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ABSTRACT. The water balance modelling of the Annaba region is 
achieved by integrating the chronological series (20 years) of rainfall 
and potential evapotranspiration (ETP). Rain constirutes the main 
contribution in bringing water to the soil; it is included in the water 
balance in terms of the effective rain. 

The ETP allows us to quantify the crop's need for water. It 
determines the water volume lost by soil evaporation and plant 
transpiration and depends on atmospheric demand. on the stage of 
development of the vegetative cover as well as on the water supply. 

The water balance modelling, rainfall and potential 
evapotranspiration simulation are established on a daily basis. 

The rainfall following an aleatory phenomenon is simulated by the 
discreet Markov's chains. In fact, two states are taken into 
consideration: 

state 0: if the rainfall is inferior or equal to a previously determined 
threshold. 

state I: if the rainfall is superior to that threshold. 
The potential evapotranspiration whose variations are cyclical is 

simulated by the decomposition of the historical series into seasonal 
and fluctuating components. These parameters (rainfall and potential 
evapotranspiration) enable the modelling of the water balance which 
allows to quantify the supply water volumes obtained by irrigation. 

The synthetic series of water deficits allow us to anticipate and to 
predict certain problems due to climate hazards thereby enabling water 
resource managers to avoid them. 
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1. Bibliographical Review 

1.1. Introduction 

The soil-plant-atmosphere system share water as a common element. Water 
plays a fundamental role in the functionning of the system as a whole. The stated 
problem is among others, the study of water availability for the plants during their 
development cycle, since the rarefaction of water resources and the exponential 
increasing of demand require the most favorable management of resources. 

In Algeria, the climatic conditions do not allow the obtaining of regular crops 
without resorting to irrigation, water resources not being abandant and the potential 
users being more and more numerous (adjustment policy, extension of irrigated 
perimeters, etc ... ). 

All this forces the managers to better valorize the resource which gets more and 
more scarce, and gets them to find out methodologies allowing to express the 
agro-c1imatic relations whose understanding is necessary for planning and 
organizing the introduction of projects that aim at the improvement of new crops and 
ecotypes. 

The statistical study of the existing links in this context allows us to anticipate 
and predict certain problems due to climate hazards thereby enabling us to avoid 
them. In this field, modelling and simulation playa great role providing means for 
managers to take action. 

Being subject to the Mediterranean climate where the Bounamoussa irrigation 
perimeter lays, and supplied by the Cheffia dam, the Annaba region (Algeria) has 
been chosen as the study area. 

1.2. Background 

Thirriot and Dechemi (1988), after a comparative study of five formulas 
pertaining to the calculation of the ETP (Penman - Blaney Criddle - Thornthwaite -
Truc and Riou), demonstrated that Penman's formula, based on the taking into 
account of the ETP physical phenomenons, led to better results for the North 
Algerian climate. 

Choisnel (1984) developed a model, coupled with water and surface energy 
balances of the soil, for a vegetable cover using weather data (temperature, relative 
humidity, wind speed, flow of radiation and precipitations). The output data act as a 
synthetic agroclimatic predictor. 
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Eldin and Lhomme (1984) developed a model which simulated the soil water 
balance from the daily rainfall, the monthly averages of the potential 
evapotranspiration and some soil and crops characteristics. This model is recurrent 
and gives an idea about the water reserve as well as the water deficit which allows 
for the characterization of the risks of aridity or exceeding water. 

Several models were proposed for the simulation of the chronological series in 
hydrometeorology: Auto Regressive (AR) self regressive models (Thomas and 
Fiering (1962», gaussian noise models (Matalas and Wallis (1971», Auto 
Regressive Moving Average (ARMA) self-regressive and mobile average models 
(Carlson et al. (1970), O'connel (1971», broken line models (Megia (1971», 
ARMA Markov models (Lettenmaier and Burges (1977», general mixed models 
(Boes and Salas (1978», and models based on the main components analysis 
(Dechemi and Smith. (1994». 

