A Triclinic Superlattice Structure for the Bended Sphalerite Unit Cell of the Compound Cu₂GeSe₃

M.S. Omar*

Department of Physics, College of Science, University of Salahaddin, Arbil, Iraq

ABSTRACT. X-ray diffraction method has been used to determine the crystal structure of the ternary compound Cu₂GeSe₃. A complete powder data is presented; and their analysis by Ito's method gives a Triclinic superlattice for the bended sphalerite unit cell of Cu₂GeSe₃ compound, with the lattice constants of $a = 3.9381 A^\circ$, $b = 22.3796 A^\circ$ and $c = 11.5626 A^\circ$ and the angles are $\alpha = 90.039^\circ$, $\beta = 89.592^\circ$ and $\gamma = 89.945^\circ$.

The ternary compounds belonging to the I_2 -IV-VI₃ type of the two cation diamond-like systems are crystalochemical analogues of group IV elements having tetraheddral binding (Averkieva *et al.* 1965) (Hahn 1959) and (Goryunova and Sokolova 1960) reported that the compound Cu₂GeSe₃, which is a semiconductor chalcongenide, has a ZnS type structure with a tetragonal cell. Then the same structure was reported by (Palatnik *et al.* 1961), whereas, (Parthe and Garin 1971), reported that Cu₂GeSe₃ crystallizes in a slightly distorted sphalerite-type of structure with Se atoms occupying S sites, and Cu and Ge atoms sharing Zn sites in ordered fashion. It was found that this compound can dissolve Ge up to 14% and changes its lattice to cubic when excess Ge distributes between cation and anion sites equally. (Sharma and singh 1974) who have investigated the system Cu-Ge-Se in the vicinity

^{*}Present Address: College of Electronic Engineering, P.O. Box 38645, Bani-Walid, Libya.

in the vicinity of the compound Cu₂GeSe₃ reported a disordered tetragonal unit cell with $a = 5.591 A^{\circ}$ and $c = 5.485 A^{\circ}$. They found that the unit cell symmetry is very sensitive to Ge concentration. Thus, a slight deficiency of Ge lowers the cell symmetry to monoclinic, while an excess of Ge raises it to cubic. The composition Cu₂Ge 0.85 Se₃ has a monoclinic unit cell with $a = 5.512 A^{\circ}$, $b = 5.598 A^{\circ}$, c = 5.486 A° and $\beta = 89.7^{\circ}$, but the composition Cu₂Ge 1.55 Se₃ was cubic with $a = 5.569 A^{\circ}$, however, (Suri *et al.* 1982) reported for the latter composition an orthorhombic superlattice of the face centered cubic cell with lattice constants $a = 3.932 A^{\circ}$, b =22.242 A° and $c = 11.769 A^{\circ}$.

A cubic structure was reported for solid solution based on this composition with binary and ternary compounds (Goryunova *et al.* 1965). She reported a sphalerite structure for 20% Cu₂GeSe₃ + 80% GaAs. Cubic structure was also reported when Ge is substituted by Sn for a Cu₂Ge (x) Sn(1-x)Se₃ when x < 0.5, which becomes tetragonal for x > 0.5 (Goryunova *et al.* 1965). However, a cubic phase was the result of the whole solid solution which exists between this compound Cu₂GeSe₃ and the ternary CuGe₂P₃ from the group I-IV2-V3 in the range 0.1 < x < 0.25 when X is the fraction of CuGe₂P₃ (Omar 1990).

Sample Preparation

10 gm mostly single crystal ingots of the compound Cu_2GeSe_3 were prepared from 99.999% pure elements with selenium is a 5% excess to allow for the vapour phase. Two main problems had to be overcome, preventing an excess pressure of selenium building up during the reaction of the elements, and achieving a high temperature gradient at the melt-crystal interface during growth. To do this, a two zone furnace with an airgap was used. However, details can be found elsewhere (Omar 1988). Good quality ingots were obtained for all specimens and they were mostly 50-90% single crystals.

X-ray Powder Photography

X-ray powder patterns were taken in a 114.6 mm diameter Debye S'cherie camera using CuK_{∞} radiation. Powder patterns taken from samples of polycrystalline and single crystal ingots were found to be identical in all respects.

The powder patterns were characterized by a set of sharp strong reflections along with a set of weak lines up to the highest angle. By using Ito's method (Ito 1950), the strong lines were indexed in sphalerites slightly distorted in their dimentions and a small deviation in their angles α , β and γ , while the weak lines

M.S. Omar

were indexed in superlattice for sphalerite unit cell mentioned above with lattice constant $a = 3.9381 \, A^\circ$, $b = 22.3795 \, A^\circ$, $c = 11.5626 \, A^\circ$, $\alpha = 90.039^\circ$, $\beta = 89.592^\circ$ and $\gamma = 89.945^\circ$. The reflections used to calculate these constants were from (200, 220, 331, 422, 444 and 551) planes. However, the same method has been used succesfully for analysis of Cu₂GeS₃ data as well (Omar *et al.* 1989).

