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ABsTRAcr. New analytical solution to the problem of fluid flow in a 
porous reservoir composed by rectangular blocks is presented. The 
Muskat linear, five-point, and chess-type patterns of injection­
extraction wells (lEW) are obtained as special cases of this solution. 
Streamlines, isochrones, breakthrough curves are evaluated in tenns of 
Lite model of pure advection. Effective conductivity of these patterns is 
obtained explicitly and compared with Muskat's values which 
cccurred to be good approximations of the rigorous formulae. 
Numerical procedure of particle tracking is verified on the Rankine 
flow pattern for a pair of lEW placed in an uniform groundwater flow 
and the Polubarinova-Kochina solution for a pumping well in an 
aquifer with a circular inhomogeneity. Applications to a network of 
octogonal honey-comb blocks and filled fractures-orifices are 
discussed. 

Mathematical modeling of fluid flow and chemical transport in subsurface under 
influence of lEW systems is of great importance both in petroleum engineering and 
hydrology. These systems are used in flooding technique (Muskat 1946), in drainage 
(Strack 1989), in pump-and-treat methods for remediation of ~ntaminated aquifer 
zones (USEPA 1992). In the classical approach lEW are simulated as sources and 
sinks, and a porous reservoir/aquifer is assumed homogeneous. This allows for 
analytical description for pressure (hydraulic head), velocity, particle travel times, 
etc. (Muskat 1946, Polubarinova-Kochina 1977). These characteristics describe the 
advective component of contaminant transport (Anderson and Woessner 1992). 
However, any real reservoir or aquifer is heterogeneous and only few analytical 
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solutions are known even for simplest models (one-phase fluid, confined aquifer, 
step-wise constant change of conductivity, etc.). Novel mathematical approach 
developed by Emets and Obnosov (1989, 1990), Obnosov (1992) allows for explicit 
description of advection with rigorous refraction conditions along the boundaries 
between media of different conductivity. Recently, this approach was used in 
applications to ground water flows in aquifers (Kacimov and Obnosov 1994, 1995). 

In this paper we present explicit rigorous description of the problem of flow in a 
reservoir containing double-periodic lens-type rectangular inclusions. As a result, the 
imposed natural flow becomes 2-D with curved streamlines and contaminant 
transport follows 'fingered' or 'channeled' flow paths. We use the simplest model of 
pure advection and neglect all other mechanisms (block sorption, microdispersion, 
etc.). 

First, we investigate the limiting case when blocks are impermeable. The 
corresponding solution describes the velocity (specific discharge) field as an 
anti-holomorphic function within an elementary cell (rectangle) with sink-source 
singularities at its vertexes. As special cases we obtain the well-known lEW systems 
exhibiting symmetry. Thus, the linear pattern (LP), the chess-type pattern (CTP), in 
particular, the five-point pattern follow from the general case at equal rates of 
injection-pumping. Our solutions are presented in closed form in terms of elliptic 
functions and supplement the Muskat series expansions. As a check on the particle 
tracking procedure used we calculate streamlines, isochrones, and averaged 
velocities for two common hydrological schemes. Namely, we consider a dipole 
(lEW pair) in a uniform ground water flow as a Rankine body. This scheme is used 
both in tracer experiments and pump-and-treat systems for aquifer remediation. Then 
we use the Polubarinova-Kochina analytical solution to compute the advective 
characteristics mentioned for a pumping well in an aquifer containing a circular 
inhomogeneity. At last we discuss applications of the lens system to networks 
modeling a fractured medium with octogonal blocks. 

Reservoir with lens-type inclusions 

Consider a porous reservoir composed by two porous media, highly permeable 
conduits with conductivity k) and low permeable blocks with conducivity k2 . The 
two phases repeat themselves in a double-periodic manner as a checkerboard 
structure (Fig. 1 a) such that geometrical sizes of rectangular blocks and conduits are 
I and h. The natural flux vector through one rectangle of the system, J, is oriented 
arbitrary relative to the rectangles; a and b are the horizontal and vertjcal 
components of J: 
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(Jacobi DN[2 EllipticK[m] r,m]-
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u2 =Plot3D{k[m,r), [m, 0.01, 0.99}, {r, 0.01, 0.1}] 
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Fig. 1 b) the lensed medium, 
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kmuskat (r_, m-l : =1/ (2 Pi Log [ 
Sinh [Pi EllipticK[ml / EllipticK[1-mll"4* 
Sinh [3 Pi EllipticK[m] / EllipticK[1-m]] / 
Sinh [Pi r EllipticK[m] / EUipticK[1-m]]A2/ 
Sinh [2 Pi EllipticK[m] / EllipticK[1-m]]A3]) 
u1 = Plot3D[kmuskat[r,m], {m, 0.01, 0.99}, [r, 0.01, 0.1}] 

