Arab Gulf Journal of Scientific Research, 19 (3), pp 137-149 (2001)

ORIGINAL PAPER

M Almulla, M Al-Haddad and H Loeper

An Ada-based Preprocessor Language for
Concurrent Object Oriented Programming

Abstract: In this paper, implementation issues of
concurrent object-oriented programming using Ada 93
are addressed. Ada is not a pure object-oriented language;
in order to make it so, a uniform template for structuring
object classes is proposed. The template constitutes a
basis for an Ada-based preprocessor language that
handles concurrent object-oriented programming. The
preprocessor accepts Ada-like object-oriented programs
(object classes, subclasses, and main program) as input
and produces Ada 95 concurrent object-oriented program
units as output. The preprocessor language has the
advantage of adding a new component to the class
specification called the protocol, which specifies the
order for requesting methods of an object. The
preprocessor also touches on the extensibility of object
classes issue. It supports defining class hierarchies by
inheritance and aggregation. In addition, the preprocessor
language supports the re-use of Ada packages, which are
not necessarily written according to the object-oriented
approach. The paper also investigates the definition of
circular dependent object classes and proposes a solution
for introducing a collection of classes.

Celail (Bdy daSally dialyial daveutd Ada Lid slaiely s9id gilas

Fs ke g shuadl sane o Madt sams

iy 2aaSally Caalyiadl Lova,ull Gasd babudd ol 0,5 Juilaspadidwall
Ll o i) Ada 95 Zuao vy Ada 95 . sy wetadty 2L
Lot M Wiy Raa gralye whiay o Jpemsandly B L oL S L g LSall Taa ol
ARl sasall JSaglt M JLE YT el e sl 38« sea JSiuy Lalite
coaball JSaalt Sand Relemall oLpa ¥l £ilad poad LS elat¥) 7 5las LSl
ol Slams o pary Rawba) g 3Laldl (o Uaians duae 5 Lol o3l Glinty
e Ll pellnad Tl 5uela g 3hall (gl (KB ¢ 151 Baunie slihas ol
el aeay .« +Lat M Wiy LuSe Lioliie gool o pllans « A 280 e aiay
elia] Gusle on elliy . elud S Uik A0Sa Laliie wlins o pracad 3eliy Jayal
< goloall Llpen gt I Gled Wy gassall e galall 038 305 Jaelis
Ada 95 e L5 Gl Fales w3 Uiy LauSee ool pllaalf JiiTa
138 whaaeS Ada 95 Gl Ralas pol p 180te 551 5 o iy < olibonsS
i eltha Y 70k e g i it ol RN e dlns gy LaS
Loll 238 Gead ol sl whiag sledlul w3 3o phly gl LS sil0
pilail olagd v oS beS olball Ay Ladae shol o Tl apialt
plasiat Solehy Tt pilas (ol La . pantlly R0 Sdbae Al sL2 Y1
Uiy LasSall davasell sbls Rebean (985 of kit ¥ alty Ada Ll 43,
Mgkm;:o!_;.fl@u@J;tysyvj&*gxw‘ixsi‘,.;_ﬂaw

g 3taill s Repame apads Sl Ja p 5385 Lol i GGLadL . Ay

Keywords: Preprocessor Language, Ada 95, Concurrency,
Object-oriented programming

Ada 95 G Tietiie Loa s st gt o pulall iiglhse Slal

Introduction

Ada 95 offers tools for defining object classes
based on abstract data types. In object-oriented
programming, the concept of abstract data types is
augmented with the features of inheritance,
polymorphism, and dynamic binding to derive new
object classes from parent object classes. Using
these tools, programming with Ada 95 does not

M. Almulia, M. Al-Haddad, and H. Loeper
Department of Mathematics and Computer Science
Kuwait University

Tel:4811188 - Fax:4817201
e-mail:almulla@mes.sci.kuniv.edu kw

automatically result in well-structured object-
oriented programs, because Ada 95 is not a pure
object-oriented programming language. It is the
programmer’s task to comply with certain rules in
order to maintain well-structured object classes in
the Ada 95 software design. In addition, class
extensibility, which means deriving a new
concurrent object class with new methods from a
given superclass, is an important feature of
concurrent object-oriented programming. However,
Ada 95 does not integrate smoothly object-
orientedness and concurrency. Neither the tasks nor
protected objects of Ada 95 are extensible
(Wellings, 2000). This drawback of Ada 95 was
already realized in Loeper (1997) and Loeper
(1998). These papers deal with a proposal for

137

138

implementing concurrent object classes in a general
well-structured manner, which in turn allows the
definition of subclasses by extensions based on
inheritance. In this work, new methods may be
added to an object class by attaching a new task to it
that implements the methods of the derived class. It
should be noticed that a supplementary thread of
control is added to the subclass, if the superclass is
already defined as an active concurrent object class.
Normally, active concurrent object classes are at the
leaves of inheritance hierarchies when a concurrent
system is designed. Therefore, in such cases the
superclass is an abstract tagged type and no problem
will arise when applying the suggested approach.
Otherwise, in general, implementing concurrent
object subclasses by extending the parent tagged
record with a new task that implements the methods
of the derived class may lead to synchronization
problems.

Wellings (2000) is also concerned with the
integration of concurrency and object-oriented
programming in Ada 95. It studies mainly Ada’s
protected type mechanism and works out a proposal
for making Ada 95’s protected type mechanism
extensible, which causes both syntactic and
semantic variations to the Ada 95 language.

The intention of the authors in this work is to
avoid revising the current Ada 95 standard. They
introduce a preprocessor language as an additional
layer to the software design process with the aim of
overcoming the drawback of the explained
extensibility issue, as well as to support the well-
structured object-oriented software design. In this
paper, the authors investigate mainly the design and
implementation of a preprocessor language based on
Ada 95 for concurrent object classes, which will be
roughly described. The preprocessor accepts Ada-
like object-oriented program units (classes,
subclasses, and a main program), and produces Ada
95 concurrent object-oriented code, which is based
on a proposed Ada 95 target code template of
concurrent object classes.

