
308

Sp. Issue 2013/ # Paper 1
Corresponding author:
Yumei Wu
Mailling address: No. 37, Xueyuan
Road, Haidian District, Beijing,
100191, P. R. China
E-mail: wuyumei@buaa.edu.cn
Tel: +86-13903116343
Fax: +86-10-82317663

Mission Reliability Modeling Methodology for Software Dynamic Evolution

Yumei Wu1; and Yongli Yu2

1School of Reliability and Systems Engineering, Beihang University, Beijing, China
2Maintenance Engineering Institute, Shijiazhuang, China

ABSTRACT

KEYWORDS

From the concept of software dynamic evolution, the paper makes a
detail analysis of the influence of the software evolution on software
mission reliability. The basic question of the software mission reliability
for the software evolution is presented. The model framework of
software mission reliability is built, and the modeling methods of
software mission reliability models are given. The research conclusions
have importantly theoretical and engineering value for the reliability
analysis and evaluation of the reconfigurable software on function.

Keywords-Mission reliability;
Software evolution; Software
quality; Dynamic; Reliability
modeling

Introduction
With the informationization of weapons, software
plays an irreplaceable role in the weapon operation,
as an important part of weapons. Currently, with
the changes in mission requirements and constant
upgrade in hardware, many large and complex
software systems (operational command and
control software, a new generation aircraft avionics
systems software), begin to add new features,
continually modify. For instance, with the different
combat objects, the different combat environment,
and on weapon equipments upgrades, the software
for the operational command and control system
needs to modify the existing features; add new
functions, in order to meet the operation. The
important characteristics that the software system
modify constantly during the use, is namely
software evolution, which greatly affects the
reliability, maintainability and various quality
characteristics of the software.

Scholars have made deep and meticulous
researches on the fault-tolerant functions of
software system based on dynamic configuration

(Guo, et al., 2011; Khalgui, et al., 2011, Alkhalid,
et al., 2012; Mortensen, et al., 2012; Bavota,
2012), methods to improve software quality based
on the dynamic configuration (Hanakawa, 2011;
Meanaeatra, et al., 2011; Mens and Tourwe, 2004),
dynamic configuration optimization (Murphy-Hill,
et al., 2009; Gracioli and Fröhlich, 2010; Burger
and Hummel, 2011; Soares, 2011), the dynamic
configuration of avionics systems software for
the IMA (Koru and El Emam 2009; Watkins, et
al., 2006; Strunk and Knight, 2006). However,
the current software architecture modeling and
software reliability modeling techniques are
difficult to adapt to this new problem of software
evolution. Therefore, the reliability models and
modeling methods for software evolution have
extremely urgent requirements in theory and
engineering. This paper analyzes the concept of
software evolution firstly , then taking the Systems
Science as direction, tries to build the software task
reliability modeling framework and methodology
for the software dynamic evolution, and aims to lay
the foundation of the software mission reliability
research under the software dynamic evolution.

AGJSR 31 (Special Issue) 2013: 308-313 Yumei Wu et al

309

Basic Problem of Software Evolution and
Mission Reliability
(1) Software Evolution
Until now, there is not accurate definition of
software evolution (Mens and Tourwe, 2004).
In general, the Software Evolution refers to
the behaviors of software maintenance and the
processes of software updates within the life
cycle of the software system. In modern software
system’s life cycle, the evolution is an active that
runs through the whole process. Changing the
system needs, achieving enhanced functionality,
adding new features, changes in the software
architecture, software bug fixes, changes in the
operating environment and so on, all require that
the software system have a strong ability of the
evolution, and quickly the adapt the changes, and
reduce the cost of software maintenance.

Software evolution can be divided into static
evolution and dynamic evolution according to
whether the software is in the operation. Based
on the predictability of evolution results, dynamic
evolution can be further divided into planed
evolution and non-planed evolution. In addition,
according to the evolution hierarchy, the dynamic
evolution can be divided into the dynamic
evolution of the function level, the class/object
level, the component level, the structural level, and
the workflow level.