Kef( 

Fig. 1 c) flow near two adjacent corners of impermeable lenses. 

where VI is the specific discharge vector within ABeD and ':R and ~ designate the 
real and imaginary parts of a complex function. 

Note, that the medium in Fig. 1 a is a limiting case of the medium with arbitrary 
distances H, L between blocks (Fig. lb) when H ~ h, L ~ I (the checkerboard 
structure is shown in Fig. 1 b by dashed lines). These types of lensed structures are of 
interest in studies of highly tortuous flow paths through porous units with repeating 
inhomogeneities (Firoozabadi and Markeset 1995, Kinzelbach 1992, Kung 1990). 

Obnosov (1996) derived a rigorous solution to the flow problem shown in Fig. 
1 a with arbitrary k/k2. Unfortunately, the general case with arbitrary Land H in Fig. 
1 b proved to be difficult for explicit description. In what follows we shall study in 
details one special case of the medium in Fig. 1 a when block conductivity k2 =O. 

We assume fully saturated Darcian steady seepage of incompressible one-phase 
fluid in an isotropic incompressible porous medium such that transmissivity varies in 
a chess-like type because of step-wise changes of conductivity. Introduce the 
complex coordinate z =x + iy and the complex potential ~ ,2 =(b1 ,2 + ilfll ,2, where 12\2 
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is the velocity potential and '1'1,2 is the stream function which are harmonic within 
conduits (1) and blocks (2). The specific discharge vector. VI,2 = dQ}u/dz. is an 
antiholomorphic function within these rectangles (overlining means complex 
conjugation) ~ Along the rectangle boundary the known refraction conditions hold: 

that can be equivalently refonnulated as continuity of the nonnal and prescribed 
ratio of tangential discharge components (Polubarinova-Kochina 1977). 

In the Obnosov's (1996) general solution for the two-component cell 
ABAP2CD we set ~ ~ O. Then the velocity V within the only conductive cell 
ABCDis 

V(z) = C, + i C2 (2.1)
sn(Z 1m) sn(iZ I ml) 

where Z = 2KzJl and two real constants c" C2 will be defined below. K(m) designates 
the complete elliptic integral of the first kind. Its parameter m is easily derived from 
the equation: 

K / K ' = Vh 

where K' = K (ml), m, = 1 - m. 

Here and below sn, dn, cn, ds, cs designate Jacobian elliptic functions 
(Abramovitz and Stegun 1970). Subindex '1' for these functions will denote in what 
follows the same functions with parameter mi' 

Near the vertexes solution (2.1) exhibits sink-source singularities. The strength 
of these singularities are calculated as mathematical residues of V(z) (since we treat 
now only one porous component we omit subindexes indicating the media): 

(2.2) 


Thus, locally. near the vertexes the flow behaves like in vicinity of a quadrant of 
IEW with radial diverging-converging streamlines. Obviously, (Muskat 1946) the 
rate of these wells is expressed as 

1t -­
qA,B =2' resA.B V(z) 
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Where res designates the residue value that is easily calculated from (2.1). How 
to relate now the vector of imposed flux' with qA and qB? The corresponding 
procedure is very simple. We present' as a vector sum of two ortogonal 
components 'A and 'B which are oriented at angle 7tl4 with respect to the coordinate 
axis (recall that singularities at vertexes provide just this orientation of 'A and 'B)' 

Then, qA = 'A' qB = 'B' 

Sinks and sources in (2.1) approximate the circled zones in Fig. 1 b when these 
zones are narrow as compared to I and h. At the corner points a detailed flow pattern 
(Fig. lc) can be evaluated by the method of conformal mappings (for brevity we 
omit the corresponding derivations) . Noteworthy, that for two neighbour conductive 
cells , say ABCD and ABI C1Dl> if the joint point A is a sink for ABCD then it is a 
source of the same intensity for AB1C}D} and vice versa. 