The preprocessor language allows creating
hierarchies of object classes by either inheritance or
aggregation. Object-oriented programming
languages support inheritance; yet, the preprocessor
language enhances the inheritance mechanism by
allowing a subclass to revoke unnecessary methods
while allowing its child classes to inherit those

methods from their grandparent class. Aggregation

means to compose an object class by other object
classes. In object-oriented design methodology,
class aggregation, as an important design principle,

An Ada-based Preprocessor Language for Concurrent...

is often neglected or only indirectly provided. The
preprocessor language provides a direct support for
aggregation by allowing a class to have object
classes as part of its state. An object in Ada 95 target
code is represented as a single task regardless if it is
an instant of a class or a subclass in case of
inheritance, while aggregate objects have their own
tasks.

For the sake of well-structured object-oriented
problem decomposition, it is desirable that each
object class definition represents one compilable
program unit of the preprocessor language.
However, more than one object class must be
defined together, if the object class definitions are
recursively dependent. Therefore, the preprocessor
language also provides “collection”, which allows
the programmer to write circular dependent classes
in one compile-able program unit.

The remainder of the paper is organized as
follows. Section 2 introduces the general template
for concurrent object-oriented programs, which is
the basis for this investigation in designing and
implementing a preprocessor language, as well as
the layout of the Ada 95 target code produced by the
preprocessor, which is discussed in Section 3. The
concurrent object-oriented language definition that
was called before the preprocessor language is
described in Section 4. The beginning of the section
describes object classes. Two separate constructs
define classes, subclasses, and collections: the
specification, which includes the necessary
information for using the specified item, and the
body, which contains the internal implementation of
the methods. The section also describes the subclass
definition in the preprocessor language. Subclasses
inherit the state attributes and methods from their
superclass. Subclasses have specification and body
like classes but only additional attributes are
specified in the state of the subclass, while the
superclass attributes are automatically inherited.
Methods that have different behavior in the subclass
other than that of the superclass are called
overridden methods. Only new and overridden
methods have declarations and bodies in the
subclass. The preprocessor language also provides a
facility to revoke unneeded inherited methods. The
preprocessor language adds an important new
component to the class specification called the
protocol, which specifies the order in which
methods of a class may be requested. Defining class
hierarchies by inheritance "and aggregation and
adding a new method needs to specify the
appropriate entry point in the order in which the

M Almulla, M Al-Haddad and H Loeper

methods may be requested. This task is achieved by
the protocol. Therefore, all methods including the
inherited ones must be specified in the protocol,
unless they are intended to be revoked. In addition,
the preprocessor language allows defining part-
objects as part of the state of an object class
specification. Part-objects are objects of a specific
class or a subclass, which may themselves have
part-objects as well. At the end of Section 4, the
collection concept in the preprocessor language is
introduced. The preprocessor language target code
translation is discussed in Section 5. The section
starts with a brief description of the preprocessor
implementation and then focuses on the target code
translation for object classes, subclasses, part-
objects, and collections into Ada 95.

Section 6 discusses concurrent object-oriented
programming using the preprocessor language for
various examples. These examples demonstrate
some of the features of the language and prove its
expressiveness and solidity. The preprocessor was
fully implemented using the GNU Ada 95 Compiler
Version 3.10 (GNAT 1997) running on PC with
Windows 97.

Concurrent Object Classes

The object class is the conceptual modeling tool
for generating objects (Khattab, 1997). An object
encapsulates a set of data (the state) and a set of
methods that operate on these data (Krakowiak,
1990). The notion of object orientation is mainly
based on the concepts of objects, object classes and
class inheritance, combined with polymorphism and
dynamic binding (Wegner, 1987). Composition
(also referred to as aggregation) is a mechanism of
forming an object class as a whole using other
object classes as its parts. It reduces the complexity
by treating many object classes as one (Odell,
1994).

An object has a state, which holds all properties
of the object. Moreover, methods (procedures or
functions) are associated with an object, which
describe the meaningful operations on the object.

An object class is a set of all objects having the
same structure and behavior (Booch, 1991). The
general structure of an object class according to
Loeper {1998) is represented in Figure 1, with the
following remarks:

Figure 1: Structure of an object class,

139

receive messages

Nov oY

([object lass name |

specification state |

part

methods specification |

I methods protocol |

N

| methods implementation]
implementation i local constants, variables, and operations

part 9 [

Logical Processor |

¥

send messages
¢ Memory space is associated with each object of
the class for its local constants and variables.
These constants and variables determine the state
(properties, attributes) of the object at any
moment,

* A protocol for receiving messages through the
object methods. The protocol specifies the order
in which the object’s methods are arranged to
accept incoming messages. Each object is able to
receive messages in accordance with its
method’s protocol. The messages are queued in
the order of arrival to the object. Therefore, the
order in which the object responds to the
received messages depends uniquely on the
protocol’s queue.

» FEach object may request service from other
objects by specifying the following:
1. The server object name.
2. The requested service or method name.

3. The parameters of the method to be passed.

¢ (Objects are considered as concurrent entities that
implement autonomous processes. Each object
has an independent logical thread of control.
Execution of a method performed on the object’s
own (logical) processor may change the state of
the object.

An object class may be seen as an abstract data
type when augmented with the capability of defining
new object classes based on a parent class by
inheritance. In this context, objects of an object class
are considered as concurrent units; hence the equation:

Concurrent Object Class =
Abstract Data Type + Inheritance + Concurrency.

