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ABSTRACT. A simple state decentralized self-tuning is designed for 
suboptimal control of multi variable systems. The suboptimal 
decentralized self-tuner is calculated by using a cost function with 
degree ~ and the recursive least squares identification method. The 
suboptimal decentralized adaptive control law for the large-scale 
system is obtained from the adaptive control laws of the subsystems. 
The alogrithm is extremely easy to program on a computer. 

Cost function methods are numerically efficient but are based on necessary condition 
to minimize the cost when applied to initial condition plant Horisberger and 
Belanger (1974) and Allwright and Mao (1982). Many other methods have been 
devised to avoid the above problem Levine and Athans (1974) and Levine et al. 
(1971) but are relatively complex. Man (1970). Dabke (1970). Kosut (1970) and 
Berger (1982) had studied the suboptimal in the sense that the cost function is 
minimal for all initial states and minimal design. However. the computational is still 
high for most practical application. 

In this paper a decentralzied self-tuning method based on the cost function with 
degree ~ is presented. This method is suboptimal, but is very fast and easy to 
implement. The idea of cost function method with degree ~ was first proposed by 
Zheng (1989), and was developed and assessed by Skeliton and Xu (1990). 

The cost function method with degree ~ for suboptimality, EI-Shahat (1992), 
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El-Shahat (1992a) and EI-Shahat ' 1992b), has been successfully appljed i.O the 
de ign of different control systems. The regulator which is given in this paper uses 
an input..output model to characterize the process dynamics. The algorithm w.ill be 
applied to a suboptimal decentralized self-tun ing control in a very simple manner. 

I. Formulation of the Problem 

In this note, we use the input/output model. This model is defined for a 
decentralzied system which can be written in multi variable 'nput I output. The Auto 
Regressive Moving Average CARMA) model given by Luenberger (1 96 ) is 
assumed to have the same number of inputs and outputs q . The CARMA) model is 
written in the following general form: 

(1)Yi(t) =Ai (Z-I) Yj (t) + Bi (Z-I) Ui (t-l) +- ej (t) , i =1,2, ...... r 

where Ai (Z-1) and Bj (Z- I) are defined as foll w: 

(-Z- I \ - I A '7-1 A '7-2 A Z-niA i i - + Ii L + . 2i L + ... .... .. ... + ni 


'Z-1) B B Z-1 . B 2-2 n Z-miB: ~ = OJ + Ii -t- 2i + ... ....... + JJrni (2)
J 

Where n and m are the orders of A(Z-I) and B(Z- l), respectively, for the subsystem 
i, I IS the identi ty matrix (qxq), t is the discrete time index, Z-1 denotes the backward 
shift operator, Uj is the system input, Yi is the system output, and ej is he random, 
zero-mean Gaussian white noise with the covarjance R 

In u more compact form the plant of equation (1) can be written if. state-space 
equation as foHow: 

0 0 ............ Ani 

Xj (t) = lmi 0 ............ 

0 Inti A21 

1 0...... .0 Imi Ali 

X i(t-1) + 

Bill 

B2i Ui (t-1) (3) 

Bli 

Bo 

= AiXj (t-1) + Bj Ui (t-1), (4) 

Yi = CiXj 
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The problem is to devise a suboptimal decentralized adaptive controller for the 
plant (4). This controller uses the well known cost function with degree ~ combined 
with the recurs! ve least squares identification method. 

II. Recursive Least Squares Identification 

Recursive least-squares identification method (Bohon and Debeer (1 977) and 
Dugard and Landan (1980» is used to obtain the parameters of the system. Tn 
decentralzied self-tuning control, we introduced a vector of parameters for e ery 
subsystem: 

ei (ali ..... ...... ani> bOi ............ Dwl) (5) 

and a vector of regressors : 

'1>i =[yiCt) ...... .. Yj (t-nj) Ui(t) .......... U i (t-ni)] (6) 

The recursive least squares estimates are then given by: 

(7) 

where 

E i(t+l) = Yi.(Hl) - '1>(H1) 9j(H1) (8) 


and 

Pj(t+1) =[Pj(t) + Pj (t)'1>i(t){ 1+ '1>;(t)Pj(t)+t1>i(t) t 1'1>j(t)Pj(t») l/li(t+1) (9) 


where Pi is the covariance matrix and Ili is the exponential forgetting factor which is 
given by the foHowing recursive equation Bonson (1979): 

(10) 

III. Suboptimal Decentralized Controller 

The control objective is to find a suboptimal decentralzied output feedback gain 
Fi from the decentralized linear control law f the fonn: 

* -
Ui =-FiYi = _~-l B ; Pi Xj (11 ) 

which minimizes the foHowing cost function: 

T-
J j =Xj Pj Xj (12) 
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where 

Pi is the solution of the matrix riccati equation 


P·(A + a I) + (A + a I)T p. + Q. - p. B· K-1 B:r p. - 0 (13)
1 1 1 1 1 1 1 1 1 1­

If there ex.ists a gain Fi which satisfies the following equation for a given ~ ~ 1 
and a ~ o. 

