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ABSTRACT. The variational method is used to obtain an approximate solution to the
Thomas-Fermi equation. Group of exponecntial functions are used in attempt to
improve the desired results. This method eliminates the shortcomings of the exact
solution, such as the behaviour of the electronic density far away and close to the
nucleus. Also it enables us to usc the Thomas-Fermi equation (o treat the negative
ions. The mcthod has been tested by calculating the diamagnetic susceptibilities of
the neutral atoms and the ions and comparing them with the experimental values and
the Thomas-Fermi results.

The Thomas-Fermi model (Thomas 1926 and Fermi 1928) for atoms is a crude
approximation to the N-electron Schrodinger equation. It is useful for obtaining
effective potentials which can be used as initial potential in the self-consistent field
method. This model is described by a nonlinear second order differential
equation. However, this model has two major defects: First, the electron density,
and therefore the kinetic energy, becomes infinite at the nucleus. Second, at large
distances the electron density vanishes as 1/1% instead of the exponential decay of
the exact density. These shortcomings can be eliminated if the Thomas-Fermi
equation is replaced by an equivalent variational treatment (Csavinszky 1968 and
1973). In the original (TF) theory the density of positive ions abruptly drops to
zero after a finite radius. The use of the variational method eliminates this
discontinuity. So, the negative ions can be treated as well as the neutral atoms and
the positive ions. This method has been implemented by Csavinszky 1976 and 1979
and by Csavinszky and Morrow (1981) and leads to significant corrections to the
results which obtained from the (TF) theory.
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In this work we selected a group of trial functions as approximate solutions to
the (TF) equation. These functions satisfy the exponential behavior of the density
at large distances and satisfy the boundary conditions of the (TF) equation. Our
results are in better agreement with experimental results compared to those of
(TF). Three different trial functions have been used and the results show the
importance of choosing the trial function. In section 11 the variational principle is
used to obtain an approximate solution to the (TF) equation with three different
exponential functions. In this section, neutral atoms, positive ions, and negative
ions are examined.

Study Area

1. Neutral atoms
For neutral atom the (TF) equation has the form

d?o(x) _ e(x)*"?
3

|
dx? X (0

The electron density n(r) within the atom is related to ¢(x) by

PEERES

The dimensionless measure x of the distance r from the nucleus is defined by

2
r=bx=1[9"

1/3
N A = 173y | 3
1 22} x = (0.88534/Z'7) - x(a.u) (3)

and the solution ¢(x) is satisfying the boundary conditions
®(0) = 1, ¢() =0, and ¢'(*) =0 @

with the usual normalization condition

J n(r)dv =N )

where N is the number of electrons.
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Since the exact solution of Egqn. (1) gives, at large distances from the nucleus,
an electron density with the radial dependence 1/r°, while its behavior must be
exponential, we have used a trial function yielding an approximate solution to
equation (1) and insuring the exponential behavior. The form of this function is

o(x)=[a.e™™ +be ™+ ], m=12,.. (6)

where, a, b, B, and y are parameters to be determined such that ¢(x) satisfies
equation (1) under the boundary conditions, (4), and the normalization condition,
(5). To determine the parameters we make use of the variational principle
(Goldstein 1965)

J@»=fF@@xnm %
where
YET

Equation (7) is equivalent to Eqgn. (1) when we substitute Egn. (8) in
Euler-Lagrange equation

SF d (6F
o~ ax (—&p’) =0 ©)
with the condition
at b= (10)

and the normalization condition. Equation (7) should be minimized with respect
to the parameters a, b, 3, and v.

In this work we have used ¢(x) of equation (6) with three values for the power
m. The reason for this is to find out how important is the choice of the function.
The difficulties in the calculations have restricted us to small values of m. We have
used three values m=1,2,4. Using ¢(x) given in equation (6), we have calculated
F(¢,9’.x) and then evaluated the integral in equation (7). Using the notations

J(¢) = J(a,n) = J,(a,n) + Jy(a,n)
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where

N = 5 [ @ (an
and

Jx(a.n) = % ¢-:5 /xl/zdx (12)
where

n = Bly (13)

Furthermore, the extremalization should be carried out subject to the
normalization condition (5).

