F Radwan

Scalar Irreducible Parts Of Sixth Rank Tensor

Abstract:A reduction procedure for decomposing a Cartesian tensor of rank into its irreducible parts is given. The numbers of different irreducible parts of the sixth rank Cartesian tensor are calculated. The number of independent components of sixth rank Cartesian tensor is computed. The scalar normalized irreducible parts of sixth rank Cartesian tensor are presented. Examples of different symmetry of sixth rank tensors are given.

Key words: Cartesian tensor, decomposition, Irredcible parts.

Introduction

In the kinetic theory of gases and liquids and in other branches of molecular science one often encounters the necessity of evaluating integrals involving tensors of rank six. On integration, such integrals are expressed as a linear combination of irreducible isotropic tensors of the same rank. One typical example is the evaluation of stress tensors in the Bumett order in kinetic theory [1,2], which requires integrals of Cartesian products of six momenta. In the course of investigation on nonlinear transport phenomena for dense fluids such a necessity also arises in a more general setting [3].

The reduction of a Cartesian tensor results in a sum of irreducible tensors with some weights represented more than once. Hence we can write [4,5],

$$
\begin{equation*}
T_{i_{1} i_{2} \ldots \ldots i_{n}}=\sum_{j=0}^{n} \sum_{q=1}^{N_{n}^{(j)}} T_{1,12}^{(p, q)}, i_{n} \tag{1}
\end{equation*}
$$

Fae q A. A. Radwan

Faculty of Engmeering
Lefkosa - P.O.Box 671
Mersin-10-Turkey
Tel:(90)(392)2236464 - Fax:(90)392)2236461
e-mail:faeq@neuedu.tr

Where q is called the seniority index of the irreducible tensor $T_{1,12}^{(j q)}$ and $N_{n}^{())}$is the multiplicity of weight j in this reduction.

The natural projection of x^{j} onto the irreducible subspace $H_{j}^{(j)}$ of traceless symmetric tensors of order

The principle element in the reduction procedure is the mappings $Q_{i_{i}, \ldots, i_{n}: k_{k}, k_{2} \ldots k_{j}}^{(0, q)}$ of minimal rank tensor subspace $H_{j, q}^{j}$ onto $H_{j, 9}^{n}$. We will choose the mappings such that they are orthonormal and $g_{p q}$ will be reduced to an identity matrix, where $g_{p q}$ is a symmetric matrix, which was used and defined in [2], through the relation,

$$
\begin{equation*}
g_{p q} E_{k_{k} k_{2} \ldots k_{j} l_{1} l_{2} \ldots j}^{(0)}=Q_{i_{j} i_{2} \ldots i_{n} k_{j} k_{2} \ldots k_{j}}^{\left.(0)_{i}\right)} Q_{i_{2} \ldots i_{n}!l_{2}, \ldots l_{j}}^{(0, q)} \tag{2}
\end{equation*}
$$

In this work equation (2) is reduced to,

 is defined by the relation,

$$
\begin{aligned}
& \text { ديكارتي (Cartesian) هن اللدرجة السادسة } \\
& \text { فايــق زضوان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Cartesian) }
\end{aligned}
$$

The dual mapping extracts the natural forms $t_{\lambda_{1} \lambda_{2} \lambda_{j}}^{(j ; p)}$ from the tensor $T_{i_{1} i_{2} \ldots i_{n}}$ as follows,

$$
\begin{equation*}
t_{\lambda_{1} \lambda_{2} \lambda_{j}}^{(j ; p)}=\tilde{Q}_{\lambda_{1} \lambda_{2} \lambda_{j} ; i_{1} i_{2} \ldots i_{n}}^{(j ; p)} T_{i_{1} i_{2} \ldots i_{n}} \tag{5}
\end{equation*}
$$

These tensors can be embedded in the tensor space of order n through the mapping,

$$
\begin{align*}
& T_{i_{1} i_{2} \ldots i_{n}}^{(j ; q)}=Q_{i_{1} i_{2} \ldots i_{n} \cdot k_{1} k_{2} \ldots k_{j}}^{\left(0 ; k_{j}\right.} t_{k_{1} k_{2} \ldots \ldots k_{j}}^{(j ; p)} \tag{6}\\
& T_{i_{1} i_{2} i_{n}}^{(j ; q)}=Q_{i_{1} i_{2} \ldots i_{n} ; k_{1} k_{2} \ldots k_{j}}^{(0 ; q)} \tag{7}\\
& \tilde{Q}_{i_{1} i_{2} \ldots i_{n} ; i_{1} l_{2} \ldots l_{j}}^{(0 ; p)}
\end{align*} T_{l_{1} l_{2} \ldots l_{j}} .
$$

