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ABSTRACT. A cubic piecewise approximation method is described for 
planar curves. The order of classical piecewise approximations is 
improved. The method exploits the freedom in the choice of the 
parametrization and raises the approximation order to 6. The cubic 
approximant and the curve have contact of second order. The 
examples show the simplicity of the construction and the Figures show 
the efficiency and the qualitative results of this approximation method. 

Parametric polynomials are used in Computer Aided Geometric Design for 
approximation and interpolation purposes or, more generally, for geometric 
modelling applications. The question of how to approximate curves within a certain 
tolerance by polynomials and splines arises often in working with CAGD; various 
error estimations have been obtained (Boehm et at. 1984, Farin 1988, Hoschek and 
Lasser 1989, Yamaguchi 1988). In this paper we write down a cubic piecewise 
approximation procedure for planar curves which significantly raises the standard 
piecewise approximation rate to order 6. The cubic approximant has a second order 
contact (i.e. curvature continuity) at each node of the segment. This improvement for 
the cubic piecewise approximant was obtained first by de Boor et at. (1988) by 
generalization of cubic Hermite interpolation . In addition to position and tangent, the 
curvature is also prescribed at both end points of the segment. This method yields G2 
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parametric cubics with 6th order accuracy. In (Rababah 1992, 1993, 1995) we have 
described approximation methods for planar curves which improve the standard rate 
obtained by local Taylor approximation and achieve the order [4m/3], where m is the 
degree of the approximating polynomial. The best approximation order 2m is 
achieved for a class of curves of nonzero measure. The methods are not only 
quantitive improvements but also qualitative improvements over the Taylor 
expansion. Degen (1993) also constructed a cubic rational approximant, which 
approximates with order 8. There are more related results for special cases in 
(Dannenberg and Nowaki 1985, Dokken et at. 1990, Goodman and Unsworth 1988, 
Hanna et at. 1986, HoBig 1988, Klass 1983, Sakai and Usmani 1990, Sederberg and 
Kakimoto 1990). 

Mathematical Description 

Let C : t -j (f(t), get»~, tEl: = [0, h] be a regular smooth planar curve (i.e., (f' 

(t), g' (t» ;f. (0, 0), 'it E I) of a certain differentiability class C6(I). We want to 
approximate C by a spline P. Normally, we divide the curve C into pieces Cj, i = 1, 
... , n, where each Cj is the image of a subinterval [tj_1> ~J of the whole interval I, and 
tj E I, i =0, ... , n, are called the nodes of interpolation. The pieces Cj, i =1, ... , n, are 
approximated by polynomial curves Pj, i = I, ... , n, satisfying certain geometric 
conditions at both end points. Finally, we join these curves in P = Ui=l , n Pj to get a 
geometric spline. To simplify the notation, we write simply C for C; and P for Pi' 
That is , we want to approximate C by a polynomial curve 

P : t -j ( X(t) ), tEl 
yet) 

where X(t) and yet) are polynomials of degree 3. 

Definition (Order of approximation) 

The polynomial curve P approximates the curve C in the interval I with order k, 
if k is the biggest integer with the property: 

{f(t) - X(t») =O(tk), {g(t) - Y(t») =O(tk), 'it E 1. 

We choose here X(t) =I~oaitj and yet) =I ~ bjti . So thej'h derivative of X(t) and 
yet) at t = h are given by the derivatives of X(t) and yet) at t = 0 as follows, for j = 1, 
2,3 : 
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3 (i) 
XU) (h) = I X (0) hi .j 

i=j (i -- j)1 

where X' iJ (t) and Y(j)(t) are the jlh derivatives of X(t) and Yet). If we choose for X (t) 
and yet) the approximation polynomial of degree 3, then P approximates C in [0, h] 
with order 4; i.e., 

(f(t) - X(t) J =O(h4), {g(t) - yet) J =O(h4); t E 1. 

Without loss of generality we may assume that 

(.f(O), g(O» : =(0, 0), (f(O), g' (0»: =(1,0), 

so that for t E [0, h] we can parametrize C in the form 

C : t 	~ X(t) ~ ( X(t»), t E 1. 
0(X(t») 

Construction of the cubic approximant 

Thus, P approximates C in [0, h) with order 6 iff P and C have second order of 
contact at each end point, i.e iff 

(:t r (0(X(t») - Y(t)}II=O = 0, j = 1,2 
(1 ) 

( 
dtd )j (0(X(t») - yet) }h=h = 0, J.=0, 1,2, 

X(h) =h, X(O) =YeO) =0. 

That is, we need to solve the following nonlinear sy stem of equations: 
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0(h) - Y(h) =0, 

X(h) = h, 

where 0(i), X(i) and Y(i) are the ilh derivatives of 0, X and Y at t = 0 or t = h as 
indicated. 