(2) The Basic Problem of Mission Reliability for
Software Evolution

Software evolution has an important impact on
software reliability, especially on the software
evolution process and correlative technology for
software reliability. From looking at the impact
of software evolution process, the basic problems
of mission reliability for software evolution are
mainly: Software architecture is modeled based on
mission decomposition. According to the software
development needs, the design requirements
and other related documents, the decomposition
method of software mission may be researched by
dint of the hierarchical thinking. At the same time,
by use of the mission-driven, the software function

modules are divided, and the correspondence
relations between task and function modules are
established.

The task path is research based on evolution
rules. The main works firstly focus on how to
access the method for the evolution rules of
the software task execution path. The formal
representation method of evolution rules will be
studied to provide a stronger theoretical foundation
for the task path evolution. According to the
problems encountered in the software execution
process, the task execution path is usually, adjusted
behind by dint of the evolution rules. Therefore,
the rule-based certainty and uncertainty evolution
will affect the decision of the task path. Then,
the enforcement mechanisms of the tasks under
different evolutionary rules will be studied, and
the affect of task execution path will be researched
when the software is actually running.

The mission reliability simulation modeling
method based on multi-level simulation. Taking
the software mission reliability as a metrics,
the integration among the software architecture
modeling based on the task decomposition, the
reconstruction of functional modules based on the
rules and the dynamic configuration mechanism
will be done. The simulation processes of software
mission reliability will be defined, the simulation
algorithm of software mission reliability will be
optimized to enhance the simulation efficiency and
accuracy.

(3) The Mission Reliability Modeling Framework
for Software Evolution

According to the basic problems of mission
reliability, the mission reliability model and
modeling method framework for software
evolution are built, See Figure 1.

Mission Reliability Modeling Method for
Software Evolution
(1) Software Architecture Modeling Based on

task Decomposition
Software architecture modeling based on task
decomposition is shown in Figure 2.

AGJSR 31 (Special Issue) 2013: 308-313 Yumei Wu et al

310

Figure 1: Mission Reliability Model Framework
For Software Evolution

Figure 2: Software Architecture Modeling Technology
Based on Task Decomposition

First, by means of the hierarchical method,
the software task (ST) is divided into the software

sub-tasks (SST) and software basic tasks (SBT),
and the tree hierarchy structure of “software
task - software sub-task - software basic task” is
established, shown in Figure 3.

Figure 3: The Tree View of Software Task
Decomposition

As different SST can contain the same SBT,
the SBT can be divided into two categories: one
is for the SBT shared by the plurality of SST (see
Figure 3). Another is for the SBT of a unique SST
(see Figure 3). The sharing SBT are often likely
to come into conflict when multiple SST are in
the concurrent execution, and cause unreasonable
resources seizing and task scheduling problem. It
is a key consideration in the modeling process.
Furthermore, when the number of the SST and
SBT comes to a certain extent, and the sharing
relationship between the SST and SBT is more
complex, the tree hierarchy of the software will
evolve into a network structure (see Figure 4). The
tree hierarchy in Figure 3 is isomorphic relationship
with the network topology in Figure 4. The formal
methods can be used to describe a view of the
software task, and reduce the sharing relationship
of the SBT, thus to achieve a dynamic allocation
of resources and a reasonable scheduling of tasks.

After the completion of the task decomposition,
the SBT is defined as an undivided and intact
software task in logic, consisting of a set of software
functional modules combining with a certain rule.

AGJSR 31 (Special Issue) 2013: 308-313 Yumei Wu et al

311

Figure 4: The Network View of Software Task
Decomposition

The software function modules are distinguished
from the view of task completed. At the same time,
the structure view description is provided that
the function modules complete the software task.
The function module is abstracted as a node, the
relationships between functional modules as an
edge. The software architecture can be abstracted
as a directed graph. For the operational command
and control system software, the architecture of
complex software, has the network characteristics,
shown in Figure 5 (a).