The choice of use of one of these models depends on the following factors 
(Salas and Smith (1981»: 

- Judgment, experience, personal preference of modellizer. 
- Physical process of the model to be studied. 
- Statistical characteristics of the chronological series. 

2. Rainfall Simulation 

The daily rainfall simulation of the Annaba region which is characteristically 
random (Fig. I) is composed of Markov chains. The rainfall is subdivided into two 
classes constituting the discreet Markovian process, with: 

X t ~ 0 if the rainfall is inferior to S. 

X t = I if the rainfall is superior or equal to S, 

S, being comprised between 0 and 5 mm, characterizes the occurence of dry 
and rainy days . 

A Markov chain is a system which is subject, in course of time, to aleatory 
transition state changes, and which, without being deprived of memory, keeps just its 
most recent past. 
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Fig. 1. Evolution of the daily rainfall. 

A k order Markov chain is so called if the equation p {Xt' Xt_l , .. . , Xt-k, X t-k- I } = 
p {Xl' Xl_I, .'" Xt-d, where X is an aleatory variable. 

As for the k order, the realization of a given state depends only on the preceding 
k realizations. 

If independent properties exist, the Markov chains are to be given the order 0 
(unconditional probabilities). 

2.1. Analytic deduction ofparameters 

The daily rainfalls are described by means of the following stochastic process: 

Zt =XI • Y, 

where: Xt characterizes the state on t day {Xt = 0 on dry day 
X, = ) on rainy day 


and Y, the rain height (if X t = ) 


To determine the passage matrix in a general case, we just take into 
consideration the Xt variable which describes the passage from a state E j to Ej . 
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2.1.1. Order 1 process 

Let X be the aleatory variable characterizing the state; X may be assigned two 
values (binary state system) either °on a dry state or 1 on a rainy state. 

This process is going to be characterized by the conditional probabilities of the 
passage, from the state of the day prior to today' s state. 

Also, the k day state depends only on the (k-l) day state; it is to be noticed that: 
prob (Xk =j / X k. 1 =i) aij 

O;j : represents the probability to obtain on k day the state j, knowing that on 
(k-I) day we had the state i. 

By considering two possible states, we obtain the passage matrix P described 
below: 

Table 1. Passage matrix coefficients (order I) 

(k-l) day (k) day state 

state 0 1 

0 aoo txol 

I alO all 

The matrix P having the stochastic matrix characteristics, leads to the following 
relationship: 

aiO + 0;1 = 1 i = °or 1 
The P matrix coefficients are obtained by the reckoning of the days 

characterized by the states (0,1) . 

The marginal probability (or unconditional) Po can be represented as follows: 

Po = _ _ alO 
--0..;__ 

1 - aoo + alO 

Given the bolean character of the aleatory variable, the self-correlation 
coefficient can be represented by: 

aoo- Po all -(1 - Po)
III = -:--- = 

1 - Po Po 
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By inserting the two grades of liberty ¢ and Po, the passage matrix becomes : 


p = 
Po+¢Po 

2.1.2. Order 2 process 

Let ' s calculate today's state probability (class 0 or 1) in terms of the states of 
the two preceding days (already known). 

The transition matrix is represented in the following table: 

Table 2. Passage matrix coefficients (order 2) 

States on (k-l) States on (k-l) and (k) days 

and (k-2) days 
00 01 10 11 

00 ~ooo ~OOI - -

01 - - ~OlO ~Oll 

10 ~IOO ~IOI - -

II - - ~IIO ~III 

B iJk represents the conditional probability to obtain a (j, k) class doublet 
succeeding another (i, j) class one. 

Because there is an overlap of two couples on the day before, it is necessary to 
have equal transition classes in the two couples . 

To meet this requirement, the state on k day depends on the states on (k-l) and 
(k-2) days. 

In the passage matrix definition, expressing the probabilities of successive 
couples, some combinations cannot be accomplished considering the succession of 
certain doublets. 
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The comparison between the first order (1;j and second order Bijk conditional 
probabilities is, in short, the verity proof for the first order Markovian model if the 
margin is not considerable; the first order model is to be used to define a given 
climate. 