140

A Template Design for Concurrent Object-
Oriented Programming

Task type is the Ada 95 implementation for
concurrency. The proposed template design, Figure
2, has a single task for each object regardless
whether it is a subclass object or a superclass object.
Inherited, new, and overridden methods are
implemented by a single task of the subclass.

with ...;
use ...;
package Classname is
task type Classname Class is
entry Initialize(...);
entry Methodl(X: in A_Type; ...);
entry Method2 (X: in out A Type; ...};

end Classname_Class

type Classname_Class_Pointer is access
Classname_Class;
Type T_State_ Classname is tagged private;

private
type T_State_Classname is tagged record
State_Component : A Type;

end record;
procedure Initialize(State: in out
T _State_Classname; ...);
procedure Methodl(State: in out
T_State_Classname;
X: in A Type; ...);
procedure Method2(State: in out
T_State_Classname;
X: in out A Type; ...);

end Classname;

Figure 2: The template of concurrent object classes
- its specification.

The state of the object is defined inside the task
and the type of the state is defined in the package
private part. Methods of the object are the task
entries. Encapsulation is automatically provided
since the state is part of the task implementation,
which is hidden from the «calling object.
Furthermore, the “accept” statement of a method,
which only modifies the state, may have only
statements for copying the in-parameters from the
calling object. In this case, a higher degree of
concurrency is provided. If a method Methodl has
only in parameters, then a Methodl's accept
statement may be written as follows:

accept Methodl (A: in A Type) ;
Ra ::= A;
End Methodl;

Methodl (Aa) ;

An Ada-based Preprocessor Language for Concurrent...

The template specifies that the only interface to
objects of an object class is through their task
entries. Outside objects cannot access internal
procedures, because they are defined in the private
part. Moreover, outside objects cannot access the
state of the object, although the state type
T_State_Classname is defined in the non-private
part of the package specification. However, the state
itself is defined as an instance of T_State_Class
inside the task body. Therefore, the state of the
object is encapsulated.

The concurrent object-oriented template defines
object classes as task types. Declaring the state as a
tagged record supports inheritance. Because an
object may be accessed only through its task entries,
the new template provides the ability to revoke
some methods for a new subclass. This could be
accomplished by not specifying task entries for such
methods. Hence, the outside objects cannot perform
these methods. However, new grandchild classes
may inherit these methods from their grandparent
class, although their parent class did not inherit
these methods.

The Concurrent Object-Oriented Preprocessor
Language Definition

In Section 3, a design of an Ada 95 template for
representing concurrent object classes was
discussed. In this section, a concurrent object-
oriented programming language suitable as source
language of a preprocessor producing Ada 95 code
is introduced. The preprocessor acts like a compiler;
it accepts Ada-like object-oriented code as input and
produces Ada 95 concurrent object-oriented
packages and programs. The produced target code
has the structure of the template that was suggested
earlier. The preprocessor language forces the use of
the object-oriented paradigm. It comprises the
definition and the use of program units such as the
main program, classes, and subclasses. In addition,
the Ada-like object-oriented preprocessor language
not only accepts object-oriented code, but also
allows the reuse of the existing Ada 95 code.

An object class in the preprocessor language
consists of two parts: specification and body. The
specification includes the state, methods and the
methods’ protocol. In Ada 95, task entries are
specified in the package specification. However,
without referring to the package body it does not
give a complete picture of the defined order to
access these entries. In the preprocessor language,
the protocol specifies the proper order for calling

M Almulla, M Al-Haddad and H Loeper

the methods of an object class. Therefore, the user of
an object class has all necessary information for
using objects of this class from the class
specification. The preprocessor uses the protocol to
generate the target code for task specification and
body. Therefore, the class body only specifies the
details of the methods implementation.

The preprocessor allows separate definitions for
object classes, subclasses, and main programs.
Moreover, definitions of circular dependent object
classes have to be put into a single unit called the
collection. The preprocessor language supports two
kinds of class hierarchies, namely inheritance and
aggregation. Inheritance provides the use of classes
in subclass definitions. Aggregation allows defining
a new object class as an aggregation of already
defined object classes. In addition, the preprocessor
language provides collections of object classes,
which have circular dependency on each other.

Object Classes

The object class of the preprocessor is securing
its objects such that any access to an object’s
componenis is only permitted through its protocol.
An object class is a set of objects. An object class
consists of two parts: the specification, which
provides the visible information, and the body,
which provides the hidden details.

Syntax:
class_specification ::=
class classname is
[type declarations(3.2.1)]
[state_declaration]
methods declargtion
protocol

end [classname];

The state of an object class is defined in the class
specification, but the preprocessor does not provide
means to directly access the state from outside as
mentioned above. The state declaration is optional,
but if the reserved word state is specified then at
least one declaration must exist. If it is intended to
have an empty state, then the state declaration
should be omitted. Static and dynamic attributes of
the state are declared inside the state specification as
variables and/or constants.

Syntax:
state_declaration ::=
state
variables_and constants_declarations
end state;

variables_and constants_declarations ::=
var_and_const_declaration;

141

{var_and const_declaration;}
var_and_const_declaration ::=
object_declaration{(3.3.1)number declaration(3.3.2)

An object provides services to other objects
through its methods. The methods” declaration of an
object class is the list of specifications of the
methods that will be defined in the class body.

§yntax H

methods_declaration ::=
{method specification;}
method_specification ::=

method wethod name parameter profile(6.1)

The methods’ protocol, or simply called
protocol, is necessary for concurrent objects. It
specifies the order in which the methods of an object
may be requested.

Syntax:
protocol =
protocol
sequence_of controls

end protocol;

The protocol consists of a sequence of controls in
the preprocessor language. The preprocessor has
four kinds of controls: method_specification, exit,
select, and loop control. Method_specification
control is used to accept methods; it has the same
effect as the accept statement of Ada 95. Exit
control 1s used to indicate terminating points. Select
control provides alternative controls to be selected.
Loop control is used for repetitive controls.