The group of lines (311, 331, 620 and 622) were found to split into two components, whereas lines (220 and 531) split into three components. These new forms of lines indicate that the sphalerite shape of the cell should be deformed to a new shape of triclinic-like form as indexed in Table 1. However, the two new lines 022 and 202 as well as 620 and 602 gave the same reflections while the lines 620 and 622 were indexed only by α_2 reflections. If the lattice, constants of the distorted sphalerite structure are a_0 , b_0 and c_0 , then its superlattice cell constants are related to a_0 , b_0 and c_0 by the relation $a = a_0 \sqrt{2}$, $b = 4b_0$ and $c = 3c_0 / \sqrt{2}$ (Omar *et al.* 1989).

Table (1) contains the powder data obtained from the Debye S'cherie camera and a part from visual intensity estimates.

Analysis

The relationship between the line intensities in Deby powder patterns and the number of atoms per cell unit with dimensions given in Table (1) indicates clearly that the atomic distribution in this unit cell is completely analogous to that in Zinc blende structure with the Copper and Germanium atoms in ordered positions.

The 'super structure' lines are found to be in low intensity as shown in Table (1), which is due to the small difference between the atomic factors for Copper and Germanium atoms, since their electron numbers are close. The same intensities were found for the superlattice lines of the compound Cu_2GeS_3 , however, the lines (200, 222, 420....) which belong to ZnS structure, became of very low or zero intensity for Cu_2GeS_3 compared to that of Cu_2GeS_3 lines (Omar *et al.* 1989). This is probably due to the size similarity of the Se atoms to that of Ge and Cu in the crystal lattice, while S atoms in Cu_2GeS_3 are of a different size.

It has been reported that the concentration of group IV atom in the ternary Cu_2GeSe_3 greatly effects the symmetry of the lattice, (Parthe and Garin 1971). However, it is also found that the structure form of Cu_2GeSe_3 is very sensitive to Ge percentage in the compound.

This work indicates that the replacement of S by Se will create a distortion in

two dimensions rather than one which reported earlier (Averkieva *et al.* 1965) and (Parthe and Garin 1971); and makes the angles α , β and γ slightly bended. These two new effects changes the shape of the unit cell of the compound Cu₂GeSe₃ to triclinic-like symmetry.

It is interesting to explain the new deformation of the sphalerite lattice of Cu_2GeSe_3 employing the relative ionicity of the cation-anion bonds in Cu-Se and Ge-Se binary systems. But, since the electro-negativities of Cu and Ge are not far apart, the difference in the relative ionicity between the two binary Cu-Se and Ge-Se bonds is very small. Generally this should make the structure remain in its isotropic shape. This was observed in Cu_2GeS_3 , which was in the form of the orthorhombic super-lattice of F.C.C. unit cell (Omar *et al.* 1989), whereas this was not the case for the compound Cu_2GeS_3 .

It has been reported that the interaction between Ge-Se is stronger than that of Cu-Se (Sharma and Singh 1974). The latter makes the bonds more dostorted in the directions having Ge atoms than those having Cu atoms. The difference therefore, in the lattice spacing of a, b and c as well as the angles α , β and γ indicates uneven distribution of the concentration of these bonds corresponding to the indicated lattices and angles.

However, work is in progress to explore the atomic distribution in the compounds Cu_2GeS_3 and Cu_2GeSe_3 which may help in the explanation of the structure deformation of the compound Cu_2GeSe_3 .

Conclusion

The results of the present investigation of the structure determination of the ternary compound Cu_2GeSe_3 confirms that:

- 1. The existance of a Triclinic like shape for the face-centered diamond like structure.
- 2. The existance of a superlattice structure for the structure type mentioned above in this ternary compound.