For m=1 we have obtained

Ji(an) = %;3 [a2 + n(1-a)? + w (14)
s 1 o 5a¥2b 15a’b?
Jo(a,n) = 0.1012a”% + -
2(4.1) VB 2(1.5+n)} 8(3+2n)*
15a__b1_] (15)
48(3n—14)}
The normalization condition gives
Z(2 \* 3a‘b 3a"*b? ]}2’“
= 0. £ < 1

B = 0.922635 (N [(3 a) - ) + 82D (16)

For m = 2:

Ji(a,n) = B[ Lodyan? (1-a) (l+n) + a? (1—a)? (M) + 4a(1—a)®

+

1
(1 —a)“n] (17)
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and

5 agy_ 301 .\2
2V a a*(1—a) +2a(1 a)+

J, (a,n) = 75 \5%® 4+ ) (3+2n)*

2a%(1—a)? . a(1—a)* + (1—a)®
(2+3n)? (1+4n)? 5(5n)*

(18)

and the normalization condition gives

B = .922635 {E (3_3 L 3a(l—a) | 3a(l-a)® | (1_a)z)]m 15}

N 332 (2+n)3/2 (1+2n)3/2 (3n)3/2

For m = 4:

16a’(1—a)(3+n) 5 4a%(1—a)?(15+12n+n?)
7+n 3+n

+

J, (a,n) =B {_a” +

16a°(1—a)*(10+ 15n+3n?) N 10a*(1—a)*(3+8n+3n?)
5+3n 1+n

+

162°(1-a)°(3+15n+10n%) | da*(1-a)°(1+12n+15n?)
3+5n 1+3n

16a(1—a)’(1+3n) B
T+7n +n(l a>“} : (20)

and

Jz (a,n) =

avm {a”’ 10a’(1—a) = 45a%(1—a)?

— + — + — +

vB L0 (9+n)? (8+2n)}
120a’(1—a)? N 210a%(1—a)* . 252a%(1—a)® N 210a*(1—a)®
(7+3n)* - (6+4n)* (5+5n)t (4+6n)?

301 __a\7 201 __.\8 o\ RN
120a%(1—a)’ _ 45a’(1-a)® _ 10a(l—a)® _ (l1-—a) }

(3+7n)* (2+8n)} (1+9n) (10n)* 2D
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and the normalization condition gives

o 5(1— 401 —qa)2 S301 a3
B = 0.922635 { & 4 6a’(1 a3 L 1sa‘(l az 202%(1 az
6! (5+n)" (4+2n)'" (3+3n)""

15a%(1-a)*  6a(l-a)®  (1-a)° }2” (22)

(2+4n)'? (1+5n)' (6n)'*

In equations 16,19 and 22 we see that 3 is a function of the parameters a and
n. We also have N/Z=1 for a neutral atoms. The substitution for 3 in equation (6)
leaves J(¢) with only two parameters, a and n. Now J(a,n) can be minimized with
respect to the parameters a and n. The minimum of J(a,n) is reached when the
parameters have the values listed in Table 1, where we used Egns. (10) and (13) to
obtain b and vy.

To test our approximated function, ¢(x), with the different values of the
parameters some of the properties of the neutral atom such as the total energy
needed for complete ionization of an atom and its diamagnetic susceptibility, have
been considered. The total energy is given by the relation (March 1975):

E = .4840748277 [¢' (0) + (1 = ;)Z/X‘,] (23)

where, for neutral atoms the second term in parenthesis vanishes.

Since the expectation value of the squared distance provides a sensitive test of
the density at large r (Englert and Schwinger 1984), we have calculated the
expectation values for some atoms and use the results to calculate the diamagnetic
susceptibility by

<r’>= 4nJ. rn(r)dr (24)
and

Xm = —[1/137]*Naall = 4.752x107°1, (25)

where, the constants are in atomic units, and

2
>
1= = (26)
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Table (2) contains the results for the total ionization energy obtained from
Eqgn. (23) together with (TF) and the experimental results for a group of species
hanging in mass from very light to very heavy atoms. The Table shows that the
present approximations give ionization energies much better than those obtained
from the original (TF) equation. One can say that up to medium weight atoms
m=2 gives very good agreement with experimental results. However, for very
heavy atoms (Hg and U) m=1 seems to do a better job.