To get the advection characteristics we express the real u and imaginary v parts 
in (2.1) (Abramovits and Stegun 1970). Since we deal now only with one rectangle 
we go to the coordinate system originating at the center of ABCD and use a 
well-known particle-tracking method (Anderson and Woessner 1992) with a routine 
fourth-order Runge-Kutta integration of system: 

dx / dt = u(x,y)/v, dy / dt = v(x,y)/v, 

(2.3) 

B= 


where X =2Kx/l, Y =2Ky/I, x, yare marked particle coordinates, v is porosity of the 
conduit. 

We started with two sets of points which consist of,!! particles placed at t =0 
along the quarter-circles surrounding points A and B: Zj =+ ih + P exp [± i jn/(2M)] , 
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j = 1,2, ... , M where p is a small value (well radius in Muskat's solution) and the ± 
signs correspond to points A and B, respective.ly. This choice is made to connect our 
results with Muskat's one though initial position of tracked particles can be arbitrary. 

Fig. 2 shows in coordinates x -tI2, y - hl2 eight streamlines (M =4) for qIi'qA = 
0.5, pll = 0,01 for three ratios Vh = 0.82, 0.67, 0.53 (graphs a--c, respectively). 
Obviously, within a cell two points (E» E2) of zero velocity exist that are placed on 
the sides of the rectangle that connect two sinks and two sources. Two separatrices 
shown schematically by dashed lines in Fig. 1 a split the flow into three parts. 
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Fig. 2. Streamlines for three I/h ratios and q£lqA = 0.5. 
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An important characteristic of solute transport in subsurface is the breakthrough 
curve which in terms of our model (piston-like displacement) follows from T(O) 

distribution where 0 is the angular coordinate of starting points. The total time T 
which is needed for a particle (marked by 0) to pass the cell was calculated as a sum 
of time steps in the Runge-Kutta procedure. The graphs for T as functions of (20ln) 
for the particles started from the vicinity of the point A (l/h = 0.78, v = 0.2, p/l = 
0.01) are shown in Fig. 3; curves 1-3 for qIlqA = 0.0,0.5, 1.0, respectively. For the 
general case with arbitrary qIlqA calculations show two peaks on these graphs (T = 
00) that correspond to two stagnation points El and E2. For example, curve 2 in Fig. 3 
exhibits one 'inner' maximum. Note, that this and other extrema shown are finite 
since we used a discrete set of marked particles. For qB =0, T =00 at 0 =nl2 and 0 = 
O. For another limiting case qA = qB the two peaks coincide and correspond to 
0= n12. 
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Fig. 3. Travel times for three qilqA ratios and fixed 1Ih. 

Muskat's systems 

In the oil extraction industry, various combinations of lEW are used in flooding 
regimes. The linear pattern and chess-type pattern were analytically described by 
summation of corresponding source-sink terms in terms of pressure (Muskat 1946). 
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The corresponding formulae for effective conductivity (resistivity) and efficiency of 
IEW networks are widely used in petroleum engineering (Petroleum Production 
Handbook) for preliminary estimations though the Muskat's model assumptions 
(one-phase Darcian flow, homogeneous reservoir, etc.) are very restrictive. 

The main questions are: What is the error of Muskat's formulae? Are they valid 
for arbitrary distance ratio between two neighbouring wells and rows? How simple 
is the exact result valid uniformly for arbitrary ratio? We shall derive the pressure 
and velocity for LP and CTP in closed form. In particular, we express rigorously the 
effective resistivity of the systems. 

Setting qA = qB =q in (2.2) and, hence C2 =0, we obtain an element of LP (Fig. 
4a). At qB =0, qA =q (Cl =-G2) we go to CTP velocity distribution (Fig. 4b). The last 
pattern at I =h is reduced to a five-point pattern. Assume as usually that a well is 
modeled as a circle of small radius p and the pressure (head) fall between two 
neighbouring IEW is {)p,p = -¢Ik. Then effective conductivity of a cell of the 
patterns under study is defined as kef! =q/{)P. 

a) y 
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Fig. 4. One element of a) linear pattern of lEW, b) chess-type pattern of lEW. 