II. The Sixth Rank Tensor:

For $n=6$, equation (1), implies that,
$T_{i j k l m n}=\sum_{j=0}^{6} \sum_{q=1}^{N_{6}(\mathrm{j})} T_{i j k l m n}^{(j ; q)}=\sum_{q=1}^{N_{6}{ }^{(0)}} T_{i j k l m n}^{(0 ; q)}+\sum_{q=1}^{N_{6}{ }^{(1)}} T_{i j k l m n}^{(1 ; q)}+$

Where,
$\underset{n}{N_{n}^{(j)}}=\sum_{k}(-1)^{k}\binom{n}{k}\binom{2 n-3 k-j-2}{n-2}$
and
$0 \leq k \leq[(n-j) / 3]$
From relation's (9) and (10) we have the following table.

Table 1. Values of $N_{n}^{(j)}$ for $n=6$ and $j=1,2,3,4,5,6$.

n	j	$N_{n}^{(\mathrm{j})}$
6	0	15
6	1	36
6	2	40
6	3	29
6	4	15
6	5	5
6	6	1

Each irreducible tensor has $(2 j+1)$ independent components, so that the total number of components in the reduction form is:
$\sum(2 j+1) N^{(j)}=3^{n}$
So for $n=6$, we have,
$\sum(2 j+1) N^{(j)}=N_{6}^{(0)}+\underset{6}{3 N^{(1)}}+5 N^{(2)} 7 N_{6}^{(3)}+9 N^{(4)}+11 N_{6}^{(5)}+13 N_{6}^{(6)}$
$=1 \times 15+3 \times 36+5 \times 40+7 \times 29+15+11 \times 5+13 \times 1$
$=729=3^{6}$

Equation (8) and Table (1) imply that,

$$
\begin{align*}
& T_{i j k l m n}=\sum_{j=0}^{6} \sum_{q=1}^{N_{0}^{(j)}} T_{i j k l m n}^{(j ; q)}=\sum_{q=1}^{15} T_{i j k l m n}^{(0 ; q)}+\sum_{q=1}^{36} T_{i j k l m n}^{(1 ; q)}+ \\
& \sum_{q=1}^{40} T_{i j k k i m n}(2 ; q)+\sum_{q=1}^{29} T_{i j k k i m n}(3 ; q)+\sum_{q=1}^{15} T_{i j k k m n}(4 ; q)+\sum_{q=1}^{5} T_{i j k l m n}+T_{i j k)}+T_{i(6 ; q n} \tag{11}
\end{align*}
$$

Table 2. Natural Projections for Traceless Symmetric Tensors

Order	$\mathrm{E}_{k_{l} k_{2} \ldots k_{j} l l / l_{2} \ldots I_{j}}^{(j)}$
0	1
1	$\delta_{k l}$
2	$\left(\delta_{k l}\right)^{2}-\frac{1}{2} \delta_{k k} \delta_{l l}$
3	$\left(\delta_{k l}\right)^{3}-\frac{3}{5} \delta_{k l} \delta_{k k} \delta_{l l}$
4	$\left(\delta_{k l}\right)^{4}-\frac{6}{7}\left(\delta_{k l}\right)^{2} \delta_{k k} \delta_{l l}+\frac{3}{35}\left(\delta_{k k}\right)^{2}\left(\delta_{l l}\right)^{2}$
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
j	$\left(\delta_{k l}\right)^{j} \frac{j(j-1)}{2(2 j-1)}\left(\delta_{k l}\right)^{j-2} \delta_{k k} \delta_{l l}+\frac{(j-1)(j-2)}{2(2 j-1)(2 j-3)}\left(\delta_{k k}\right)^{2}\left(\delta_{l l}\right)^{2}+$.

III. Scalar Parts of Sixth Rank Tensor:

Let us take $n=6$ and $j=0$. From equation (11) and Table (1), the seniority index q will take the values 1, 2, 3 .15:

For $q=1$:
$Q_{i j k l m n}^{(0: 1)} \quad Q^{(0 ; 1)}=a^{2} \delta_{i j} \delta_{k l} \delta_{m n}$