When the first order transition matrix, raised to an exponent n, converges to 
infinity taking the form of an asymptotic matrix, the system is then stable. 

In probabilities, this kind of system is said to possess an ergotic characteristic 
which allows us to determine the maximum order we can work with. 

2.2. Principle ofsimulation 

The simulation leads to the obtention of synthetic series of daily rainfalls from a 
more or less long historical series. 

The stochastic simulation of a variable x aims at reproducing the probability 
structure of this variable. These probabilities are defined by the density F, or the 
distribution function F. 

As we have seen before the daily rainfalls are described as follows: 

For the first order, from the conditional probabilities am and aiD, we generate 
the synthetic series daily state after drawing an aleatory number comprised between 
o and 1 (and constituting a probability) to be compared to (1;0' and this after having 
previously fixed an initial state which doesn't reflect on the synthetic series given the 
fact that the memory of the phenomenon is too short (7 days for Annaba station). 

If the aleatory number is inferior to (1;0 (i =0 or I), the simulated day is dry, if 
not, rainy. 

The principle of simulation is similar for the superior orders. 

In this case the obtained probability by aleatory drawing will be compared to the 
conditional probabilities of the passage matrix corresponding to simulation process 
order. 

If the si mulated day appears to be rainy, it wi II be assigned a rainfall height 
drawn from conditional functions of distribution . 
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Considering the humid day posItIon in a given episode, four functions of 
distribution have been chosen (FOlO: rainy day comprised between two dry days, 
FO 1 J, Fl JO and FJ 11). To assign to each simulated rainy day a rainfall height, a 
second aleatory number drawing is accomplished, and which will be compared to the 
considered distribution function. 

2.3. Application to the rainfall serial ofAnnaba 

In the following, a threshold of 0.1 is worked with, and by right of information 
the passage matrix will be presented from order 0, 1, and 2, as shown in Tables 3, 4, 
and 5. 

Table 3. Order 0 passage matrix 

sta te of (k) day 

o 1 

0.787 0.213 

Table 4. Order I passage matrix 

State of 
(k-l) day 

State of (k) day 

0 1 

0 0.869 0.131 

1 0.486 0.514 

Table 5. Order 2 passage matrix 

States on (k-l) 
and (k·2) days 

States on (k-l) and (k) days 

00 01 10 11 

00 0.884 0.116 - -

01 - - 0.480 0.520 

10 0.769 0.231 - -

II - - 0.491 0.509 
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Considering the order 0 passage matrix (in this case, the states of successive 
days are taken as independant), we notice that unconditional probability of dry state 
is greater than 78%. The order 1 passage matrix shows that the probability of having 
two successive dry days is 86.9%. However, this probability is only about 51.4% to 
obtain two successive humid days. Taking into account the order 2 passage matrix 
we have the confirmation of the semi-arid character of Annaba region climate. 

In order to study the reliability of the rainfall simulation model, we stressed on 
three fundamental parameters: the threshold, the number of seasons to be taken into 
account and the order of Markov chains. As for the latter, its influence is not 
preponderant, the tests accomplished having shown good results using just the order 

1. 

In order to study the influence of the number of seasons, the year has been 
divided to two (October - April, May - September) and four seasons (September ­
November, December - February, March - May and June - August). This resulted in 
large variations of the results. The four season model reflects the evolution of the 
Annaba region rainfall in a sharper way. In fact, it's the nearest model to the physical 
reality of the studied phenomenon, that is, rainfall. 

The threshold influence is not preponderant as shown where, three have been 
taken into consideration (0.1 mm, 1 mm and 5mm) but with no considerable variations 
in the results. 

4. Simulation of the potential evapotranspiration (ETP) 

4.1. Characteristics of the historical series 

The examination of the evapotranspiration series graphic representation (Fig. 2) 
allows us to establish the verisimilitude of some fundamental components: 

* a cyclical movement (Fig. 3) denoting oscillations where periods and 
amplitudes are more or less irregular. 