Syntax:
sequence_of controlsg ::=
control {control}
control ::=
simple_control | compound_control
simple_control ::=
exit; | method specification;
compound_control ::=
select_control | loop control
select_control ::=
select
sequence_of controls
{oxr sequence_of controls }
end select;
loop_control ::=
loop
gequence_of controls
end loop;

The preprocessor language supports generic
classes in the same syntax and semantics as the Ada
95 generic packages. For each object class,
the preprocessor language automatically
defines the types Classname_Class and
Classname_Class_Pointer. These types are used to
declare objects of the object class or pointers to
objects of the object class, respectively. These types

http:type_declarations(3.2.ll

142

are described in more detail in Section 4.2.
Moreover, the preprocessor language supports two
kinds of service requests: requests of objects’
methods, and requests of procedures and functions
written in Ada 95.

The Main Program

A complete program in the preprocessor
language is conceived as a parameter-less method
(subprogram), which calls upon the services of
objects through their methods. A method is a
program unit or intrinsic operation whose execution
is invoked by a method call. A method call is a
statement. The definition of a subprogram can be
given in two parts: a method declaration defining its
interface, and a method body defining its execution.

Syntax:
method_declaration ::=
method_specification;
method_specification ::=
method method name parameter profile(6.1)
parameter profile ::=
[formal part(6.1)]
formal_part ::=
(parameter specification(6.1)
{; parameter specification})

method body ::=
method_specification is
[variables_and_constants_declarations]
begin
sequence_of statements(5.1)
end ([method name] ;

Methods in the preprocessor language have the
same semantics as Ada 95 procedures. The main
difference in the syntax of a method is replacing the
reserved word procedure by method.

Subclasses and Inheritance

Subclasses like object classes have two parts:
subclass specification and subclass body.

Syntax:
subclass_specification ::=
subclass subclass _name of subclass indication is
[type_declarations(3.2.1)]
[state_declaration]
methods_declaration
protocol
end [subclass_name] ;
subclass_indication ::=
class_name | subclass_name

Inheritance is a mechanism that allows the
definition of a subclass by extension of a class with
new methods and data, while retaining the methods
and data of the present class. It provides the ability
to reuse and override methods and properties

An Ada-based Preprocessor Language for Concurrent...

belonging to a parent class (Wong, 1995, Miller,
1998). Most object-oriented programming
languages, including Ada 95 do not allow deleting
either a property or a method of the new derived
class (Loeper, 1998). The preprocessor language
adds a new feature to the object-oriented paradigm.
It allows revoking some methods, if needed, for new
subclasses.

Overriding a method in the preprocessor
language is not accomplished by only having the
same method name. A method is overridden by a
new method only if the new method has the same
name and parameter profile. For example, if Y is a
subclass of X, and X has the method

method Methodl (A: in Integer);,
and Y has the method

method Methodl (A: in Float) ;.

Then Y may have two methods called Methodl:
one with an Integer parameter and the other with a
Float parameter. The protocol of subclasses has the
same syntax and semantics as the class protocol.
The only difference between them is that the class
protocol refers only to methods that are declared
inside the class itself, while the subclass protocol
refers to methods of the superclass as well as the
methods that are defined in the subclass. The
protocol specifies the order for requesting methods
of object classes. Therefore, the specification part
contains all necessary information for using the
object class, while the class body contains the
implementation details. Moreover, two new features
augment the class inheritance of the object-oriented
paradigm, they are abstract methods and selective
revoke of methods’ inheritance. For example, an
object class, say X, may have the following class
specification:

- 7c1asa X is
state

Varl: A _Type;
end state;

Methodl (A: in P1_Type);
Method2 (B: in P2_Type) ;
protocol

Methodl (A: in P1_Type);

Method2 (B: in P2_Type);
end protocol;
end X;

subclass Z of Y is
protocol
Methodl (A: in P1_Type) ;
Method2 (B: in P2_Type) ;
Method3 (C: in P3_Type) ; Method3 (B: in P3_Type);
protocol end protocol;
Method3 (C: in P3_Type) ;| end 2
Method2 (B: in P2_Type) j
end protocol;
end Y

subclass Y of X is
gstate
Var2:A_type;
end state;

M Almulla, M Al-Haddad and H Loeper

The subclass Y, which is a child class of X, may
revoke Methodl by not specifying it as part of the
protocol. Yet Z, which is a subclass of Y, may
inherit Methodl from X.

Aggregation

Object-oriented programming languages have
different levels of support for whole/part and
generalization/specialization hierarchies. Most
object-oriented programming languages, including
C++, have not defined special language support for
whole/part relationships. Nevertheless, whole/part
hierarchies are essential for most object-oriented
designs {(Wampler, 1998). The preprocessor
language supports directly whole/part hierarchies.
The aggregation property in the preprocessor
language is not simply including a list of parts to
provide a new part. It is actually defining a new
object class based on existing classes, but the new
object class may have its own behavior. For
example, an Automobile object is not a collection of
Engine, Gear, Body, and Tires only. It has some
behaviors, which control these parts to provide the
final Automobile behavior. In modern automobiles,
when the driver requests shifting the gear from park,
the Automobile object performs two requests to ifs
parts, 1.e. shift gear, which is sent to the Gear object,
and lock doors, which is sent to the Bedy object.

Whole/part implementation in the preprocessor
language is provided by including the definition of
an existing object class inside the state of the new
object class. Therefore, object class and subclass
definitions may contain the other object
classes. Hence, both whole/part and
specialization/generalization hierarchies may be
used together in the preprocessor language at the
same time. The preprocessor allows classes to use
types defined in their parent classes and/or their
part-classes. The Auwtomobile object class, for
example, uses the type Gear_Shift, which is defined
in the Gear object class. The preprocessor language
does not allow an object to access its part-objects
directly.

