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AssTracT. A simple state decentralized self-tuning is designed for
suboptimal control of multivariable systems. The suboptimal
decentralized self-tuner is calculated by using a cost function with
degree P and the recursive least squares identification method. The
suboptimal decentralized adaptive control law for the large-scale
system is obtained from the adaptive control laws of the subsystems.
The alogrithm is extremely easy to program on a computer.

Cost function methods are numerically efficient but are based on necessary condition
to minimize the cost when applied to initial condition plant Horisberger and
Belanger (1974) and Allwright and Mao (1982). Many other methods have been
devised to avoid the above problem Levine and Athans (1974) and Levine et al.
(1971) but are relatively complex. Man (1970), Dabke (1970), Kosut (1970) and
Berger (1982) had studied the suboptimal in the sense that the cost function is
minimal for all initial states and minimal design. However, the computational is still
high for most practical application.

In this paper a decentralzied self-tuning method based on the cost function with
degree B is presented. This method is suboptimal, but is very fast and easy to
implement. The idea of cost function method with degree B was first proposed by
Zheng (1989), and was developed and assessed by Skeliton and Xu (1990).

The cost function method with degree B for suboptimality, El-Shahat (1992),
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El-Shahat (1992a) and El-Shahat (1992b), has been successfully applied to the
design of different control systems. The regulator which is given in this paper uses
an input-output model to characterize the process dynamics. The algorithm will be
applied to a suboptimal decentralized self-tuning control in a very simple manner.

I. Formulation of the Problem

In this note, we use the input/output model. This modei is defined for a
decentralzied system which can be written in multivariable input / cutput. The Auto
Regressive Moving Average (ARMA) model given by Luenberger (1966) is
assumed to have the same number of inputs and outputs q. The (ARMA) madel is
written in the following general form:

VD =AZ Dy @ +B@ DU =D+ (D), i=12,.x (1)

where A, (Z™1) and B; (Z'!) are defined as follow:

AZN=T+ARZ + AR Z % + . + A 270

B:Z =B +BuZ  +ByZ % + oo, 4 By Z (2)
Where n and m are the orders of A(Z™!) and B(Z™), respectively, for the subsystem
i, I1s the identity matrix (gxa), t is the discrete time index, Z~! denotes the backward
shift operator, U; is the system input, y; is the system output, and e; is the random,

zero-mean Gaussian white noise with the covariance R.

In a more compact form the plant of equation (1) can be written in state-space
equation as follow:
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The problem is to devise a suboptimal decentralized adaptive controller for the
plant (4). This controiler uses the well known cost function with degree f} combined
with the recursive least squares identification method.

IL. Recursive Least Squares Identification

Recursive least-squares identification method (Bohon and Debeer (1977) and
Dugard and Landan (1980)) is used to obtain the parameters of the system. In
decentralzied self-tuning contrel, we introduced a vector of parameters for every
subsystem:

B; (a1f coeverenen Ani, Do e Bmi) (5)

and a vector of regressors:

& = [¥it) o y; (t=0) Us(0) ......... Uj (t=ny)] (6)

The recursive least squares estimates are then given by:

6;(t+1) = 9;(t) + P(t+1) di(t+1) &;(t+1) ,i=1,2 . r {7
where

€j(t+1) = yi(t+1) — 0 (t+1) B(t+1) (8)
and

Pi(t+1) = [Py(t) + POG(D { 1+ 0 T(OP(0+0;(0) ) i OPi()] / py(t+1) (%)

where P; is the covariance matrix and y; is the exponential forgetting factor which is
given by the foliowing recursive equation Borison (1979):

Hi(t+1) = Hoj py(t+1) + (14ig3) (10)

I15. Suboptimal Decentralized Controfiexr

The control objective is to find a suboptimal decentralzied output feedback gain
F; from the decentralized linear control law of the form:

Ui=-Fy; =-R' B P, X; (in)
which minimizes the following cost function:

5=XIP X (12)
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where

Pi=BP

P; is the solution of the matrix riccati equation

P(Aj+ol)+(Aj+aD)TP;+Q;—P;B;R' Bl P,=0 (13)

If there exists a gain F; which satisfies the following equation for a given B > 1
and o> 0.