Figure 5 (a & b): The Software Architecture
Diagram & The Task Path Found Based on
Software Architecture

In software architecture, when extracting a
SBT of the software, the whole involved functional

modules and relationships can be called, the
execution path of the SBT can be built, and directed
sub-graph can be formed, shown in Figure 5(b).
Since the different SBT would invoke the same
functional module (shared module), it the conflict
will occur among the execution paths of SBT.
When multiple SSTs are concurrent execution,
the issues are considered such as resource sharing
and task priority. By means of the formal methods
the software architecture and its internal task path
can be modeled. The same time, formal methods
can precisely define the sharing relationship of
functional modules among the task paths, to
achieve the automated scheduling of resources,
and also to facilitate the later analysis.

The static software architecture, task
decomposition and dynamic task path finding can
be integrated, to form the hierarchical and network
software architecture model for task and the static
and dynamic software internal structure.

(2) The Evolution Rules of Task Execution Path
Modeling of the evolution rules of task execution
path shown in Figure 6.

Figure 6: The Task Path Evolution Research Based
on Rule

Usually due to task changing or functional
module failure, the online dynamic evolution of
the new generation software can occur during
operation. Therefore, after determining the
execution path of SBT by means of the software
architecture modeling process, the task execution

AGJSR 31 (Special Issue) 2013: 308-313 Yumei Wu et al

312

path problem must be solved when the software
evolution take place.

The evolution of software task path may be
caused by a variety of reasons, and the evolution
mechanisms are not the same, the reasons
described to lead to the evolution, the mechanisms
of evolution and the evolution rules are needed to
extract and define. For the given evolution rules,
the reconstruction of the function module as well
as the path changes are found out during the task
execution process.
The evolution rules can be obtained as follows:
(2.1) Scientific theories, including requirements
specification, design document, and operating
system theory. The possible changes of task
execution path may have been taken into account
in the requirements and design stages of the
software development, and alternative paths under
different conditions have already been pre-defined.
In addition, some of the rules can be extracted
from the operating system theory. According to
analyzing the relative task scheduling algorithm
of real-time embedded operating system, common
task abnormalities can be summarized, such as
deadlock, shared resource inconsistency, and the
corresponding evolution program of the task path
for different abnormal task is given.
(2.2) Experience knowledge, including the
experiences of the developer and expert. Through
the developers’ designing, coding, testing
experience, and the experience of the experts,
the most common problems can be determined
in the implementation of the software, and the
corresponding evolution program of task execution
path can also be given. In addition, we can also
consider learning from the dynamic configuration
library of the IMA Blue Print.

After extracting the evolution rules of software
task execution path, these evolution rules are
defined and described by formalized methods,
the alternatives of execution path are given when
the resource sharing conflicts, task scheduling
chaos and the function module fails. Using these
formalized descriptions of the rules, on the one
hand, these rules are able to be presented on
dynamic configuration rule library similar to the
Blue Print, and the automated task path evolutes

under the rules guidance when the software is
running online, to realize the software dynamic
reconfiguration online. On the other hand, artificial
intervention can be taken, temporarily shielding
the fault functional modules and its infection
modules in the execution path, and replacing the
fault modules online. In actual operations, once
some software function module has the problem or
multiple concurrent tasks appear, the alternatives
must be selected in the rule library, and a new
execution path is determined by the pre-developed
dynamic configuration rules of the software
system, to achieve the online dynamic evolution of
software system.

(2.3) The Mission Reliability Modeling Methods
The mission reliability of software system is
modeled by the multi-level simulation method.
The appropriate simulation tools will be selected
to achieve the modeling process based on the
above research. At the same time, the description
and definition of evolution rules will be completed
and then the simulation process and simulation
algorithm are studied, to achieve the simulation
calculation to the mission reliability of software
system, and complete the mission reliability
metrics of software system.

Conclusion
The software dynamic evolution has a very
important impact on mission reliability, which
is extremely difficult to estimate, especially in
large and complex multi-task software systems.
This paper starts from the concept of software
evolution , presents the three basic questions about
the software mission reliability, that is software
architecture modeling based on task decomposition,
task path based on evolution rules and mission
reliability simulation modeling based on multi-
level simulation, and gives the basic idea to solve
the above problems to form a solution orienting
modeling methodology for mission reliability
modeling problems of software evolution, and
lays a better foundation for subsequent mission
reliability research of software evolution.

