take_Left ( State ReservedOl ) ; 
accept Take_Right S : in Natural ) do 

Reserved02 = S ; 
end Take_Right ; 
Take_Right ( State • Reserved02 ) ; 

or 
accept Take_Right ( S : in Natural ) 

Reserved03 := 

end Take_Right ; 
Take_Right (State Reserved03) 
accept Take_Left ( S Natural do 

Reserved04: S; 
end Take Left ; 
Take_Left ( State , Reserved04 

end select ; 

loop 




- -

148 

select 
accept Take Left (S in Natural ) do 

ReservedOS : = S ; 
end Take_Left ; 
Take_Left (State ReservedOS) 

or 
accept Take_Right S: in Natural ) do 

Reserved06 := S ; 
end 	Take_Right ; 

Take_Right ( State Reserved06 ) 
or 

accept Give_Left S : out Natural } do 
Give_ Left ( State , S ) 

end Give_Left ; 
or 

accept Give_Right ( S out Natural } do 
Give_Right ( State , S ) 

end Give_Right 
or 

terminate ; 
end select 

end loop ; 
end Ost_Class ; 

procedure Initialize ( State in out 
T_State_Gcd ; 

S 	 in Natural ; 
L 	 in Ost Class Pointer 
R 	 in Ost_Class Po inter 
o 	 in Ost_Class Po inter is 

begin 

State Current State .- S 

State Left_Ost := L 

State Right_Ost := R ; 

State Ost:= 0 ; 

State Left_Ost . Take_Left S 

State Right_Ost. Take_Right ( S 


end 	Initialize ; 

procedure Gcd ( State 
X 	 in Natural ; 
y 	 in out Natural ) is 
Z 	 Natural 

begin 
if ( X /= Y ) then 

Z := Y ; 

Y : = ( ( X - I ) mod Z ) + 1 
Gcd ( State , Z , Y ) ; 

end if ; 

end Gcd ; 


procedure Calc_Gcd ( State in out 
T_ State_Gcd ) is 

Neighbor_State : Natural 
Left_Ok, Right_Ok : Boolean : = False ; 

begin 
while ( not Left_Ok or not Right_Ok ) loop 

Left_Ok : = False; 
Right_Ok := False; 
State . Ost . Give_Left Neighbor_State ) 
if Neighbor_State = State Current_State then 

Left_Ok : = True ; 
else 

Gcd ( State , Neighbor_State , State . 
Current_State ) 

end if ; 
State . Ost Give_Right Neighbor_State); 
if Neighbor_State = State Current_State then 

Right_Ok : = True ; 
else 

Gcd ( State , Neighbor_State , State . 
Current State ) ; 

end if ; 

An Ada-based Preprocessor Language for Concurrent... 

State . Left Ost . Take Right State 
Current State ) 

State . Right_Ost State 
Current_State ) 

end loop ; 
end Calc_Gcd 

procedure Report_State ( State : in out 
T_State_Gcd ; X out Natural ) is 

begin 
X : = State Current State 


end Report_State ; 


task body Gcd_Class is 
State : T_State_Gcd ; 
Reserved09 Natural ; 
ReservedlO Ost Class Pointer 
Reservedll Ost_Class Pointer 
Reservedl2 Ost_Class Pointer 

begin 
accept Initialize ( S : in Natural 

L 	 in Ost_Class_Pointer ; 
R : 	 Ost_Class Pointer 
o : Ost_Class Pointer ) do 

Reserved09 .- S 
ReservedlO : = L 
Reservedll : = R 
Reserved12 : = 0 

end 	Ini t iali ze ; 
Initialize(State, Reserved09, ReservedlO, 

Reservedll, Reservedl 2 }; 
accept Calc_Gcd ; 
Calc_Gcd ( State ) 
accept Report_State ( X out Natural } do 

Report_State 	 (State X) 
end Report_State 

end Gcd_Class 

The Target code for the Main Method: 

with Text_Io , Int 10 , Gcd_Ost ; 
use Text_Io , Int_Io , Gcd_Ost ; 
procedure Gcd_Example is 

Gl ,G2 G3 Gcd_ Class_Pointer:= new 
Gcd_Class 

01 . 02 03 Ost Class Pointer . - new 
Ost_Class 

Al , A2 A3 Natural ; 
Final ,Result Natural 
Finish : Boolean .- False ; 

begin 
New_Line 
Put ( "enter three numbers for greater 

common divisor:" ) ; 
Get Al 
Get 	 ( A2 ) 
Get 	 ( A3 ) 

Gl Initialize Al 03 02 01 
G2 Initialize A2 Dl 03 02 
G3 Initialize A3 02 01 03 
Gl Calc_Gcd 
G2 Calc Gcd 
G3 Calc_Gcd 
New_Line ; 
Put "The Greatest Common divisor for: " ) 
Put Al 4 
Put A2. 4 ) 
Put A3, 4 } 
while not Finish loop 

Finish := True 

Gl Report_State Final } 

G2 . Report_State Result ) 




149 M Almulla, M AI-Haddad and H 

if Final 1= Result then Finish False 
end if ; 
G3 . Report_State ( Result ) ; 
if Final 1= Result then 

Finish False ; 
end if ; 

end loop ; 
Put ( " is; " 
Put ( Final , 4 

end Gcd_Example ; 

Test experiment: 

Enter three numbers for "r.,."t",. common divisor: 

The greatest common divisor for: 105210 is: 21 

References 

Best, E. (1995) Semantik and 

Braunschweig. 
Brosgol, B. (1997) A Comparison of the Object-Oriented 

Features of Ada 95 and Java. Proceedings of the 
Conference on TRI Ada '97, pp. 213-229. 

Booch, G. (1991) with 
applications. BenjaminJCummings Publishing 

Khattab, A. Concurrent 
Methodology Based on Ada 95. Master Thesis in 
Computer Science, Kuwait University. 

Krakowiak, S., et al. ( Design and implementation 

of an Object-Oriented, 

Distributed Applications. Journal of 'JUlvLl.-'J' 


Programming, September/October, 1990, pp. 11-220. 

Loeper, Khattab, A., and Neubert, P. (1997) 

Concurrent Objects in Ada 95. ACM Ada Letters 17 
47-64. 

Loeper, H., Khattab, A., Neubert, P., and EI-Ghabali, M. 
(1998) An Object-Oriented programming paradigm 
based on Ada 95. Kuwait Journal of Science and 

25 275-296. 
Mattern, F. (1989) Verteilte Basisalgorithmen. 

Informatik Fachberichte 226, "1J1UJ);I.OJ 

Miller, Mark (1998) Reuse and 
Object Good Class in 
http://www.eagle-software.comJinherita.htm . 

Odell, J. (1994) Six Different Kinds of Composition. 
Journal of Object-Oriented 5 (8): 10
15. 

Wampler, 	 Bruce E. (1998) The Essence of 
Object-Oriented (see). 
hup:/Iwww.objectcentral.comloobook!webpref.html 

Wegner, P. (1987) Dimensions of Object-Based 
Language Design. Proceeding Oopsla'87 Acm 
Signplan Notices 22: 168-181. 

Wellings, A., et al (2000) Object-Oriented 
and Protected Objectsin Ada 95. ACM 

Transactions on languages and Systems 
22 ( 3): 506-539. 

Wong, Ken (1995) Inheritance and Code Reuse. 
nurnenlc/l;abs,lc++/c·++/nocle l.html 

Received 08/03/2000, in revised form 03/0712001 

http://www.eagle-software.comJinherita.htm
http:1J1UJ);I.OJ