Let us derive the potential and stream function distributions. For that purpose 
we integrate (2.1) and obtain the complex potential as follows: 

OJ = C~ In [ds(Z) - cs(Z)) + C~ In [dsl(iZ) - cSJ(iZ)] (3.1) 
2K m 2K ml 

Expressing the real and imaginary parts in (3.1) we go to ¢(x,Y), If/(x,y) and 
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hence 8p = k[¢(p,O) - ¢(t- p,O)]. Then, for LP we derive from (3. I) 

-I 

kelf 
[ 
2= :; In 
" 

dnu + cnu ] 

dnu - cnu 
(3.2) 

where u =2Kpll. 

Muskat obtained this value In an approximate way for lIh > 0.24 In the 
following form 

-I 

k = [~ In sinh
4
fsinh3f ) (3.3)

elf 7r sinh2 r sinh32f 

where f = 1tl/h, r = 1tp/h. Fig. 5 illustrates kelf as function of llh for pi l = 0.075 in 
accordance with (3.3) (curve 1) and (3.2) (curve 2). Comparing curves I and 2 we 
can conclude that Muskat's approximation is very close to rigorous expressions even 
for small /Ih. 

For CTP 8p =k[2¢(0, -h + p) - ¢(O,O) - ¢ (t. -h)] and kelf is derived from (3.1) 

after some algebra similar to LP as 

-I 

k- !J [In dn(u/2) dn](u/2) ] (3.4) 
efj - 2 sn(u/2) sn](ul2).../mm] 

Muskat's kerr for this pattern reads 

- 1 
k = [~In cosh4(f/2) cosh3(3f12) ) (3.5)
elf 7r sinh2(r/2)sinh'Ysinh(2J) 

In (3.4) standard series expansions for In dnx and In snx were used . 
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Fig. 5 presents kef! as function of Uh for CTP at p/l =0.075 according to (3.5) 
and (3.4) (curves 3 and 4, respectively). The graphs again show that Muskat's 
approximation differs from the rigorous results only at small values of Ilh. 
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Fig. S. Rigorous and Muskat's values for effective conductivity of LP and eTP. 

Note that in Muskat's book kef! values are four times higher than ours since we 
consider only quarters of singularities. Thus, to return to whole LP or CTP of weBs 
one should multiply eqns (3.2) and (3.4) by a factor of 4. 

Thus, Muskat's approximations are valid for broader l/h ratios of IEW systems 
than indicated by Muskat himself and can be complemented by rigorous formulae 
(3.2), (3.4) if necessary. 

Hydraulic barriers as Rankine's bodies 

To prevent or reduce ground water flow through a certain area of an aquifer, 
several options are available, such as engineering barriers and hydraulic barriers 
among others (Child 1985, Philip and Walter 1992, USEPA 1992, Wilson 1984). 
Engineering barriers include sealing, grouting, lining or other means of isolation of a 
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contantinated zone (CZ) by modifying the permeability of the porous medium where 
the flow takes place. Note,that reduction of flow through the zone of potential 
danger (porous waste repository, areas with adsorbed contaminants caused by 
leakage etc.) may be gained by its shielding with both low and high permeable liners 
(Kacimov and Obnosov 1994, Rowe 1988). Hydraulic barriers control the flow field 
by means of hydrodynamical disturbance of the natural flow using 
recharge-discharge wells or horizontal drains. Along with plume isolation by 
dividing surfaces (separatrices) these barriers can intensify flushing of CZ 
(pump-and-treat systems). At times engineering barriers are costly and a hydraulic 
barrier m3Y be preferable. A simple technique for confining CZ is based on 
installation of lEW that interfere with the natural flow to produce closed 'internal' 
circulation areas. If a CZ is isolated within one of these areas, contaminant transport 
to the 'external' flow will be solely by diffusion. Hence, providing sufficiently 
intensive circulation by force of pumping-injection rates one may both protect the 
aquifer and remediate the contaminant zone. 

To study a pair of lEW we apply the solution developed by Rankine (1871) for 
calculation of the effect of different shaped ships on uniform flows of ideal fluid . 
The Rankine technique allows for explicit presentation of heads, streamlines, 
velocities for combination of 2-D or 3-D sinks and sources with the natural gradient. 
The Rankine ideas is commonly employed in aerodynamics where combinations of 
distributed singularities (sinks, sources, doublets, multi poles) are widely used for 
evaluation of flow patterns, near airfoils, bodies of revolution, wings, etc. However, 
hydrologists are not well acquainted with the pioneering paper by Rankine though 
the method is used in practice (Polubarinova-Kochina 1977, Strack 1989). 