The above system could be solved as follows: The first 2 equations are solved 
fur Y(J)(O) and Y(2)(O) and then substituted into the y-d equation for Y(h). The 
resulting equation is solved for Y(3)(O). Substituting Y(I )(O), y(2)(O) and Y(3)(O) into 
the 4 th and 5th equations for y(llCh) and y (2)(h), and also substituting X(I )(O), X(2)(0) 
and XO)(O) for X(l )(h) and X(2)(h) . We solve then the 4th equation for X(3)(O) . We 
substitute the resulting value of X(3)(O) into the 5th equation and solve it for X(2)(0) as 
follows: 

Expanding Y(h) in the 3rd equation, we get 

0(h) - YeO) - y(l)(O)h _ y (2)(O) h2 _ Y(3)(O) h3 = O. 
2 6 

Since YeO) =0 and substituting the values of Y(l )(O) and Y(2)(O) from the 1 st and 2nd 

equations, we get 
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From the 61h equation we have 

Substituting these and the derivatives X(i)(O) and Y(i)(O) for X(i )(h) and Y(i)(h) into the 
41h equation yields 

0( 1)(h)( X (I)(O) + X (2)(0)h + ~ ( h _ X (I)(O)h _ X(~(O) h2)) 

- (0(1)(0) X(I)(O) + 0(2)(0) X(I )2(0)h + 0(1)(0) X(2l(0)h) 

_ ( ~ (0(h) - 0(1 )(0)X(1)(O)h _ ( 0(2)(0)X(I )2(0) ; 0(1)(0)X(2)(0) )h2)) =0 

After simplification, we get 

6!0(1)(h)h-0(h)} +4h !0(1 )(0)-0(1 )(h)} X(I )(O) + h20(2)(0) X(I )2(0) + 
h2 ! 0(1)(0) - 0(1)(h)} X (2)(O) =O. 

By setting 

and excluding the case 0(1)(h) =0(1)(0) by assuming a 1= 0, we can solve for X (2l(0) as 

foll ows 

Substituting into the sih equation and rearranging yield 

where 

b : = h0(1)(0) - 0(h) 

c : = 0(h) - 0(1 )(h)h 
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we solve this equation for X(I)(O) and using back substitution, we find the other 
derivatives of X and Y: 

X(~)(O) = -6(b - 2c) + ~ X(I )(O) _ 313(2)(0) X (I)2(0) 
h2ah3 ah ' 

y m(O) = 

6(20(1 )(O)c - 0(1 )(h)b) 

ahJ 


Examples and Figures 

We have got a solution which coincides with the graph of the approximated 
function to all of the examples which we have studied. We write down some 
examples with figures showing the efficiency of the approximation method 
described in this paper. The software MATLAB have been used to calcualte and 
vi sualize the results. In the following figures, the high order cubic piecewis~ 

approximation (solid line --) interpolates the given curve (dotted line .... .. ... ) 
piecewise at the points, in the order (t, x, y). 

Figure I shows the cubic piecewise approximation of the four-leaved rose 

(2 sin 2t cos t, 2 sin 2t sin t). 

interpolated piecewise at the points marked with the small circles(in the order t, x, y); 

(~, 1.30656, 0.54119), (3;,0.54119,1.30656), 
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91t 6 31t(16,0.14931,-0.7506 ), (4,1.41421,-1.41421), 

991t 51t(100,0.12552, - 0.00394), (4' -1.41421 , -1.41421 ), 

111t 1191t(- 8- ' - 0.5412, - 1.3066), (--W' -0.00616, - 0.1568), 

131t 71t(8,-0.5412,1.3066), (4'",- 1.41421, 1.41421), 

and 

1591t
(80' - 0.1568.0.00616). 

y(t) 

x(t) 

Fig. 1. The rose 
• : Poi nts of interpo lation. 
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Figure 2 shows the cubic interpolant of the circle approximated at the points: 


(n/8 , .92388, .38268), (Sn/8, - 0.38268, .92388) 


(9n/8 , - 0.92388, - 0.38268), (13n/8, -.38268, 0.92388) 


Figure 3 shows the associated curvatures . 
 y(t) 

x(t) 

Fig. 2. The ci rcle 
• : Points of interpolation. 

k 

1.02 

.98 

Fig. 3. The curvatures . 
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As shown in the error table, the error decays at the predicted rate O(n-6) , as the 
number n of interpolation points is increased. 

Figure 4 shows the errors of interpolation (for only one segment, from left to right) 
of the circle at 4, 8, 16,32 and 64 points multiplied by 1()2, 104, 106 , 108 and 1010 
respectively . 

Error table 

No. of pOints error rate 

4 .195E-2 

8 .290E-4 -6.07 

16 .440E-6 -6.04 

32 .675E-8 -6.02 
64 1.08E-10 -6.00 

error 

. :: 
_: : 
n : 
,I : 
II:Fi gure 5 shows the hypotrochoi d 

:. 11 : 
: '" ] : 

y(t) . '~ :r 
,.... : 1:1: 

... . . . . . .. . 
.2 .,/ \\ r\ ~ 
,,' "'~" '4, ;".f;. . ... 

o 

Fig. 4. The errors. 5 

x(t) 

Fig. 5. The hypotrochoid. 
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(4 cos t + 3 cos 2t, 4 sin t - 3 sin 2t) 

interpolated at the poi nts 

(nnU.SI68, - 0.5906), (3n/8, - 0.5906, 1.5742), (5n/8, -3.6521,5 .8168) 

(7n/8 , -I .5742, 3.6521), (I On/8, -2.8284, -5.8284), (12n/8, -3, --4) 

an d 
(14n/8, 2.8284, .1716) . 

Figure 6 shows the epitrochoid 

y(t) 

2 

Fig. 6. The epitrochoid. 

x(t) 
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(4 cos t - 3 cos 2t, 4 sin t - 3 sin 2t) 

interpolated at the points marked with small ci rcles. 

Fi g ure 7 shows the epicycloid 

(4 cos t - cos 4t, 4 sin t - si n 4t) 

interpo lated at the points marked with small circles . 

y(t) 

x(t) 

Fig. 7. The epicycloid . 
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