* an aleatory element (Fig. 4), lacking precision and leading to more or less 
sporadic and unexpected variations sometimes called residual variations. So, rough 
date is to be looked at as the superposition of two independent series, the former 
taking into account the seasonal variations and the latter the residual variations or 
fluctuations (fluctuating component). 
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To separate these two components, we resort to the smoothing techniques 
where the series will be decomposed as follows (Arlery 1973): 

Xit = V it + Wit· 
where: Xit = Rough data. 

V it = Seasonal component. 
Wil = Fluctuating component. 
t = 1 to n, where n represents the number of years of the historical 

series. 

The decomposition into Fourier series of the initial series allows as to deduce 
the seasonal component whreas the fluctuating component will be represented by: 

The simulation of both the seasonal and fluctuating components enable us to 
obtain the synthetic series through their superposition . 

4.2 Estimate ofthe smoothing parameters 

Knowing that the seasonal component may be represented by V t =Ao + al sin t 
+ bl cos t + a2 sin t + b2cos t + .... , 

Given that m is the number of harmonics, the smoothin will be written as 
follows: 

m T 
21tjt + b. sin 21tjtVI = Ao + L L aj cos T J T 

j=1 j=1 

Where: Ao = Rough series annual average. 
aj, bj = Fourier series coefficients. 

m = Number of harmonics . 
T = Number of days per year. 

The seasonal component is defined by an annual average to which periodical 
variations are to be added. These variations are characterized by their coefficients 
(aj, bj), the amplitude (oJ ar+ bJ), the period (T/j) and the phase angle cotg (a/bj), in 
such a way as : 
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x, = V, +W, and 

T T 

L W, = 0 Ao =Xo = l L X t 
1=1 T 1=1 

The terms <lj , bj are estimated using the least squares method consistIng In 
minimizing the margin between X and V, which is calculated as follows : 

T T 


L1 = L £ 2 I = L (Xo - V,)2 

1=1 1=1 

T [ 21tJt. . 21tjt
L1 

[ 
XI - Xo - L aj. cos -r + bj sln-­

= t~ fJ1=1 T 

Whence we can find out the <lj and bj values which nullify the derivatives in 
respect to these variables. 

The fluctuations are obtained by substracting from the potential 
evapotranspiration rough data series the seasonal component obtained by the 
decomposition of the historical series in Fourier series. 

They have a null average and are simulated by way of Markov chains (rainfall 
simulation). Two cases are then taken into consideration: 

State ¢ if fluctuation is negative or null; 
State I if fluctuation is positive. 

In order to get a better simulation of these fluctuations the year has been 
subdivided into 1, 2, 4 seasons, and different orders of Markov chains have been 
tested. 

ao term: 

We have: 
1 

L x, = 
1=1 1=1 
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whence: 

ao = x . = 1.'"( * ±
t=1 


a j and bj terms : Estimates by the least squares method. 


The best estimates of these parameters by the least squares are those which 
minimize the margin between x and v which is calculated by: 

1: 1: 
2 

~ = = (x l - vi lOtt~ ~ 
m 

21tjt . 21tjt 
~ = t [x l - X • - L (a· * cos -- + b· * SIn --)f

J 't J 'tt=1 t=1 

2 
1: 

21tjt
aj = * L XI * cos 

't t=1 't 

2 
1: 

21tjt
bj = * L XI * SIn 

't 'tt=1 

It was observed that, the mean annual values (Fig. 5) and Fourier coefficients 
(Fig. 6 and 7) follow Gaussian distribution. 
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4.3. Application of the simulation method 

We consider the ETP serial of Annaba, three elements are to be taken into 
consideration to study the reliability of the potential evapotranspiration simulation 
model : 
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- The number of seasons. 
- The order of Markov chains. 
- The number of harmonics. 

The fact of increasing the number of seasons (we used 1,2 and 4 simulations in 
our study) doesn't permit the simulations improvement on the basis of comparison 
criterions taken into account. The same applies to the Markov chains where the order 
1 is largely sufficient for the obtainment of good simulations. 