We utilize two of Rankine's flow schemes to evaluate the hydraulic barrier 
problems mentioned above. Though the problem of a dipole in an uniform flow is 
well studied (Grove et al. 1970) we repeated calculations of hydraulic characteristics 
to relate them with Rankine's analytical formulae. Specifically, we compute 
streamlines and travel times for a source-sink pair placed symmetrically in the 
natural flow for the 2-D and 3-D cases using velocities calculated from the Rankine 
explicit solution. Obviously , for ship design purposes, Rankine was not interested in 
the inner flow area confined by dividing surface and he stated: "In the present 
investigation, the external streamlines alone will be considered". In contrast, we 
restrict ourselves to the 'internal' area where two wells interact. In addition we 
discuss briefly the case of non-steady recharge-discharge rates . 

Consider the natural flow with velocity J (m/sec) in a confined aquifer of 
constant conductivity where CZ to be isolated is located. The Laplace equation holds 
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for the velocity potential ¢. The Stokes'stream function'll satisfies the equation: 

where x and y in 3-D case are coordinates in a plane passing through the two 
singularties. 

Place a 3-D source WI and a 3-D sink W2 of equal strength Q(m/sec) along the 
line that coincides with the direction J and the Ox axis such that the distance 
between the two singularities is la. An interface separates the flow in to 'internal' 
and 'external' parts and is symmetric about the Ox axis. Fig. 6 presents the upper 
half of plane through the Ox axis. Assume that the aquifer thickness is large enough 
to ignore the influence of its top and bottom on the source-sink interaction such that 
the source and sink model an injection well and a pumping well, respectively, whose 
screen lengths are comparatively small. 

Y 

c 

T 
YoJ -

x 

Fig. 6. One half of the Ranker body. 


According to Rankine, the velociity potential and stream function are given by: 


(4.1 ) 


(4.2) 
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Where RI = (x - a)2+y2, R2=(x + a)2+y2, and Pl'P2 are distances from arbitrary 
point P in the flow region to the source and sink, respectively . Specific discharge 
components, U = Jf/J/ax = yl J'I'/()y, v = Jqv()y = _yl J'I'IJx, at all points inside the 
flow interface (barrier) are obtained from (4.1), (4.2) as: 

u = 1+ Q[x+a _ x-a] Qy [1 I] (4.3) 
4n R ~12 R 1/2 v = 4n R ~/2 - Rrl2 

We start particle tracking according to (4.3) from the injection site initial points 
Xo =-a + pcose, Yo =psine, 0 ~ e ~ 1t (p is the radius of a small sphere which 
represents the well) and track a particle until it reaches x = O. Because of symmetry, 
the part from x = 0 to x = a is the same as from x = 0 to x = -a and need not be 
recalculated. The Raakine body of revolution confining the well-circulation area 
results from rotation about the Ox axis of the dividing streamline ABC, which is 
obtanined by putting Xo = -a - p, Yo = 0 i.e. eo = 1t as inital condition in equation (3) . 
The horizontal, 21, and vertical, Yo, dimensions of the ovoid are derived from the 
equations : 

([2 _ a2)2- aal = 0 

where a = Q/(nJ). The parameters [ and Yo are shown in Fig. 7 in nondimensional 
form: Yo cr l12 and 10.-112 as a function of acrl12 (curves 1 and 3, respectively). 

lira, ria' yr/{O., yr/a:
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Fig. 7. Horizontal and vertical sizes of circulation zone for 3-D dipole. 
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Note that A and C are stagnation points and travel time along W,ABCW2 is 
infinite. To estimate dispersion coefficients that are commonly used in the 
convective dispersion equation, the mean velocity Vm along the streamlines is 
derived as Vm(O) = S(O)/t((J) where S(O) is the length of the streamline (Grove and 
Beteem 1971). The last value was also calculated during step-by step integration of 
equation (3) . Fig. 8 shows streamlines for one quadrant of the 'internal' flow area for 
Q=I , J=I, a = 1, r = 0.01. Curves 1-6 correspond to starting points with 017t = 0 .95, 
0.75, 0.55, 0.35, 0 .15, and 0.05). Travel times and mean velocities for the same 
parameters and v =0.3 are depicted in Fig. 9 (curves 1 and 2, respectively). 
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Consider now a 2-D flow pattern when the two wells of rate Q(m2/sec) per unit 
aquifer depth being modeled as a source-sink pair (the well screen penetrates the 
whole depth of the aquifer). In this case the dividing surface is a cylinder which 
plane section (left half) is again shown in Fig. 6. For the same designations as for the 
3-D case above the components of velocity are: 