Where a is the normalization constant, and the normalization condition is:
$Q_{i j k l m n}^{(0 ; 1)} Q_{i j k l m n}^{(0 ; 1)}=a^{2} \delta_{i j} \delta_{k l} \delta_{m n} \delta_{i j} \delta_{k l} \delta_{m n}=1 \rightarrow 27 a^{2}=1 \rightarrow a=\frac{1}{\sqrt[3]{3}}$
$\Longrightarrow Q_{i j k l m n}^{(0 ; 1)}=\frac{1}{\sqrt[3]{3}} \delta_{i j} \delta_{k l} \delta_{m n} \Longrightarrow \tilde{Q}_{i j k l m n}^{(0: \mathrm{L})}=\frac{1}{3 \sqrt{3}} \delta_{i j} \delta_{k l} \delta_{m m}$
Equation (7) implies that:
$\mathrm{T}_{i j k l m n}^{(0: 1)}=\frac{1}{27} \delta_{i j} \delta_{k l} \delta_{m n} T_{p p q q r r}$
In the same way we can find the other irreducible parts:

$$
\begin{align*}
& \left.T_{i j k m n}^{(0 ; 2)}=\frac{1}{48} \delta_{i m} \delta_{j l} \delta_{k n}-\delta_{i k} \delta_{l m} \delta_{j n}\right)\left(T_{p q r q p r}-T_{p q q r r q}\right) \tag{13}\\
& \left.T_{i j k m n}^{(0 ; 3)}=\frac{1}{48} \delta_{i n} \delta_{j m} \delta_{k l}-\delta_{i l} \delta_{j k} \delta_{m n}\right)\left(T_{p q r q q p}-T_{p q q p r r}\right) \tag{14}\\
& \left.T_{i j k m n n}^{(0 ; 4)}=\frac{1}{48} \delta_{k l} \delta_{i n} \delta_{j m}-\delta_{m n} \delta_{k i} \delta_{j i}\right)\left(T_{p q r r q p}-T_{p q p q r r}\right) \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \left.\mathcal{T}_{i k k m n}^{(0.5)}=\frac{1}{48} \delta_{k l} \delta_{i m} \delta_{j n}-\delta_{m n} \delta_{i l} \delta_{j k}\right)\left(T_{p q r p q}-T_{p q q q m}\right) \tag{16}\\
& \left.T_{i j k m n}^{(0,6)}=\frac{1}{48} \delta_{i n} \delta_{j k} \delta_{l m}-\delta_{i k} \delta_{l n} \delta_{m m}\right)\left(T_{p q q r r p}-T_{p q p r a r}\right) \tag{17}\\
& \left.T_{i j k t n n}^{(0,7)}=\frac{1}{36} \delta_{i j} \delta_{k n} \delta_{t n}-\delta_{i j} \delta_{k n} \delta_{j m}\right)\left(T_{p p a r q q}-T_{p p q q r q u}\right) \tag{18}\\
& \left.T_{i j k m n}^{(0,8)}=\frac{1}{36} \delta_{k i} \delta_{i m} \delta_{j n}-\delta_{k i} \delta_{i n} \delta_{j m}\right)\left(T_{p q r m q}-T_{p q r q p}\right) \tag{19}\\
& \left.T_{i j k i m n}^{(0,9)}=\frac{1}{36} \delta_{n n} \delta_{i k} \delta_{j l}-\delta_{n n} \delta_{i l} \delta_{j k}\right)\left(T_{p q p q q r}-T_{p q q p r r}\right) \tag{20}\\
& \left.T_{i j k i m n}^{(019)}=\frac{1}{216} \delta_{i j} \delta_{k l} \delta_{m n}-3 \delta_{i l} \delta_{j k} \delta_{m n}\right)\left(T_{p p q q r(}-3 T_{p q q p r r}\right) \tag{21}\\
& \left.T_{i j k k n n}^{(0 ; 1)}=\frac{1}{144} \delta_{i n} \delta_{j m} \delta_{k i}+\delta_{i l} \delta_{j k} \delta_{m n}-2 \delta_{i j} \delta_{k n} \delta_{i n}\right) \\
& \left(T_{\text {pqriqp }}+T_{\text {pqqprr }}-T_{p p q r q q}\right) \tag{22}
\end{align*}
$$

$$
\begin{align*}
& \left.T_{i j k i m n}^{(0,13)}=\frac{1}{3600} \delta_{i j} \delta_{k l} \delta_{m n}+\delta_{i n} \delta_{j m}-\delta_{k l}-4 \delta_{i n} \delta_{i n} \delta_{k j}\right) \tag{23}\\
& \left(T_{p p q q r}+T_{p q r q q}-4 T_{p q r q q}\right) \tag{24}
\end{align*}
$$

$$
\begin{align*}
& \left.\mathcal{T}_{i j k m m}^{(0.15)} \frac{1}{6} 7444^{3} \delta_{k} \delta_{m} \delta_{j m}+\delta_{i l} \delta_{k}-\delta_{j m}-11 \delta_{i m} \delta_{k n} \delta_{j m}-13 \delta_{i j} \delta_{j m} \delta_{j k}\right) \tag{25}
\end{align*}
$$