These two parameters (number of seasons and Markov chains) reflect on the 
aleatory component simulation as shown by the obtain results. In fact, the aleatory 
component is not preponderant in respect to the cyclical one. However, the number 
of harmonics has a great influence over the simulation. The four and six harmonics 
models giving the best results. 

The fact of taking into consideration only two harmonics doesn't enable us to 
suitably explain the total variance, whence the rejection of this option is obvious. 

5. Water Balance Model 

5.1. Introduction 

In a semi-arid climate, water availability for crops constitutes a major concern, 
since water is the limiting factor of vegetable production. 

For this reason the study of the water balance is of great importance because it 
indicates the soil water reserve evolution. 

The water balance is based on the principle of the soil water mass conservation. 
It includes precipitation, evapotranspiration, streaming, and drainage. 

5.2. The determinatWn of the effective reserve 

The Util Reserve (R.U.) evolution depends on the crop development. That's why 
we take into account two parameters: 

* The R.U, value just before the harvesting (in general at the max. rooting). 

* A Cl coefficient which defines a minimum RU. representing the case of a 
nude soil. 
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Between the "Semis" (S) and the harvesting (H) dates, the reserve varies from 
RUd to RU" and will be equal to: 

RUd = RU,. (C1 + (I-Cl) . DSJIDSR). 
RUd = Effective reserve onj-Day. 

RU, = max. R.D. 

C1 = Coefficient comprised between 0 and 1. 

DSJ = Time or number of days between the semi's date and j-day. 

DSR = Lasting of the crop vegetative cycle between harvesting date and 
the following Semi's date. we'll have: 

U~ = CI . RU, 

Therefore, the yearly reserve will be equal to: 
Cl . RUx 	 if d . [H,S] 

(C1 + (I-Cl) . DSJIDSR). RUx 	 if d . [S,H] 

As for the perennial crops, the effective reserve is supposed to remain at its 
maximum value and not to vary all year long. 

5.3 Effective rain 

The weak rain waters falling down on a very arid soil (water reserve inferior to 
a one which is hardly usable) don't contribute to the increasing of the soil water 
reserve, since they vaporize very quickly. 

This can be expressed as follows: 

PEd = Pd if (Pd > Pm) on (Pd < Ps and RHd_1> RDU). 

PEd = 0 if (Pd ~ Ps) and (RHd_1~ RDU). 

Where: 	 Pd : Falling rain on (d) day. 


P, : Threshold. 


RHct_1 : Water reserve on the (d-l) day, 


RDU : Hardly usable reserve. 
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5.4. Maximum evaporatranspiration (ETM) 

The ETM depends on the crop development during its vegetative cycle. It is 
bound to the potential evapotranspiration by the cultural coefficient (Kc), which is 
specific to this development. 

Between the Semi's and the harvesting the ETM will be equal to the 
evaporation of a nude soil: 

ETM = Co. ETP [R,S], where Co is a reducing coefficient comprised between 0 
and J. 

For a perennial crop, the ETM will be equal to the ETP all year long. 

5.5. Real Evapotranspiration (ETR) 

The ETR varies according to the soil water reserve. When the soil reserve is 
easily usable for the plant, the ETR will be equal to the ETM. Below this value, that 
is, when we are at the hardly usable reserve level at which the plant roots are 
required to get a certain force of suction, the ratio ETRlETM is supposed to increase 
linearly from 0 to 1 according to the soil water reserve until reach the hardly usable 
reserve (RDU): 

if ~_I ~ RDO 


ETRd = ETMd • RHd_1 / RDU if ~_I < RDO 

The crop daily deficit is defined by the following relationship. 


5.6 The Drainage 

Streaming hasn't been taken into account widely but we can consider that as 
soon as there is a soil saturation, there is a loss in exceeding water either by way of 
drainage or by streaming involving the terrain slope, the rain density, the soil and the 
kind of vegetal cover. 