Qyv= - (1- --1 ] (4.4)
21t R2 RI 

Horizontal size, 2/*, and vertical size, y ~ , of the dividing cylinder are derived 
as follows 

The values of y~/a* and l*la" as functions ofa/a* are shown in Fig. 7, curves 2 
and 4, respectively. The system of two ordinary differential equations of the particle 
tracking method with explicit functions (4.4) was intergrated as for the 3-D case. 
The corresponding quadrant of streamlines is shown in Fig. 10 for Q =1, J =1, a = 
1, r =0.01 . Curves 1-6 correspond the same starting points as for the 3-D case. The 
corresponding travel times and mean velocities are plotted in Fig. 9 (curves 3 and 4, 
respectively). 
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Fig. 10. Streamlines for 2-D dipole. 
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Note, that travel times along the streamlines passing through CZ may be 
compared with diffusion times from points within CZ to the boundary ABC. Such 
empirical comparisons can be used for crude estimations of advection-diffusion 
relation when modeling contaminant transport. 

Rankine's model can be used for systems subjected to transient conditions, for 
example, pulsed pumping (USEPA 992). This innovative technique involves 
periodic pumping-injection rates Q*(t) that allow for activation of flow paths in the 
stagnation zones. We illustrate the effect of non-steady flow perturbations using the 
regime Q* =Q + q sin(ca), where Q is the mean rate, ro =21t1T, T is the period, and 
q is the amplitude of rate oscillations. For brevity we consider the 2-D case only. 
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X 

Fig. 11. Streamlines for 2-D transient dipole flows. 

Fig. 11 presents a quarter of the 'pulsing' Rankine body with 8In: = 0.95 for the same 
parameters as in Fig. 10, q = 0.5 and m = 0.01, 1.0, 10.0, and 100.0 (CUrves 1-4, 
respectively). From the graphs plotted we see that a particle can deviate from its 
steady trajectory by injection-pumping fluctuations. Computations showed that the 
closer a particle to ABC the stronger it deviates from the steady route which is clear 
from elementary balance quantities. The theory of corresponding systems of 
ordinary differential equations (non-autonomous in mathematical terms, see, for 
example, Arnold 1983) is actively studied in applications to mixing regimes in 
chemical technology, fluid mechanics, etc. 
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Clearly, the transient regime calculated bears all the restrictions of the model 
implemented. Assumptions about incompressibility and as a consequence the 
Laplace equation for the potential are restrictive since in reality oscillations of well 
rates are dissipated both by matrix and liquid that calls for more complex models. 

Circular inclusion affecting a pumping well 

Some regimes of aquifer remediation involve temporary halt of 
injection/pumping to/from a well while other wells continue to operate. In this case 
the stopped well becomes hydrodynamically passive though its screen and changes 
of near-well zone permeability due to previous usage disturb the ground water flow. 
Consider the simplest case assuming a pumping well being placed at the point z = Xo 
and a stopped injection well at the point z =O. The stopped well has a screen of 
radius R, conductivity Iv;. and aquifer conductivity is kl' porosities of the two media 
are VI and v2 . Fig. 12 shows streamlines for this system at kikl = 0.3. Strictly 
speaking, the pumping well has its own screen which conductivity differs from kl. 
However, this well is hydrodynamically active and we neglect this conductivity 
difference substituting the well by a sink in the locally homogenous surrounding. 
This approximating leads to deviation from the exact value only near z =xo' 
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Fig. 12. Flow to a pumping well near a circular inclusion. 
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The main question is: how strong IS the influence of inhomogeneity on the 
travel time distribution? 