Collections

The preprocessor collection provides the feature
of defining a set of object classes in one collection.
The collection is a description of a list of related
object classes. Objects may be interrelated; for
example males and females are related object
classes in the following sense. Each object of these

143

object classes has a reference to a father and mother
object. Therefore, the female object class is
dependent on the definition of the male object class
since each female object has a father, which is an
object of the male object class. Also the male object
class is dependent on the definition of the female
object class since each male object has a mother,
which is an object of the fernale object class.

The collection in the preprocessor language
differs slightly from the Ada 95 package in the sense
that it contains only classes. A library unit may be a
collection of related classes, a single class, or 2 main
method. The preprocessor language collections and
classes are transformed into Ada packages as target
code. Collections in the preprocessor language are
composed of two parts: the specification, which
gives the general information to the outside world,
and the body, which gives the hidden details.

Syntax:
collection_specification ::=
collection cellection name is
{class specification |subclass specification}
end[collection_name};
collection_body ::=
collection body collection_name is
{class_body | subclass_body}
end [collection _namel;

Although a collection may define many classes, yet
each class is encapsulated

A GCD Example Written in the Preprocessor
Language

In this section, a well-known classical algorithm
and its concurrent object-oriented coding using the
preprocessor language will be discussed. This
example is concerned with the concurrent solution
for the greatest common divisor (GCD) of N natural
numbers specified in (Mattern, 1989). To determine
GCD(x, X9, «.. s X4y, X,,) Where:

GCD{XI, X von s X1 Xn)
GCD(x,. GCD(x,, ..., GCD(x,,_|, X,) ...))
A ring of N concurrent processes for Ged objects

with initial states xj, X5, ..., Xy, where x; € N and N
> 1 is created. Each object sends a message to its left
and right neighbor objects to report its current state
y. If the receiving object is in state x, then the use
of the equation:

X if x=y
GCD(x,y){ GCD (y{((-1) mod y) + 1) else

leads to the following pattern of behavior of the
objects being in the state x and receiving a message y:

144

- The message will be accepted if x > y.

- The new state of the receiving object is
determined by (x-1) mod y + 1.

- The new state is sent to the neighbor objects.

Figure 3 represents a ring of three Ged objects
determining the common divisor GCD (210, 105, 231).

Figure 3: Ring of three Ged objects

A possible process for state transitions of this
ring of Ged objects is shown in Figure 4. 1t is
assumed that bold arrows represent those messages
that arrive at the neighbor first and/or cause a state
transition. As one can see, the system ends up in a
kind of fixed point. That is, when all objects have
the same state, but they still are sending messages to
their neighbors. Although the process of sending
messages does not terminate, the stable state is the
greatest common divisor. A proof can be found in
(Best, 1995).

Figure 4: State transitions in the ring of GCD
objects

An Ada-based Preprocessor Language for Concurrent. .

The investigation will concentrate on
implementing this example as concurrent object
classes. Since the Ada rendezvous is synchronous
and asymmetric, the implementation of the Ged
example needs more detailed analysis of the
communication model. Figure 3 shows how
neighboring objects communicate with each other
via messages. Each object behaves according to the
same cyclic pattern:

- Sending the object’s state to its neighbors as
messages.

- Receiving the states of the object’s neighbors as
messages.

- Calculating the new state of the object.

Assume two neighboring Ged objects are
sending messages of their states to each other. This
leads to a deadlock situation where one Ged object
is waiting for accepting the entry call from the other,
while the other Ged object is waiting for the
acknowledgment signal. Both Ged objects are
blocking each other by circular waiting. To prevent
the deadlock situation, an additional object called
Dst is attached to each Ged object (see Figure 5).
Dst is responsible for receiving the updated state of
the Ged neighbors and providing these states to the
Ged object.

- ‘!,,!:; S
gcds r»—"/ e/ ged
,/v 231 105 V\\

g Report state = -w==wr » Take state ——F Give state

Figure 5: Object-oriented solution for the Ged
problem

The definitions of the Ged and Dst object classes
are combined together in one collection. It is not
necessary in this case to have both object classes in
one collection since there is no cyclic dependency
between Ged and Dst object classes. However, the
solution is presented in this way to show the
collection feature of the preprocessor language.
Figure 6 represents the collection specification,
which contains the specifications for the Ged and
Dst object classes. The implementation of these
object classes is included in the collection body,
which is given in Figure 7.

M Almulla, M Al-Haddad and H Loeper

with Text_TIo, Int_Io;
use Text_Io, Int_Io;
collection Gcd_Dst is

class Dst is
state
Left Gcd_State
Right_Gcd_sState
end state;
method Take_Left (S: in Natural);
method Take Right (S: in Natural);
method Give Left (S: out Natural);
method Give_Right(S: out Natural);

Natural;
Natural;

protocol
select
method Take_Left(S: in Natural);
method Take Right(S: in Natural);
or
method Take_Right (S: in Natural);
method Take_Left (S: in Natural);
end select;
loop
select
method Take_Left (S:
or
method Take Right (S: in Natural) ;
or
method Give Left(S: out Natural);
or
method Give_ Right (S: out Natural);
or
exit;
end select;
end loop;
end protocol;
end Dst;

in Natural) ;

class Gecd is
state
Current_State Natural;
Dst : Dst_Class_Pointer;
Left_Dst Dst_Class_Pointer;
Right_Dst Dst_Class_Pointer;
end state;
method Initialize(S: in Natural;L:in
Dst_Class_Pointer; R:Dst_Class_Pointer;
D:Dst_Class_Pointer) ;
method Calc_Ged;
method Report_State(X:
protocol
method Initialize(S: in Natural; L: in
Dst_Class_Pointer; R: Dst_Class_Pointer;
D: Dst_Class_Pointer);
method Calc_Gcd;
method Report_ State(X: out Natural);
end protocol;
end Gcd;
end Gcd_Dst;

out Natural);

145

based on the neighbors’ states until the current state
matches both neighbors state. The method
Report_State is responsible for reporting the current
state to the main program.