P(A. A TP +0.-P-B.RIBTP =

P(Ai+aD)+ (Aj+al)' Pi+Q;i—P;B;R{" B; P;=0 (14)

and

CTFIR;F;C;< P;B;R{'B]P;=0 (15)

where

n ~

Ai=Ai+Bi Ri_1 B;rPi—BiFiCi (16)

then there exists a suboptimal decentralized output feedback control U; which

*
minimizes its cost function J;.

IV. Suboptimal Decentralized Self-Tuning Controller

The suboptimal decentralzied controller in section III is combined with the
decentralzied least squares identification in section II. The algorithm of the
suboptimal decentralized self-tuning controller is given as follows:

Step 1. Choose initial stabilized decentralized feedback gain Fje 6 where
0 =F,eR™":

A;+B;F;C; is asymptotically stable and a real scalars 0. >0 and > 1.

Step 2. Find the polynomial matrices A; , I]\3i from the model of equation 1 by
recursive least squares identification.

Step 3. Determine A and B from equation 2.

Step 4. Find the suboptimal decentralized feedback gain, F; from section III.
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Step 5. Use F; and time-varying reference signal to estimate the control signal
U; from the equation

U; =L 1(t) - Fyyi(t) a7

where

r(t) is an mxl reference vector,

L is an mxm input gain matrix,

F is an mxm feedback gain matrix, and
y(t) is an mx] vector.

V. Example

The present example was used by Yu and Siggers (1971) and El-Shahat (1998),
where the optimal decentralized controller was obtained by the optimal cost
function. However, the computation required by the present algorithm is negligible
compared with that used by Yu and Siggers (1971) and El-Shahat (1998). Here we
consider a six-order discrete system consisting of noninteracting subsystems defined
by the matrices as follows:

-2.66 -0.099 —0.087 0.002 —0.25 0.003
A = sAp= yApz=
-1.36 -0.037 1.110 -0.001 2.80 -0.020
0.002 0.600
Bl = ,C1 =I
-0.001 0.450
0.121 0.003 1.6 -0.005 —0.46 0.002
Ay = |, A = s Ap=
-0.620 -0.015 93 -0.120 1.40 —-0.040
0.900 0.900
By = 5 =T
0.021 0.015
0.46 0.005 0.22 0.053 -1.2 -0.003
Az = Az = s Azz =
-1.10 -0.090 1.70  0.123 7.0 -2.370
0.8 04
B; = ,Cy =1
0.0 0.9
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and let Q=0.1 I
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, R=10 Ij» and P=I,y,, where I is the unity matrix,

The plant is described by the one subsystem model as follows:

-0.087 0.020 0.002 0.60| 10 00
y(t) = y{t=1) + Ut-1) + e(t-1) + e(t)
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Fig. 3. Variation of the controller outputs F; with time.

The simulation results for the example with the decentralized adaptive controller are
presented in Figs. (1-3). From these Figures, it is clear that the subsystem parameters
and feedback gains converge to their real values in 100 iteration, which is about 25%
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of the number of iteration required for the convergence of the self-tuner to the
optimization feedback gains. Figs. 4-7 show that the closed loop-outputs Yy and Y,
closely follow the reference inputs U((t) and Uy(t). From this study, it becomes clear
that the application of cost function method with degree B on the class of
decentralzied adaptive control yields the same results as those reported by El-Shahat
(1998) for the appiciation of cost function algorithm on the decentraizied adaptive
control.
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Fig. 4. Variation of input signal U; with time. Fig. 5. Variation of input signai U, with time.
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Fig. 6. Variation of output signal Y, with time. Fig. 7. Variation of cutput signal Y, with time.

Conclusions

The suboptimal self-tuning controller has beene exiended to include
decentralzied large-scale systems. The objective devise is to use the cost function
with degree B to determine the suboptimal controller. The controller is easy to
implement and the fast acting simulation results illustrate the good behavior of the
proposed design as a suboptimal decentralzied adaptive contro! technique.
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