The rigorous solution to the flow problem under consideration was obtained 
many years ago (Polubarinova-Kochina 1977). Here we use this solution in terms of 
components of specific discharge. The corresponding system of ordinary differential 
equations describing particle movement is: 

dx U I ,2 dy U I ,2 
= 

dt 
= v1,2 , dt ~ 

Q(l - A) CC 
U =­U =-~ [ AR2A 

I 21t C2+y2 A2+B2 2 21t C2+y21 
(5 .1 ) 

Q(l - A)_Q D AR2B Y ,V2 =­VI = 
21t C2+y2 A2+B2 1 ' 21t C2+y2 

where 

A = R2x - xO(x2- y2), B = R2y - 2xoXY, C = x - Xo' A= (k l - k2)1 (k j + k2) 

UI, VI are specific discharge components for the aquifer and U2 ,v2 for the inclusion, 

v1,2 are porosities of the two mdeia. 

We start with the particles placed along a circle of large radius PI surrounding 
the well and track them until a circle of small radius P2 surrounding the active well, 
System (5 .1) is integrated analogously to the previous cases. Fig. 13 shows 
isochrones (curves 1-7 correspond to t = 0, 1.5, 3,0,4,5,6.0, 7.5,9,0) for p/R = 4 .0, 
Q/(kR) = 1.0, xJR =2.1, VI =v2 =0.2, and k21kl =0.2, 5.0 (plots a-b, respectively) . 
The significantly curved fronts for large times illustrate considerable deviation of the 
breakthrough curve from a simple 'step' valid for a homogeneous aquifer. Fig. 14 
shows for the same PI> P2, Xo, vI> V2, Q the distributions of travel times OF =T - yo 
as functions of 8/1t where yo =1tV(p21- p22)IQ is the travel time for a homogeneous 
aquifer. Curves 1-4 in Fig. 14 correspond to kik, = 0.2, 0.6, 1.8, 5.4. This time 
difference characterizes advection of equidistantly placed particles toward the active 
well. From these graphs we infer that even a very simple circular inhomogeneity 
causes non-trivial changes in travel time distributions, to wit T(fJ) exhibits a local 
maximum (retardation) and minimum (acceleration) for more and less conductive 
inclusions, respectively. In other words, the 'fastest'and 'slowest' streamlines are not 
straight ones. The graphs also show that the celerity of particle breakthrough is 
higher for one part of the starting circle (negative OJ) and lower for another one 
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(positive OJ) as compared with the case k] = k2. We used a p,- circle surrounding the 
pumping well as position for starting points though these points can be selected 
arbitrary . 

The results above can be interpreted for analysis of pumping when an aquipfer 
under operation contains low-permeable lenses (Tiedemman 1995) which are a 
potential source of contamination because of previously sorbed species. 
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Fig. 13. Isochrones for a) less permeable. b) more permeable inclusions. 
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Fig. 15. Octogonal block structure: a) one element of the whole network, b) I·D fracture element. 



346 Analytical Solutions to a Problem of Sink-source ... 

Conclusions 

Explicit form of the velocity field like (2.3), (4.3), (4.4), (5.1) allows for 
evaluation of all flow characterisitics with the error of numerical intergration which 
can be estimated analytically and can be made arbitrary small by proper choice of 
the time step. Hence" they can serve as test procedures for the numerical methods 
used in widely spread software like MODFLOW or MT3D where the flow problem 
is solved in terms of head (pressure) and particle tracking involves numerical 
differentiation (Anderson and Woessner 1992). 

We showed that Muskat's IEW flow patterns are limiting cases of a 
two-component double-periodic chekerboard system. The explicit solutions derived 
can serve as 'elements' of other network system. For example, return to the periodic 
case shown in Fig. 1 a with k2 =0 and show how our solution can be interpreted as an 
element of a more complex structure. Namely, consider a network of impermeable 
octogonal blocks composed in such a way that this fractures intersect at nearly 
rectangular junctions (Fig. 15a). Both void space ABeD and fractures AA]> BB]> 
eel' DD, are filled with a porous material. 

The corresponding Darcy flow can be decoupled into two elements: 2-D flow 
within junctions as studied above and I-D flow within fractures. For the last one we 
use the well-known formula qa == kbop/L where k is conductivity of the filling 
material, b is the fracture apperture, L is the fracture length. The pressure (head) loss 
op along one fracture (Fig. 15b) can be matched with the head loss in the 2-D 
rectangular element ABeD in an approximate way. 

Noteworthy, that the results obtained can be utilized in mathematically 
equivalent problems involving point singularities (Buchholz 1957, Carslaw and 
Jaeger 1959) as well as many solutions from electrodynamics, thermophysics, 
diffusion theory can be easily reformulated in terms of subsurface flows. 
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