Figure 6: Collection specification for the GCD and
DST object classes

The Ged object class has four attributes as part of
its state: a natural number to store the current state,
and three pointers to Dst objects. The first pointer is
to the owned Dst object, while the other two
pointers are to the Dst objects of the neighboring
Gced objects. The Ged object class has three
methods: [Initialize, Calc_Gcd, and Report_State.
Initialize is responsible for initializing the Ged
objects and linking each Ged object with the proper
Dst objects. Calc_Gcd is responsible for getting the
neighbors’ current states from the owned Dst object,
then calculating the new greatest common divisor

State.Right Gcd State := S;
end Take_ Right;
method Give Left (S: out Natural) is
begin
S := State.Left_Gcd_State;
end Give_Left;

method Give_Right (S: out Natural) is

begin
S := State.Right_Gcd_State;
end Give Right;
end Dst;

class body Gcd is
method Initialize(S: in Natural; L: in
Dst_Class_Pointer;
collection body Gcd Dst is
class body Dst is
method Take_Left (S:
begin
State.Left Gcd_State := S;
end Take Left;
method Take Right (S: in Natural) is

in Natural) is

begin
R: in Dst_Class_Pointer;
D: in Dst_Class_Pointer) is
begin
State.Current_State := s;
State.Left Dst := 1;
State.Right Dst := r;
State.Dst := d;

State.Left_Dst.Take_Left(s);
State.Right Dst.Take Right(s) ;
end Initialize;
method Ged(X: in Natural; Y: in out Natural) is
Z : Natural;

begin
if X /= Y then
Z :=Y;
Y := (x-1) mod z + 1;
Ged (State, Z, Y);
end if;
end Gcd;

method Calc_Gcd is

Neighbor State Natural;

Left_ Ok, Right_ Ok Boolean := False;
begin
while not Left Ok or not Right Ok loop
Left_Ok := False;
Right Ok := False;

State.Dst.Give Left (Neighbor State);
if Neighbor State = StateCurrent State then
Left Ok := True;
else
Gcd (State,Neighbor State, State.
Current_State); end if;
State.Dst.Give_ Right (Neighbor State);
if Neighbor_State = State.Current State then
Right Ok := True;
else
Gcd (State,Neighbor State,
State.Current_State);
end if;
State.Left Dst.Take_Right (State.Current_State);
State.Right_Dst.Take_ Left (State.Current_State);
end loop;
end Calc_Gcd;
method Report State (X:
begin
X := State.Current_State;
end Report_State;
end Gcd;
end Gcd_Dst;

out Natural) is

Figure 7: The collection body for the GCD and
DST object classes

146

The state of the Dst object class has two
attributes for storing the states of the Ged objects. It
has four methods to take the state of the neighboring
Gced objects and to give these states to the owner
Gced object based on its request. The protocol
specifies that the Dst object must take the state of
both neighboring Gcd objects before providing any
result to its Ged object. This confirms that the Ged
object will not receive non-initialized values. The
main method Ged_Example, given in Figure 8, uses
the collection of the Ged and the Dsr object classes.
The target code for the collection and the main
method is shown in Appendix A. Note the
difference in size and complexity between the
source and target code. The program test results are
provided in the same appendix.

with Text Io, Int_Io, Gcd_Dst;
use Text_Io, Int_Io, Gecd Dst;

method Gecd_Example is

Gl, G2, G3 : Gcd_Class_Pointer := new
Gecd_Class;

D1, D2, D3: Dst_Class_Pointer := new
Dst_Class;

Al, A2, A3 : Natural;

Final, Result : Natural;

Finish : Boolean := False;
begin

New Line;

Put (“enter three numbers for greater common
divisoxr:");
Get (Al) ; Get (A2); get (A3);
G1.Initialize(A1,D3,D2,D1);
G2.Initialize(A2,D1,D3,D2);
G3.Initialize (A3,D2,D1,D3);
Gl.Calc Ged;
G2.Calc_Gcd;
G3.Calc_Gcd;
New Line;
Put (“The Greatest Common divisor for: “);
Put (Al,4); Put(A2,4); Put(A3,4);
while not Finish loop
Finish := True;
Gl.Report_State(Final) ;
G2.Report_State(Result) ;

if Final /= Result then Finish := False;
end if;
G3.Report_State(Result) ;
if Final /= Result then Finish := False;
end if;
end loop;
Put (* is: “);Put(final,4);

end Gcd_Example;

Figure 8: The main method Ged_Example

Conclusion

Although Ada 95 has all the features for building
object-oriented programs, the user is not forced to
use the object-oriented methodology with Ada 95.
In this paper, the authors have proposed a uniform
template for the structure of concurrent object
classes. The paper has also investigated the design

An Ada-based Preprocessor Language for Concurrent...

and implementation of a preprocessor language
based on Ada 95 for concurrent object classes. The
preprocessor accepts Ada-like object-oriented
program units (classes, subclasses, and a main
program) written in the object-oriented preprocessor
language and produces Ada 95 concurrent object-
oriented code, which is based on the proposed
template.

It has been shown that the preprocessor language
supports the object-oriented design process of
concurrent programs by keeping the programmer
away from details necessary for implementing
concurrent object-oriented units in Ada 95. This is
done mechanically by generating the concurrent
program units by the preprocessor. The object-
oriented preprocessor language has an advantage
over other object-oriented languages by adding a
new component to the class specification called the
protocol. The protocol specifies the order for
requesting methods of object classes. Therefore, the
specification part contains all necessary information
for using the object class, while the class body
contains the implementation details. In addition, the
preprocessor language supports two different ways
for defining class hierarchies: class inheritance and
aggregation. Moreover, two new features to
augment the class inheritance of the object-oriented
paradigm have been discussed: abstract methods
and the selective revoke of methods inheritance. The
research also investigated the definition of circular
dependent object classes and proposed a solution by
introducing the collection of classes.