At this stage, we take into account the retention capability (CR) of the soil, 
which is defined as the difference between the usable reserve (RU) on (d) day and 
the water reserve on (d-l) day (RHa-I): 
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If the rainfall on d-day is greater than the retention capability of the soil, there 
will be a loss by way of drainage, otherwise it will contribute to fill up the soil 
reserve: 

DRd = Pd - CRd if Pd :2: CRd 

DRd = 0 if Pd < CRd 

5.7. The water balance equation 

The equation representing the daily water balance is as follows: 

RH(d) = RH(d-l) + PEed) - ETR(d) - DR(d) 

This equation will be used to calculate the successive daily water balances. 
Therefore, the elaboration of the water balance is an interative process. It is also 
necessary to start with a hypothesis on the value of the reserve at a suitable date, 
chosen on the basis of the following hypotheses: 

- If the start-up of the iterative process takes place in the dry season, RHo will 
be supposed to have a °value. 

- If in the middle of the rainy season, RHo =RO, then a mean value will be 
assigned. 

Results and Discussions 

The developed model is applied to the Annaba region; five paires of synthetic 
series of rainfall and potential evapotranspiration have been introduced in the model 
over a period of twenty (20) years on a daily basis . 

On the basis of statistical criteria, taken into consideration for the comparison of 
the historic and simulated series, that the total water deficits mostly fell in the 
interval of confidence (5% margin of error) of the interannual average and typical 
margin (Table 6). 
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Table 6. Historical and simulated water deficit (Annaba) 

Historical 

Simulation I 

Simulation 2 

Simulation 3 

Simulation 4 

Simulation 5 

X cr Cv 

603.0 58.4 0.097 

555.7 74 .8 0.135 

558.9 73.0 0.131 

561.2 76.0 0.135 

588.3 52.2 0.089 

558.4 73.5 0.132 

The inter-annual variation coefficients (Cv) of the simulated water deficits range 
from 0.089 to O. 135. 

The graphics (Fig. 8) showing the evolutions of the historic and simulated 
deficits demonstrate that: 

- The maximum annual observed historic water deficit approaches 711 mm 
while it is about 735 mm for the simulated deficits. 

- The evolution of the historic of water deficits is characterized by a series of 
two to three successive dry years, followed by one relatively humid year. The 
different simulations provide informations on tendancies of probable water deficits. 
Their analysis allows to have a better understanding of their evolution mainly during 
dryness period, and enables to anticipate on the way of managing the water resource. 

We used these results as input parameters for the management of the Cheffia 
dam, which feeds in water not only the irrigation perimeter of Bounamoussa 
(Annaba), but fulfills domestic and industrial water needs of the Annaba region as 
well. 

This allowed us to contribute to a scientific management of the water resources 
of the Annaba region, and to provide the necessary aids for decision making to the 
dam managers. 
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Conclusion 

The crop's need in water depend on several factors; the ones pertaining to the 
climatic demand (environment evaporation demand); the ones pertaining to the soil 
factors (dynamics and availability of water in the soil), and the ones linked to the 
plant physiology. 

The knowledge of these factors contributes to the amelioration of water 
management, to its valorization, thereby coming to the optimization of the outputs. 

The two input parameters of the water balance model, namely, rainfall and 
potential evaporation, were simulated by means of statistical models, taking into 
account the specific characteristics of these two phenomena. 

The rainfall simulation by a hybrid model, which takes into consideration the 
aleatory feature of this phenomenon, enables to stand out the di verse factors having 
an influence over this model, thus deducing the one giving the closest results to the 
physical reality. The number of seasons taken into consideration deeply refines the 
model to be developed. 

The potential evapotranspiration has been decomposed into aleatory and 
cyclical parts which have been simulated by Markov chains and Fourier series 
respectively. The simulated series of rainfall and potential evapotranspiration have 
been used and input to the water balance model, which allowed to generate the 
si mulated series of water deficits. 

The generated water deficits analysis brought out not only the dry years but 
their successions in the course of time as well. That allows the water resource 
managers to be provided with guidance in irrigation, in determining the quantities of 
water to be allocated to the different irrigators. 