IV. Examples of Sixth Rank Tensors:

1. The sixth rank tensor \mathbf{C} symmetric with respect to the first, second and third pairs of indices and to their permutation [6], satisfies:
$C_{i j k k n n}=C_{j i k m n}=C_{i j k k n n}=C_{i j k n n}=C_{i j m n k l}=C_{k l i j m n}$
The coefficients $C_{\lambda \mu v}=C_{i j k m a n} i \nrightarrow \lambda, k l \leftrightarrow \mu$, $m n \longrightarrow v,(\lambda, \mu, v=1 \ldots, 6)$
2. The sixth rank tensor q symmetric with respect to the first, second and third pairs of indices and to the permutation of the second and third pairs, satisfies:
$q_{i j k t r n}=q_{j k k m n}=q_{i j k m n}=q_{j j k n m}=q_{i j n n k t}$
The coefficients $q_{2 \mu v}=q_{i j k m a n} i j \leftrightarrow \lambda, k l \leftrightarrow \mu$, $m n \leftrightarrow \nu,(\lambda, \mu, \nu=1 \ldots, 6)$

Appendix:

Definitions:

1-Isotropic Tensors:

A tensor is called isotropic if its components retain the same values however the axes are rotated, like $\delta_{i k}, \varepsilon_{i k s}$ and $\varepsilon_{i k s} \varepsilon \mathrm{mps}$, where the symbol $\delta_{i k}$ is called the identity matrix (Kronecker delta) defined by:

$$
\delta_{i k}=\left\{\begin{array}{l}
1 \text { if } i=k \\
0 \text { if } i=k
\end{array}\right.
$$

and the symbol $\varepsilon_{i k s}$ is called Levi - Civita antisymmetric tensor defined by:

$$
\varepsilon_{i k}=\left\{\begin{array}{c}
1 \text { for } i k m=123,231,312 \\
-1 \text { for } i k m=132,213,321 \\
0 \text { in all other cases }
\end{array}\right.
$$

and $\varepsilon_{i k s} \varepsilon_{m p s}=\delta_{i m} \delta_{k p}-\delta_{i p} \delta_{k m}$. There are no isotropic tensors of the first rank, $f_{(m)}^{(0) r}$ isotropic tensor of rank m, which are product of $m / 2$ Kronecker deltas if m is even, and products of kronecker deltas, and Levi - Civita antisymmetric tensor if m is odd, the index r in $f_{(m i)}^{(0) r}$, is used to differentiate the various index permutations of f, each of which contracts with a tensor of rank m to give one of rank j.

2-Isotropy:

A material is isotropic with respect to certain properties if these properties are the same in all directions.

3- Trace $\left(E_{i j}\right)=\operatorname{tr}\left(E_{i j}\right)=E_{i i}=E_{11}+E_{22}+E_{33}$.
4 - Irreducible sets obtained by reducing sets of tensors serve to construct new tensors in various ways. Consider first the simultaneous reductions of the set of components of an ordinary tensor T and of the corresponding set of base unit tensors. This operation splits the tensor into a sum of tensors, each of which consists of an irreducible set of base tensors. Each of these tensors may accordingly be called an irreducible tensor. For example a second rank tensor represented by:
$T=i i T_{x x}+i j T_{x y}+\ldots \ldots . . .+k k T_{z z}$,
revolves into three parts, the form of this expression emphasizes the structure of the irreducible tensor, and in terms of irreducible sets, where:

$$
\begin{aligned}
& T^{(0 ; 1)}=\frac{1}{3} \delta_{i j} T_{p p} \\
& T^{(1 ; 1)}=\frac{1}{2}\left(T_{i j} T_{j i}\right) \\
& T^{(2 ; 1)}=\frac{1}{2}\left(T_{i j} T_{j i}\right)-\frac{1}{3} \delta_{i j} T_{p p}
\end{aligned}
$$

References

Burnett, D.(1935) Proc. London Math. Soc.39: 385.
Ferziger, J.H. and Kaper, H.G. (1972) Mathematical

Theory of Transport Processes in Gases. NorthHolland, Amsterdam, The Netherlands.
Eu, B.C. (1979) J. Chem. Phys. 71: 4832.Coope, J. A. R. and Sniders, R. F. (1970) J. Math. Phys. 11: 10031017.

Jerphagnon, J., Chemla, D.S. and Bonnevile, R. (1978) Adv. Phys. 27: 609-650.
Sirotin, Yu. I. and Shaskolskaya, M.P. (1982) Fundamentals of Crystal Physics. Mir Publishers, Moscow.
(Received 03/0005/2000, in revised form 10/02/2001)