AGJSR 31 (Special Issue) 2013: 308-313 Yumei Wu et al

313

References
Alkhalid A; Alshayeb M; and Mahmoud SA

(2011) Software Refactoring at The Package
Level using Clustering Techniques. IET
Software, 5 (3): 276-284．

Bavota G (2012) Using Structural and Semantic
Information to Support Software Refactoring.
In: 34th IEEE International Conference on
Software Engineering (ICSE ‘12), 2-6 June
2012. Zurich, Switzerland, pp1479-1482.

Burger S; and Hummel O (2011) Towards
Automatic Reconfiguration of Aviation
Software Systems, In: IEEE 35th Annual
Computer Software and Applications
Conference Workshops (COMPSACW), 17-22
July 2011, Munich, Germany. pp200-205.

Gracioli G; and Fröhlich AA (2010) A
Dynamic Software Reconfiguration
Infrastructure for Embedded Systems. In:
17th IEEE International Conference on
Telecommunications(ICT), 4-7 April 2010,
Singapore, pp981-988．

Guo SC; Huang HZ; Wang ZL; and Xie M
(2011) Grid Service Reliability Modeling and
Optimal Task Scheduling Considering Fault
Recovery. IEEE Transactions on Reliability,
60 (1): 263-274.

Hanakawa N (2011) A Process Refactoring
for Software Development with Process
Complexity and Activity Priority Lists. In:
Software Measurement, 2011 Joint Conference
of the 21st Int’l Workshop on and 6th Int’l
Conference on Software Process and Product
Measurement (IWSM-MENSURA), 3-4 Nov.
2011, Nara, Japan. pp 209-214．

Khalgui M; Mosbahi O; Li Z; and Hanicsh
HM (2011) Reconfiguration of Distributed
EmbeddedControl Systems. IEEE/ASME
Transactions on Mechatronics,16 (4): 684-
694．

Koru AG; and El Emam K (2010) Theory of
Relative Dependency Higher Coupling
Concentration in Smaller Modules and its
Implications for Software Refactoring and
Quality. IEEE Software, 27 (2): 81-89．

Meanaeatra P; Rongviriyapanish S; and
Apiwattanapong T (2011) Using Software
Metrics to Select Refactoring for Long Method
Bad Smell, In: Electrical Engineering/
Elecronics, Computer, 8th International
Conference on Telecommunications and
Information Technology(ECTI-CON), 17-19
May 2011, Khon Kaen, Thailand, pp. 492-
495.

Mens T; and Tourwe T (2004) A Survey of
Software Refactoring, IEEE Transactions on
Software Engineering, 30 (2): 126-139.

Mortensen M; Ghosh S; and Bieman JM
(2012) Aspect Oriented Refactoring of
Legacy Applications: an Evaluation. IEEE
Transactions on Software Engineering, 38
(1): 118-140．

Murphy-Hill E; Parnin C; and Black AP (2009)
How we Refactor and How We Know it.
In: 31st IEEE International Conference on
Software Engineering(ICSE), 16-24 May
2009, Vancouver, British Columbia, Canada,
pp287-297．

Soares G (2010) Making Program Refactoring
Safer, In: ACM/IEEE 32nd Conference on
Software Engineering (ICSE) vol. 2, 2-8 May
2010, Cape Town, South Africa, pp521-522．

Strunk EA; and Knight JC (2006) Dependability
through Assured Reconfiguration in Embedded
System Software. IEEE Transactions on
Dependable and Secure Computing, 3 (3):
172-187．

Villavicencio G (2012) A New Software
Maintenance Scenario Based on
Refactoring Techniques. In: 16th European
Conference on Software Maintenance and
Reengineering(CSMR), 27-30 March 2012,
Szeged, Hungary, pp341-346.

Watkins BC (2006) Integrated Modular Avionics:
Managing the Allocation of Shared Intersystem
Resources. In: 25th Digital Avionics Systems
Conference, 2006 IEEE/AIAA, 15-19 Oct.
2006, Portland OR, pp1-12．

AGJSR 31 (Special Issue) 2013: 308-313 Yumei Wu et al