The comprehensiveness and solidity of the
preprocessor language and its implementation have
been demonstrated in three distinct examples. The
examples have shown the direct and simple
conversion of the problem analysis to the program
coding in the preprocessor language. The
preprocessor language supports the re-use of Ada
packages, which in turn are not necessarily written
according to the object-oriented approach as noticed
in the examples. Finally, the difference in size and
complexity is noticeable between the source code of
the preprocessor language and its Ada-95 target
code. These examples are the greatest common
devisor of n natural numbers (called Gcd), the prime
number sieve of Eratosthenes (called Prime), and,
last but not least a simulation program for customers
entering a bank, standing in line, being served by
tellers, and leaving the bank (called Bank). The
following table shows the noticeable difference in
size and complexity between the source code
written in the preprocessor language and the Ada 95

M Almulla, M Al-Haddad and H Loeper

target code produced by the preprocessor for these
examples. These results point out that a much higher
degree of compactness combined with clarity in the
structure of the program units and their
interrelations can be reached in describing object-
oriented problem solutions using the preprocessor
language than that of Ada 95.

Example Source Target Ratio
Code Size | Code Size Source Code
to Target Code
GCD 5012 8951 56%
Prime 1598 2633 61%
Bank 9081 15141 60%
Total 15691 26725 59%

Appendix A: The Target Code for the GCD
Example

The Target code for the Ged_Dst collection
specification:

with Text Io , Int_JIo ;
use Text_ Io , Int_Io ;

type Dst Class_Pointer is access Dst_Class ;

type Ged Class ;

type Gecd Class_Pointer is access God_Class

task type Dst _Class is
entry Take Left (§
entry Take Right { 8
entry Give Left (§
entry Give Right (§

end Dst Class ;

in Natural } ;
in Matural) ;
out Natural)} ;
out Natural)} ;

type T _State Dst is tagged private ;

task type Gcd Class is
entry Initialize (8§ in Natural ;
L : in Dst_Class_Pointer ;
R : bst_Class_Pointer ;
D : Dst Class Pointer) ;
entyy Calc Ged ;
entry Report State (X
end Ged_Class ;
type T State Ged is tagged private ;
private

out Natural)

type T State Dst is tagged record
Left_Ged _State Natural ;
Right Ged State Natural ;

end record ;

procedure Take_ Left {State in out
T State_Dst; & in Natural);
procedure Take Right (State in out
T State_Dst; S in Naturalj;
procedure Give Left [(State in out
T_State_Dst; S out Natural);
procedure Give Right (State in out

T _State_Dst; 8§ out Natural};
type T_State God is tagged record
Current State Natural ;

147

Dst : Dst_Class_Pointer ;
Left_Dst Dst_Class_Pointer ;
Right Dst Dst Class_Pointer ;
end record ;
procedure Initialize (State in out
T State Ged ;
s in Natural ;
L : in Dst Class_Pointer ;
R Dst_Class_Pointer ;
D : Dst_Class_Pointer } ;
procedure Calc God { State
T _State_Ged) ;
procedure Report State (State
T State_ Gecd ;
X : out Natural)} ;
end Ged Dst

in out

in out

The Target code for the Ged_Dst package body:

package body Gcd_Dst is

procedure Take Left { State in out
T _State_Dst
$: in Natural)} is
begin
State Left_Gcd_State := §
end Take Left ;
procedure Take Right { State in out
T State Dat ;
5 : in Natural) is
begin
State Right_Gcd_State := 8§ ;
end Take Right ;
procedure Give Left { State in out
T_State _Dst
$: out Natural } is
begin
S := State Left_Gcd_State
end Give Left ;
procedure Give Right (State in out
T_State Dst ; 8 out Natural | is
begin
S := State Right_Gecd_State ;

end Give Right ;
task body Dst Class is

State T_State Dst ;
Reservedll : Natural ;
Reserved(2 Natural ;
Reserved03 Natural ;
Resexrved04 Natural ;
Regerved(s Natural ;
Reserved(s Natural ;
begin
select
accept Take Left { S in Natural)} do
Reserved0l := 5§ ;

end Take Left ;
Take_Left { State , Reservedol) ;
accept Take Right { 8 : in Natural)} do
Reserved(2 := § ;
end Take Right ;
Take Right { State , Reserved02) ;
or
accept Take_Right (8§
Regervedd3 := § ;
end Take Right
Take Right (State , Reserved03 } ;
accept Take Left (S in Natural } do
Reserved04 := § ;
end Take_ Left ;
Take Left (State , Reservedls4)} ;
end select ;
loop

in Natural } do

148

select
accept Take_Left (S in Natural) do
Reserved0S := S ;

end Take_Left ;
Take_Left (State , Reserved05) ;
or
accept Take_Right (S
Reserved06 := S ;
end Take Right ;
Take_Right (State , Reserved06) ;
or
accept Give_Left (S
Give_Left (State , S) ;
end Give_Left ;
or
accept Give Right (S
Give_Right (State , S) ;
end Give_Right ;
or
terminate ;
end select ;
end loop ;
end Dst Class ;

in Natural) do

out Natural) do

out Natural) do

procedure Initialize (State in out
T_State_Gcd ;

: in Natural ;

in Dst_Class_Pointer ;

in Dst_Class_Pointer ;

in Dst_Class_Pointer) is

(= e

begin
State
State
State
State

Current_State := S ;
Left Dst := L ;
Right Dst := R ;

Dst := D ;
State Left_Dst
State Right_Dst

Take_Left (S
. (
end Initialize ;

)
Take_Right S)
procedure Gcd (State

X : in Natural ;

Y : in out Natural) is
Z : Natural ;

in out T_State_Gcd ;

begin
if (X /= Y) then
2 =Y 5
Y := ((X =-1) mod Z) + 1 ;
Gcd (State , Z , Y) ;
end if ;
end Gecd ;
procedure Calc_Gcd (State in out
T_State_Gcd) is
Neighbor_ State Natural ;
Left Ok , Right_ Ok Boolean := False ;
begin
while (not Left_ Ok or not Right_Ok) loop
Left Ok := False ;
Right_Ok := False ;

State . Dst Give_Left (Neighbor State) ;
if Neighbor State = State . Current_State then
Left Ok := True ;
else
Ged (State , Neighbor_State , State
Current_State) ;
end if ;
State . Dst . Give_Right (Neighbor State) ;
if Neighbor State = State Current State then
Right Ok := True ;
else
Gecd (State , Neighbor_ State , State
Current_State) ;
end if ;

An Ada-based Preprocessor Language for Concurrent...