The water needs of the irrigation perimeter, determined by means of the water 
balance model, can be used in a large context, as a partial introduction of a dam 
management model , assuring a number of functions, as fulfilling the irrigation 
needs, as well as the domestic and the industrial ones. 
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Appendix 

aj and bj terms: Estimates by the least squares method. 

The best estimates of these parameters by the least squares are those which min­
imize the margin between x and v which is calculated by: 

't 't 
2

ll. = L c = L (x,- vi
1

1=1 1=1 

't m 
21tjt . 21tjt

ll. = L [x,- x . - L (a· * cos -- + b· * SIO __)]2
J 't J 't

t=1 1=1 

This comes to the same as finding out the 3j and bj values which nullify the ll. de­
rivatives in respect to these variables. 

We can write that: 

d . I d· . )(In the following, dd and db. represent partla envatlves 
a; J 

dll. = L
't 


daj 1=1 


m 
dc, d 21tjt . 21tjt

= L - (a· * cos -- + b· * SIO --)
da; j=! 

da; J 't J 't 


m m 

dCI 21tjt * daj " . 21tjt * dbj 21tit 

= L cos -- -----Ld + £... SIn -- =cos - ­
daj j=1 't aj j=1 't daj 't 

Whence: 
't m 

21tjt 21tjt 21tit }dll. 
= L (a· * cos -- + b * sin --)] * cos - ­~1 { 2 * [x,- x J 'tJ 't 'tdaj j=1 

't 
21tit 

= 2 * L (x,-x) * cos-­
't1=1 

't m * 21tjt * 21tit = -2 * L L a· cos -- cos-­
J 't 't

1=1 j=! 

't m 
b * 21tjt * 21tit = -2 L L . cos -- cos-­* J 't 't

1=1 j=1 
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The same: 
't 

* . 21titcL1 2* L (x[- x) SIO-­
db; 1=1 't 


't m 
* 21tjt * . 21tit 

= -2 * L L a· cos -- SIO-­
J 't 't

1=1 j=l 

't m 
b * . 21tjt * . 21tit 

= -2 * L L . SIO-- Sln-­
J 't 't

1=1 j=l 

We obtain: 

d~ 
= o ===> 

da; 

m 't 
21tit 

cos-- * cos 21titL aj L 
't 'tj=l 1=1 

. 21tjt * 21tit
SIO-- COS-­+ L 

m 

bj L 
't 

't 'tj=l t=l 

't 21tit 
= L (x - x ) * cos - ­

t. 't 
1=1 

And 

d~ 
= o ===> 

db; 


m 't 
21tjt * . 21tit
L aj L cos-- SIO-­

't 'tj=l 1=1 

m 't 
. 21tjt * . 21tit 

SIO-- Sln-­+ L b L) 't 'tj=l 1=1 

't 
. 21tit 

= L (x - x ) * SIO-­
I. 't 

1=1 

i and j varying from 1 to m, we get 2 * m equations with 2 * m unknown quantities 
that we've got to solve to estimate aj and bj. 

Knowing that: 
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T 
2mj * 2mi 'tI cos-- cos-- = * Ojj

't 't1=1 2 

T 
. 2mj *. 2miI Stn-- Stn-- 1 * Ojj= 

't 't 21=1 


1 
2mj . 2mi
I cos - - * Sin -- =0 

't 't1=1 

= I if i = j
with Ojj { =0 if i :;e j 

These equations then become: 
T 

't 21tit 
- a XI cos-­
2 * , = I * 

't1= 1 


't 
1 

21tit 

SIn-­XI 

2 * 
bj = I * 

't1= 1 

Then we get for i = I to m: 
1 

21tit 
Uj = I XI * cos-­

't1= 1 

1 
. 21tit 

b, -· - ~ * I XI * SIn-­
't 't1=1 

We verify that: 
m 

21tjt . 21tjt)] 21 ~ [Var (v) = - * £.., I (a * cos -- + b * Stn-­
J 't J 't't 1= I j=l 


m 


= I 
j=1 

The harmonics are two by two orthogonal and each participates in the explained 
variance of the quantity: 
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