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ABSTRACT. We derive expressions for lim Prob {ZI = i, ZI+Z = j} for a 
l -l oo 

semi-M arkov process with a finite number of states. As an application 
of the resuts, we obtain the autocorrelation function of the process of 
recorded current flowing through a single channel , for two Markovian 
models of the behavior of drug-operated ion-channels. The additional 
information provided by the autocorrelation function would facilitate 
the task of identifying the model which is more consistent with the 
observed record. 

1. Introduction 

We are concerned with the probability that a semi-Markov process arrives in state 
i at time t, and then after a further period z, it is in state j, i.e., Prob {Zt =i,Z,+z =j). In 
particular, we consider the case when t ~ It is to be noted that this probability does 00. 

not depend on the states visited between the times t and t + z. 

Limits of transitional probabilities of semi-Markov processes have been 
considered by various authors, notably by Pyke (1961a, b), Taga (1963) and <;inlar 

(1965, 1975). However, joint distributions in the sense stated here are yet to be 
considered as they may be of interest in their own right. 
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In Section 2 we introduce some notations and state some known results which 
will be used later. Section 3 presents the main results of the paper. In Sub-section 3.3 
the results for a two state semi-Markov process are derived. We conclude the paper 
with an applied example (Section 4) in which, for two separate models, we obtain 
expressions for the autocovariance and autocorrelation functions for the process of 
recorded current flowing through a single ion-channel. 

2. Preliminaries 
Consider a stoachastic process, which moves from one state to another of a 

number of N+1 possible states. Successive states visited form a discrete time 
Markov chain, with an (N+1) x (N+ 1) transition probability matrix P or {Pij}' Let Xo 
denote the initial state of the process and Xn, n = 0,1,2, ... , the states immediately 
following the nth transition, so that XnE {0,1,2, ... , N}. In addition, let the 
inter-transition times {Tn' n = 0, I ,2, ... } be positive random variables such that 

Definition. 

N 
Let Sn =L Tk , So = 0, define Zr = Xn for Sn::; t < Sn+], and suppose Sn ~ 

k=] 

a.s. Then the process {Zt> t ;::: O} is called a semi-Markov process (Pyke 1961 a). 

With Fij defined as Fij(t) = PijHij(t), i ::/. j and Fii = 0, the unconditional 

N 

distribuion function of the sojourn time in state i is Wi(t) = L FU(t), postulated 
j=o 

to have a finite mean J..li. Here FU(t) represents the probability that a process presently 
in state i will next be in state j a time t later. N may be either finite or infinite, but we 

shall assume N to be finite. Also lim Fij(t) = Pij, i,j=O,1 ,2, ... ,N, where Pij is the 
t--t= 

stationary transition probability that a process in state i will next be in state j. 

Let <1>ij(t) be defined as <1>ij(t) = Prob{Zpj I Zo = i}, for all i,j, and t> 0. These 
conditional probabilities are expressible in the following recursive form (Pyke 
1961 b, <;inlar 1969); 

N t 

<1>u = 0u [1 - Wi(t)] + L J 1 dFik (1)<1>kj (t - 1) (2.2) 
k=O 0 

where Oij is the usual Kronecker delta function. The Laplace transform of <1>ij(.) in 

00 
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matrix notation, derived from (2.2), is of the form 

<1>(8) =(1/8)[1 - 8F(8)]-I[I - 8W(8)], 8>0 (2.3) 

where 1 is an (N+ l)x(N+ 1) identity matrix and F(8) and W(8) are the matrices of the 
Laplace transforms of F(.) and W(.) respectively . If F(.) and W(.) are absolutely 
continuous then (2.3) can be written as 

<1>(8) =(1/8)[1 - f(8) ]-1 [I - w(8)], (2.4) 

with f(8) and w(8) being the matrices of the Laplace transforms of the density 
function f(.) and w(.) of F(.) and W(.) respectively. 