- n n T- - 1 T-
Pi(Ai + a I) + (Ai + a I) Pi + Qj - Pj Bj Ri B j Pi =0 (14) 

and 

(15) 

where 

(16) 

then there exists a suboptimal decentralized output feedback control Ui which 
• 

minimizes its cost function h 

IV. Suboptimal Decentralized Self-Tuning Controller 

The sUboptimal decentralzied controller in section III is combined with the 
decentralzied least squares identification in section II. The algorithm of the 
suboptimal decentralized self-tuning controller is given as follows: 

Step 1. Choose initial stabilized decentralized feedback gain FjE e where 
e=Fj ERID

. 
r : 

Aj+BjFjC is asymptotically stable and a real scalars a ~ 0 and ~ ~ I. 

A A 

Step 2. Find the polynomial matrices Aj , Bj from the model of equation 1 by 
recursive least squares identification. 

Step 3. Determine A and B from equation 2. 

Step 4. Find the suboptimal decentralized feedback gain, Fj from section ill. 
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Step 5. Use Fi and time-varying reference signal to estimate the control signal 
U j from the equation 

(17) 

where 

ret) is an mxl reference vector, 

L is an rnxm input gain matrix, 

F is an rnxm feedback gain matrix, and 

yet) is an mxl vector. 


v. Example 

The present example was used by Yu and Siggers (1971) and El-Shahat (1998), 
where the optimal decentralized controller was obtained by the optimal cost 
function . However, the computation required by the present algorithm is negligible 
compared with that used by Yu and Siggers (1971) and El-Shahat (1998). Here we 
consider a six-order discrete system consisting of noninteracting subsystems defined 
by the matrices as follows: 

-2.66 -0.099 -0.087 0.002 -0.25 0.003 

-1.36 -0.037 1.11 0 -0.00 1 2.80 -0.020 

0.002 0.600 


-0.001 0.450 


0.121 0.003 1.6 -0.005 -0.46 0.002 

-0.620 -0.015 9.3 -0.120 1.40 -0.040 
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and let Q ::: 0.1 12x2 • R::: 10 12x2 and P =12x2, where I is the unity rna x. 

The plant is described by the one subsystem model as follows : 

0.60 1 1.0.(t ::: -0.087 	 0.020 t-l + I 0.002 0·UCt-i ) + °1 e(t-l) + e(t) y , ) 1 110 -0 001 y( ) 
. . . 1-0·001 0.45 0.0 1.01 
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Fig. 1. Variation of the estimated parameters Fig. 1. Variation of the estimated parameters 
Ani with time. 8 ni with time. 
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FIe- 3. Variation of the controller outputs Fni with time. 

The simulation results for the examp e with the decentralized adapti.ve controller are 
presented in Figs. (1 -3). From these Figures, it is clear that the subsystem parameters 
and feedback gains converge to their real values in 100 iteration, whic i about 25% 

http:adapti.ve
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of the number of iteration required for the convergence of the self-tuner to he 
optimization feedback gains. Figs. 4-7 show that the closed loop-outputs Y 1 and Y 2 

closely follow the reference inputs VIet) and U2(t). From this study, it becomes clear 
that rhe application of cost function method with degree ~ on the class of 
decentralzied adapti ve control yields the same results as th se reported by El-Shahat 
(1 998) or the applcia ion of cost function algorithm on the decentralz.ied adapti ve 
control. 
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g. 4. Variarion of input signal U 1 wi th lime. Fig. 5. Variation of input signal U2 with time. 
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FIg. 6. Variation of output signal Y 1 with time. Fig. 7. Variation of output signal Y 2 with time. 

Conclusions 

The suboptimal self-tuning controller has beene eXiended to include 
decentralzied large-scale systems. The objective devise is to use the cost function 
with degree ~ to determine the suboptimal controller. The controller is easy to 
implement and the fast acting simulation results iHustrate the good behavior of the 
proposed design as a suboptimal decentralzied adaptive control technique. 
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