d (A °) d (A?) I \ I₀ hkl^x hkl* obs. calc. 040,012 00 (S) 5.5965 4.4682 01 050 (S) 4.4759 3.9377 100 01 (S) 3.9381 100 070 3.2018 111 3.1971 01 004 2.8915 (S) 2.8906 2.7841 04 200 080,024 2.7975 2.5140 01 082 (S) 2.5175 2.2116 02 035 (S) 2.2083 1.9689 60 220 200, 125 1.9691 85 022,202 1.9489 1100 1.9465 50 1.6780 311 0123,234 1.6783 35 113 007 1.6563 1.6563 1.6016 02 222 0140 1.6025 1.3921 12 400 265 1.3921 08 (S) 1.3682 226 1.3682 09 302 1.2758 331 1.2805 133 039 1.2665 16 1.1365 1.1357 23 422 325 1.1365 1.0723 11 511 229, 3120 1.0717 07 1.0659 346, 239, 0<u>21</u>0 (S) 1.0659 07 356, 3<u>12</u> 2 1.0549 **(S)** 1.0552 0.9844 04 400, 0811 (S) 0.9845 09 404 0.9765 421 0.9774 05 531 0.9426 0512 0.9418 0.9387 09 471, 462 513 0.9382 0.9304 10 315 378 0.9304 05 0.8824 0313, 379 (S) 0.8831 07 620, 602 0.8805 2811, 465 0.8805 0.8678 08 3110, 1013 (S) 0.8677 0.8483 07 533 0813 0.8474 0.8422 06 262 3202, 1260 0.8429 0.8401 011 622 0<u>26</u>3 0.8400 0.8012 09 444 458 0.8011 0.7821 11 551 3<u>23</u> 0 0.7821 0.7786 02 522, 541 (S) 0.7787 0.7753 06

Table 1. Powder Data for Cu2GeSea

+ The superlattice lines are denoted by the letter(S).

 $x a_0 = 5.5693 A^\circ$, $b_0 = 5.5949 A^\circ$, $c_0 = 5.4507 A^\circ$.

 $\beta = 89.592^{\circ}$, $\gamma = 89.945^{\circ}$ $\alpha = 90.039^{\circ}$,

* The superlattice for the deformed sphalerite unit cell of a triclinic-like shape.

3212

0.7754

(S)

 $a = 3.9381 A^{\circ}$, $b = 22.3796 A^{\circ}$ and $c = 11.5626 A^{\circ}$

References

- Averkieva, G.K., Vaipolin, A.A. and Goryunova, N.A. (1965) Soviet research in new semiconductor materials. Ed., Nasledov, D.N. and Goryunova, N.A. (Consultant Bureu, New York).
- Goryunova, N.A. and Sokolova, V.I. (1960) Izv Akad, Mold SRR, Ser Fiztekh Mat Nauk (USSR) 3: 69.

Goryunova, N.A., Averkiva, G.H. and Vipolin, A.A. (1965) Physics, Proc. 23rd Sci. Conf. Leningrad Structural Engineering Institute, 52.

Hahn, H. (1959) Proceedings of the 17th Congress on Applied Chem., Munich.

Ito, T. (1950) X-ray studies on polymorphism, Maruzen Co. Ltd., Tokyo, 187-228 pp.

Omar, M.S. (1988) Chaines J. of synthetic crystals, 17(2): 118.

Omar, M.S., Aziz, A.K., Saeed, M.A. and Ahmad, H.M. (1989) Iraqi Society of Physics and Mathematics, 11(1): 39.

Omar, M.S. (1990) Material Research Bulletin, 313, 25, 6.

Palatnik, L.S., Komnik, Yu.F., Belova, E.K. and Anoshchenko, L.V. (1961) Kristallografiya (USSR), 6: 960.

Parthe, E. and Garin, J. (1971) Montshefte für Chemie, (Asteria) Physics, 102: 1194.

Sharma, B.B. and Singh, H. (1974) J. of Solid State Chem., 11: 285.

Suri, D.K., Nagpal, K.C. and Ali, S.Z. (1982) Indian J. of Pure App. Physics, 20: 584.

(Received 24/01/1996; in revised form 13/10/1996) M. S. Omer

التركيب البلوري الثلاثي الميل المثالية لوحدة بلورة السفيلرايت الملتوى للمركب Cu2GeSe

مصطفى سعيد عمر

قسم الفيزياء - كلية العلوم - جامعة صلاح الدين أربيل - العراق

استخدمت طريقة حيود أشعة إكس لإيجاد التركيب البلوري للمركب الثلاثي ${\rm Cu}_2{\rm GeSe}_3$. كما وقدمت بيانات كاملة لنتائج أشعة إكس للمسحوق وأعطت تحليلات هذه البيانات باستخدام طريقة ايتو تركيب بلوري مثالي لثلاثي الميل لوحدة خلية للسفيلرايت الملتوي للمركب ${\rm Cu}_2{\rm GeSe}_3$ ، مـع ثوابت الميل لوحدة خلية للسفيلرايت الملتوي للمركب ${\rm GeSe}_3$ ، مـع ثوابت البعد البؤري م ${\rm GeSe}_4$ وكذلك ${\rm b}=22.3796A^\circ$.

العنوان الحالي : كلية الهندسة الإلكترونية - ص .ب(28645)- بني وليـد الجماهيرية العربيـة الليبـية الشعبـية الإشتراكيـة العظــمي