For an irreducible persistent and aperiodic semi-Markov process, it is know that 

N 

<1>ij (t) ---7llj as t ---7 where llj (1tj!1j)/ I 1t1!11, and 1tj are elements of the row00, = 
1=0 

N 
vector TI, which is the unique solution of TI = TIP, with I 1tj = 1 and P = lim F(t). 

j=O H oo 

Futhermore, let Pi-) =Prob{.IXo=j}, n(t) = sup {n, Sn<t}, V;=Sn(t)+1 - t and Zt+ 

= Xn(t)+ I. Then it is known that (ibd) as t ---7 00 

It is to be noted that the limit is independent of the initial state i. 

The Limiting Joint Distribution 

3.1 	Special Case of a Markov Process 

For illustrative purpose, let us assume that Zt. t ~ 0, is in fact a time 

homogeneous Markov process with matrix of transition Q = (%) . The distribution 
Hij (t) is then exponential with mean !1i =(-lIqii) for each i = 1,2, .. . , N independently 
of j . The relationship between P and Q is given by 

and 
Pii = 0. 

It then easily follows that 
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Q=Wl(P-I) (3.1.1) 
where !.l is a diagonal matrix with diagonal elements !.li, i = 1,2.... , N. 

Let Rij (z) = Jim P(Zt = i, Zt+z = j), and put R(z) = (Rij(z)). Then we have the 
following theorem~-;= 

Theorem. The Laplace transform of R(z) satisfies 

8R*(8) = 11[1 + Q<1>*(8)] (3.1.2) 

where 11 is a diagonal matrix with diagonal elements 11i, i = 1,2, ... , Nand Q is given 
by (3.1.1), and R*(8) and <1>*(8) are the Laplace transforms of R(.) and <1>(.) 
respectively. 

Proof Prob(Zt = i, Zt+z = j) = Prob(Zt+z = jl Zt =i) Prob (Zt = i) . 

Taking limits we get 

which in matrix notation is 

R(z) = 11<1>(z) . (3.1.3) 

The Kolmogorov backward equation of the process is 

d<1>(t) 
-­ = Q<1>(z).

dt 

Taking Laplace transforms of both sides leads to 

(3.1.4) 

8<1>*(8) =1+ Q<1>*(8) (3.1.5) 

which in turn leads to 

<1>*(8) = (81 - Qr' . (3.1.6) 

The Laplace transform of R (z) can be expressed as 

8R*(8) =118<1>*(8). 
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The Laplace transform of (3.2.6) is easily obtained as 

N 
Rij(e) = (1'\/!1i){ (Oij!1i)/e + I Pjk<Piie) - <pije») i,j=0,1,2, ... , N. (3.2.10) 

k=O 

In matrix notation these become 

(3.2.11) 


3.3 Two-state semi-Markov Process 

As an example, for a two state semi-Markov process we have 

P=[~ ~]. 

Hence wo(t) = fOJ(t) = fo(t) and w,(t) = flO(t) = f,(t), so that 

(t) - [wo (t) 0] d f(t) = [0 10 (t) J 
w - 0 w, (t) , an I, (t) 0 . 

Hence, by substituting for w(e) and f(e) in equation (2.4) and simplifying, we obtain 

ct>(e) = [e(l- f; (e) ft (e))]-' [ ;-10. (e) * I; (e)(1-!t (e»]. 
I, (e)(I-10 (e» 1-I, (e) 

It follows that 

(P - 1) <1>* (e) =el<l>* (e)1(P-I). 

This leads to 

R * (e) = 1'\ [lie + 11-' (P - I) 1<I>*(e)l]. (3.3.1 ) 

4. Application 

4.1 Models of Drug-Operated Ion-Channels 

We consider two models of drug-operated ion-channels. The membranes of 
cells such as those found in heart and nerve tissue contain molecular structures 
known as ion-channels. Some of these molecules are capable of pumping ions across 
the cell membrane and producing a detectable unit of current. The current produced 
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by an ion-channel in a cell has been modeled as a finite state-space Markov process 
(Colquhoun and Hawkes 1977, 1981, 1982, 1983, Milne et al. 1988). 