From Table 3 it is clear that as the atomic weight gets progressively larger, a
choice of higher value of m gives better agreement with experiment. This can be
physically understood since a higher value of m leads to a slower change of the
density for heavy atoms.

The variation in our predictions for values of m used is within 15%, where its
very little for energies but larger for the other properties, this can be seen from
Tables 1 and 3.

2. Positive lons

For positive ions we have used the same procedures employed for neutral
atoms except that the nuclear charges are not equal to the number of electrons.
So, for each ion we have different parameters. When 1-N/Z becomes close to zero
the parameters will have values close to that of neutral atoms, (Eqns. (11)-(13)).
The values of the parameters for various positive ions are listed in Tables 5 and 6.
These were used to obtain <r’> and the diamagnetic susceptibility, X,,. These
results are listed in Tables 7 and 8.

3. Negative ions

According to Fermi-Amaldi (FA) correction (Gombas 1949) we have for a
singly negative ion

(27)

where x is defined by

x =r/b* (28)
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r stands for the distance from the nucleus and b* is a constant defined by

b* = e b?3 = (%)-(.92202)/22’9 (29)

The normalization condition is

J‘ n(r)r’dr = N (30)

from Eqns. (19) and (22) we get

f (%)3’2 < x3dx = (N;l) =1 (31

for singly charged negative ions.

To compare our variational method with the (FA) approximation we followed
the same procedure employed for neutral atoms except we have different
parameters for each ion. These parameters are listed in Table 9, keeping in mind
the fact that since ¢ is exponentially varying, then n(r) is not zero for r > r,,. These
parameters were used in equations (24) and (25) to predict <r*> and X, which
are shown in Table 10. Our results for X,, are better than those of (FA)
approximation.

Table 1. The values of the parameters of equation (6) for ncutral atoms with three different values of
the power m

m a b [ Y

1 0.96202 0.03798 0.59199 22.12869368
2 0.721834 0.2781663 0.1782559 1.759339

4 0.8416 0.1584 0.086951 1.4967917
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Table 2. Comparison of total ionization encrgics (in atomic units) of this investigation, TF. and

expcriment
m=1 m=2 m=4 TF Experiment

H 6825 .5984 6009 .769 .5
He 3.43968 3.01565 3.0285 3.875 2.904
Bc 17.3344 15.1984 15.2623 19.53 14.68
& 44.6482 39.1441 39.3108 50.3 37.86
Ne 147.0452 128.918 129.4671 165.7 129.5
Kr 2920.7211 2560.6639 2571.57 3291 2704
Hg 18821.788 16501.499 16571.7873 21210 18680
U 26078.895 22863.972 22961.3623 29380 25520

Table 3. Predictions of <r’> by the present investigation compared with TF and the experimental
results for neutral atoms

¥4 m=1 m=2 m=4 TF Experiment
Ne 10 8.0484 19.0611 19.7097 84.596 8.5101
Ar I8 9.7904 23.1867 23.9756 102.2727 24.7475
Kr 36 12.3351 29.2135 30.20732 128.7879 36.3636
Xe 54 14.1202 33.44]1 34.5788 147.7273 55.4293
Rn 86 16.4895 39.0524 40.3811 172.6
L

Table 4. Diamagnetic susceptibilities pcr gram atom (in units of 1X10 ¢ em?) of atoms as listed by
cxperiment, TF, and the prescnt investigation

z { m=1 m=2 m=4 TF Experiment
Ne 10 - 6.3743 —15.0964 —15.6101 - 67.0 — 6.74
Ar 18 - 7.754 —18.364 —18.9887 - 81.0 -19.9
Kr 36 - 9.7694 —-23.1371 —23.9242 —-102.0 —28.8
Xe 54 -11.1832 —26.4854 —27.3864 —117.8 —-43.9
Rn 86 -13.0597 ~30.9295 —31.9818 —136.0 =
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Table 5. Values of the parameters a, b, f§, and y for various positive ions using equation (6) where the
power m=2 is used