State Left Dst Take_Right (State
Current_State) ;

State Right_Dst Take_Left (State
Current_State) ;

end loop ;

end Calc_Gcd ;
procedure Report State (State in out
T _State _Gcd ; X out Natural) is
begin
X := State Current_State ;
end Report_State ;

task body Gcd_Class is

State T_State_Gcd ;

Reserved09 Natural ;

Reservedl0 Dst_Class_Pointer ;

Reservedll Dst_Class_Pointer ;

Reservedl2 Dst_Class_Pointer ;
begin

accept Initialize (S in Natural ;
L : in Dst_Class_Pointer ;
R : Dst_Class_Pointer ;
D : Dst_Class_Pointer) do

Reserved09 := S ;
Reservedl0 := L ;
Reservedll := R ;
Reservedl2 := D ;

end Initialize ;
Initialize(State, Reserved09, Reservedlo,

Reservedll, Reservedl2);
accept Calc_Gcd ;
Calc_Gcd (State) ;
accept Report_State (X

Report_State (State , X) ;
end Report_State ;

end Gcd_Class ;
end Gcd_Dst ;

out Natural) do

The Target code for the Main Method:

with Text_Io , Int_Io , Gcd_Dst ;
use Text_Io , Int_Io , Gcd_Dst ;
procedure Gcd Example is

Gl , G2 , G3 Gcd_Class_Pointer := new
Gecd_Class ;

D1 , D2 , D3 Dst_Class_Pointer := new
Dst_Class ;

Al , A2 , A3 Natural ;

Final , Result Natural ;

Finish Boolean := False ;
begin

New_Line ;

Put (“enter three numbers for greater
common divisor:”) ;

Get (Al) ;

Get (A2) ;

Get (A3) ;

Gl . Initialize (A1 , D3 , D2 , D1)
G2 . Initialize (A2 , D1 , D3 , D2) ;
G3 . Initialize (A3 , D2 , D1 , D3)
Gl . Calc_Gcd ;
G2 . Calc _Gcd ;
G3 . Calc_Gcd ;
New Line ;
Put (“The Greatest Common divisor for: “) ;
Put (Al , 4) ;
Put (A2 , 4) ;
Put (A3 , 4) ;
while not Finish loop

Finish := True ;

Gl . Report_State (Final) ;

G2 . Report_State (Result) ;

M Almulla, M Al-Haddad and H Loeper

if PFinal /= Result then Finish := False ;
end if ;
G3 . Report_State { Result)
if Final /= Result then
Finish := False ;

end if ;

end loop ;

Put { ™ is: %) ;

Put (Final , 4) ;.

end God_Example ;

Test experiment:

Enter three pumbers for greater common divisor:

The greatest common divisor for: 105 210 231 is: 21

References

Best, E. (1995) Semantik - Theorie sequntieller and
paralleler Programmierung. Vieweg Verlag,
Braunschweig.

Brosgol, B. (1997) A Comparison of the Object-Oriented
Features of Ada 95 and Java. Proceedings of the
Conference on TRI - Ada ‘97, pp. 213-220.

Booch, G. (1991) Object-Oriented Design with
applications. Benjamin/Cummings Publishing
Company.

Khattab, A. (1997) Concwrent Object-Oriented
Methodology Based on Ada 95. Master Thesis in
Computer Science, Kuwait University.

Krakewiak, 5., ef al. (1990) Design and implementation

149

of an Object-Oriented, Strongly Typed Language for
Distributed Applications. Journal of Object-Oriented
Programming, September/October, 1990, pp. 11-220.

Loeper, H., Khattab, A., and Neubert, P. (1997)
Concurrent Objects in Ada 95. ACM Ada Letters 17
(6): 47-64.

Loeper, H., Khattab, A., Neubert, P,, and El-Ghabali, M.
(1998) An Object-Oriented programming paradigm
based on Ada 95. Kuwait Journal of Science and
Engineering 25 (2} 275-296.

Mattern, F. (1989) Veneilte Basisalgorithmen.
Informatik Fachberichte 226, Springer - Verlag.

Miller, Mark (1998) Reuse through Inheritance and
Object Composition Good Class Design in Delphi.
http://www.cagle-software.com/inherita.htm .

Odell, J. (1994) Six Different Kinds of Composition.
Journal of Object-Oriented Programming § (8): 10-
15.

Wampler, Bruce E. (1998) The Essence of
Object-Oriented Programming (see).
http://www . objectcentral.com/oobook/webpref.html

Wegner, P. (1987) Dimensions of Object-Based
Language Design. Proceeding Oopsla’87 Acm
Signplan Notices 22: 168-181.

Wellings, A., et al (2000) Integrating Object-Oriented
Programming and Protected Objectsin Ada 95. ACM
Transactions on Programming languages and Systems
22 (3): 506-539.

Wong, Ken (1995) Inheritance and Code Reuse.
htp//www.geog.ube.ca/numeric/labs/o++/c++/nodel 1 htmi

Received 08/03/2000, in revised form 03/07/2001

http://www.eagle-software.comJinherita.htm
http:1J1UJ);I.OJ