The simplest such model assumes that a channel becomes open immediately 
after it is bound to a molecule of the agonist drug (acetylcholine, for example). 
When a channel is open it allows a rectangular pulse of current, that can be recorded, 
to pass through. The reaction is reversible, and once the channel is free again the 
current ceases to flow. Denoting the free channel by T, the open channel by AR and 
agonist drug molecule by A, we can write symbolically the model in the form of a 
reversible reaction 

A+T~AR. (4.1) 

A slightly more complicated model assumes that a bound channel has to undergo a 
conformation change before it opens up. The reaction can be represented as 

A+T~AT~AR. (4.2) 

For the latter model we have therefore three states for the channel, namely, free, 
bound and open. However the observed record of current will only show whether the 
channel is open or closed (i.e. free or bound). Other models have also been 
suggested (Dabrowski et at. 1990). 

In this example we obtain expressions for the autocovariance and the 
autocorrelation functions of the process of recorded current flowing through a single 
ion-channel under each of models (4.1) and (4.2). These functions provide additional 
tool for investigating which of the two models is more consistent with the observed 
record. Our main objective here is to demonstrate the usefulness of the results 
derived here. 

We denote states T , AT, and AR of the ion-channel by 0, 1 and 2 respectively . 
For the sake of computational convenience we assume that the state of the channel 
under model (4.2) follows a Markov process with matrix of transition rates Q 

~ [-~ -~ ~ 1 
2 0 2 -2 

We first derive the distributions of sojourn times in the bound and the open 
states. Note that the sojourn in the closed state starts immediately after leaving state 
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I - f *(8)f *(8) = 8(8 + 4) 
o 1 82+48+2 

Hence 

8+3 


1<1>*(8)1 =--- ­
8(8+2)(8+4) 

31 1 1 1 I = - --------- (4.5) 
8 8 4 8+2 8 8+4 


Substituting (4.5) in (4.4) we obtain the following expression for R*(8) 


R*(8) = l[3/4 0 ]+.!{~ 1 I }l-1 1] (4.6)8 0 1/4 2 88 4(8+2) - 8(8+4) 1 -1 . 

In particular, after inverting we get 

I e- 2z e--4zR11=-+--+--. (4.7)
16 8 16 

For model (4.1) it is easier to proceed by noting that 

1<1>*(8)1 =18 I _QI-I . 

8 2/3Since 18 I _ QI =1 + 2/3 - 1 18+2 =3" 8(38 + 8) , -2 

3 9we have 1<1>*(8)1 = 3 = 
8(38+8) 88 8(38+8) 

Hence R*(8)=1[3/4 OJ 1[3 9 ](-1 111 (4.8)
8 i 0 114 +2' 88 -8(38+8) 1 -lj 

Again, after inverting we obtain 

8z 


1 3e T

R11(z)=-+-- . (4.9)

16 16 

If Zt is in equilibrium then Prob(Zt = 0) = TJo = 3/4 and Prob(ZI = 1) = TJl= 114, 
so that we have E(Zt) = 114 and Var(Zt) = 3116. The autocovariance function, 
denoted by y(.), is given by 

(4.10) 



12 On the Limiting Joint Distribution of Semi-Markov ... 

Hence, under model (4.1) the expression (4.9) becomes 

3e-8z13 
y(z)= 16' 

while under model (4.2) the autocovariance function becomes 


e-2z e-4z 

y(z)=-+-.

8 16 

Note that, in both models, y (0) = 3/16, as it should be. The autocorrelation 
function, which we denote by p(.) is given by 

p(z) = y (z)/y (0) 

= e-8z13 for modle (4.1), (4.11a) 

2e-2z e-4z 
and = -- +-- for model (4.2). (4.11b)

3 3 
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