N z a b B ¥
10 769986 230014 21283 2.030143
9 11 81 190 2464357 2.3360138
12 8437 1563 .2789749 2.69216386
18 74865 25135 1967869 1.9016933
17 19 7727 2273 2149545 2.048495
20 7955 2045 2331893 2.2195195
36 7333 2667 .1866592 1.811042
3s 37 7473 2527 11960273 1.893017
38 7591 2409 .2048064 1.960878
54 7305 2695 .1841882 1.80075
53 55 7389 2611 .1900242 1.8462411
56 7476 2524 .1960653 1.8952068

Table 6. Values of the parameters a, b, 8, and y for various positive ions using equation (6) where the
power m=4 is used

N z a b g Y
10 .8729 1271 .1050074 1.772734
9 11 .8979 .1021 1224892 2.090756
12 19160992 .08391 .1384998 2.40569
18 .859 141 .0965563 1.6374394
17 19 .87429 12571 .1059858 1.7847
20 .888 112 .11528 1.94752
36 .8506 1494 .09173039 1.565462
35 37 .8587 1413 09632938 1.6361738
38 .867 133 .1011448 1.7130895
54 .8484 1516 .0903216 1.553351
53 55 .8541 .1458 09346809 1.597407
56 .859 141 096381 1.64040173
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Table 7. Predictions of <r’> and X,, of some positive ions by the present
work using the parameters of table 5

N z < 2> X
10 12.42126 — 9.8364
9 11 8.920126 — 7.06474
12 6.7116283 — 5.31561
18 18.2848 —14.48156
17 19 15.01489 ~11.89179
20 12.52024 - 9.91603
36 26.06456 —20.64313
35 37 23.44039 —18.56479
38 21.25604 -16.83478
54 30.90217 —24.47452
53 55 28.84 —22.84232
56 26.92594 —-21.32534

Table 8. Predictions of <r*> and X, of some positive ions by the present
work using the parameters of table 6

N VA < r’> Xm
10 12.65193 -

9 11 9.00292 — 7.13513
12 6.80847 — 5.39231
18 18.77062 —14.866331

17 19 15.31427 —12.1289
20 12.72657 —10.07944
36 26.69451 —21.14205

35 37 24.013 —19.01829
38 21.62301 —17.12543
54 31.76018 —25.15406

53 55 29.49731 —23.36187
56 27.57393 —21.83855
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Table 9. Predictions of the diamagnetic susceptibilities of some singly charged negative ions using the
FA approximation

(Z,N) m=1 m=2 m=4 Experiment
(9,10) — 7.8696 —18.6375 —19.27171 —11
(17,18) — 8.69310 —20.5879 —21.2883 -26
(35,36) —10.33563 —24.4781 —25.311 -36

Table 10. The parameters a, b, B, and v for singly charged negative ions using equation (6) with m=4

(Z,N) a b B Y

( 9,10) .8078 1922 0707100 1.288216
(17,18) 8237 1763 0779184 1.3802689
(35,36) 833 167 0824699 1.43863
(53,54) .83583 1642 .0839393 1.4571444
(92,93) .838 162 0851077 1.47155589

Table 11. Predictions of <r?> and X,, of some negative ions by the present work using the parameters

of table 9
(Z,N) < r*> X. Xm(exp)
( 9,10) 30.63506 —24.262966 —11
(17,18) 30.33775 —24.0275 -26
(35,36) 33.83173 —26.79473 -36
(53,54) 37.2684 —29.51656 =52
(92,93) 43.33985 —34.3252 i
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Table 12. The parameters a, b, f8, and vy for singly charged negative ions using equation (6) with m=2

@,N) a b B Y

( 9,10) 16692 13308 .146198 1.534492
(17,18) .6935 .3065 .1604401 1.631034
(35,36) 708 292 1694133 1.692269
(53,54) 713 287 172469 1.717412
(92,93) 7167 2833 .1749019 1.7342926

Table 13. Predictions of <r*> and X,, of some negative ions by the present work using the parameters

of table 11
Z,N) <> Xom X.n(exp)
( 9,10 29.333 —23.2317 -1
(17,18) 29.1814 -23.112 -26
(35,36) 32.6427 —25.853 -36
(53,54) 35.95662 —28.47764 -52
(92,93) 41.787 —33.0953 g
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