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ABsTRACT. Let A be the Unit disk |z| < 1 in the complex plane C. The
well known Bernstein’s theorem on the bounds of the derivative of an nth
degree polynomial f: C — C states that if f(A)C A then |[f'(A)| < n (ie.
|f'(z)| = n for |z| = 1). This result was generalized by Szegd and sharpened
by Lax under an additional condition. Here, we obtain quite a general
theorem that deduces all these results as corollaries and furnishes a chain
of interesting new results, some of which offer more general versions
(sometimes sharper estimates for |[f'(z)|) of the theorems of Bernstein,
Szegd, and Lax. In fact, we present a unified approach to the basic nature
of the problem and its solution underlying Bernstein’s theorem and other
related Bernstein-type results.

1. Introduction

In the complex plane C, we let D(a,r) denote the closed disk with center at the
point a € C and radius r = 0. We agree to write A, = D(0,r) forr>0and A = A,
for the unit disk. We denote by mit,, the class of all polynomials f: C — C of degree n
and, for a given set A C C, we write |A| = {|a| : acA}. By a circular region in C we
mean an open (or closed) set whose boundary is a circle or a straight line. Given {
e C and f & m,, the polar-derivative D, f(z) of f with pole T is defined by

(1.1) D; f(z) = nf(z) + (E—z) f'(2).

The following version of the famous theorem due to Laguerre (1898) (See
also Marden 1966) on the zeros of polar-derivatives, will be needed in the sequel.
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Theorem 1.1

If all the zeros of a polynomial f: C — C lie in a circular region C, then
D f(z) £ O V L,z £ C.

In this paper, we shall obtain a general theorem that deduces the following
results as corollaries and furnishes a number of other interesting new results.

Theorem 1.2
(Bernstein 1926). If f € m,, such that f(A\) C A, then f'(A) C A,. This result is
best possible and the extremal polynomial is f(z) = «z", where | = 1.

Szegd gave the following generalization of Theorem 1.2.

Theorem 1.3
(Szegd 1928). If f € m, such that |Re f (A)| < 1, then f(A) C A,.
Note that the above theorem is best possible and the extremal polynomial is

f(z) = a + Pz°, where Re a = 0 and [B| = 1.

Theorem 1.4
(Lax 1944). If f € m, such that f(A) C A and f has no zeros in |z| <1, then
f (A) C Ao

Observe that Theorem 1.4 gives a sharper bound for [f' (A)], than the one
given by Theorem 1.2, under the additional condition on the zeros of f.

2. The Sets with Disk Property

We begin with the following definition.

Definition 2.1.
Given a subset S of C, let

Dg = {D(a,r) : D(a,r) C S}.
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We say that S has the disk property (briefly, d. p.) if
(2.1) p(S) = sup {r: D(a,r) ¢ Dg} < =,
and call p(S) the core-radius of S. For each fixed aeS, we write

(2.2) Pa(S) = sup {r: D(a,r) C S}.

In view of (2.1) and (2.2) we clearly have p, (S) < p(S). A point a, € S is called a
core-center of S if p, (S) = p(S) and the set of all core-centers of S will be denoted
by core (S).

Clearly, a set S with d.p. has interior points if and only if p(S) > 0. In each of
the following examples, the set S has d.p. and core (S) and p(S) are as indicated.

Example 2.2
(i) p(S) = r and core (S) = {a} for S = D(a,r).
(i1) If S = D(a,r) — {b}, where beD(a,r), then p(S) = (r + |b—a|)/2 and

{z: |z—a| = 1/2} if b = a,
core (S) =

{a+r, €%} if b + a,
where r, = (lb—a] — r)/2 and 6 = arg(b—a).
(iii) If S is any closed or open infinite strip of width 2X, then p(S) = A and core

(S) is the set of all points on the axis of the strip. Same is true, in particular, for the
strips

Il

S = {z: |Re z| < A} = S, (say),
and

S = {z: [Im z| < A} = S% (say).

(iv) Consider the strips S, and S% of Example (iii) above. Given aeS, and
beS*%, let L(respectively, L*) denote the set of all points on the straight line
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through the point a (respectively, b) drawn parallel to the boundary of S,
(respectively, S¥). If S = S, — L, then p(S) = (A+ |Re a|)/2 and

{z: |Re z| = M2} if Rea =0,
core (S) = {z: Re z

—ho} if Re a > 0,

{z: Re z = Ay} if Rea <0

where A, = (A—|Re a|)/2 so that 0 < A, < MN2.

Similarly, if S = S% — L* then p(S) and core (S) are also given by the above
expressions provided we replace Re a by Im a and Re z by Im z.

(v) p(S) = (2k)* and core (S) = {0} if
S = {z: |(Re z) (Im z) = k}, k > 0.

(vi) If S = {z: |Re z| < a, [Im z| < b}, a = b > 0, then p(S) = b

and
core (S) = {z: Im z = 0, |Rez| < a — b}.
(vii) Given r > 0,0 < ¢ = /2 and 0 < B = w2, let

S={z |zl sr, B—~asargz < B + o} U {0}

Then p(S)

r sin o/(1+sin «) and core (S) = {z,}, where

zo = re®/(1+sin «).

(viii) If S is the set of points on or inside an ellipse with lengths of axes 2a and
2b, then p(S) = min {a,b} and core (S) is the center of the ellipse.

(ix) Define a real-valued function h: [0, + ) — [0,2) by h(x) = 2x/(1+X)
and let

S={z2Rez=0,0<Imz=< h (Re 2)}.

Then S has d.p. with p(S) = 1 and core (S) = ¢.
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Above examples illustrate fairly well that the class of sets having d.p. and a
nonempty core is abundant. For unbounded sets with d.p., core (S) may or may
not be empty (see Examples 2.2 (iii)-(v) and (ix)). Nevertheless, for bounded sets
we have the following result.

Theorem 2.3
If S is a nonempty bounded subset of C, then S has d.p. and core (S) ¥ ¢.

Proof. The first part follows trivially from the boundedness of S. To prove
the second part, let without loss of generality p(S) > 0 and

S, = {a&S: pu(S) = p(S) — U/n}, n = 1,23, ...
Then we observe the following:

(i) Each S, ¥ ¢ by the definition of p(S).
(ii) Each S, is bounded in view of the boundedness of S.
(i) S,4+; C S, for every n = 1 (trivial).
(iv) Each S, is closed. To see this pick any n and fix it. Take any sequence
a; € S, such that a; — a, and consider an arbitrary point x such that
|x — a,] < p(S) — 1/n. Then there exists a positive integer m such that
lam - aol < p(S) = 1/n — |x - aol'
Therefore,
Iam - XI = |am - aol & |ao - Xl < p(S) — Un
and so xeS (since a,, €S,). Thus, the interior of the disk D(a,, p(S)— 1/n) lies in S
and, by (2.2), p., = p(S) —1/n.

That is, a,eS, and S, is closed.
(v) core (S) = Ql S, (easy).

From observations (i) — (iv), the sets S, n = 1, from a decreasing sequence
of nonempty sets, and hence ﬂl Sn F ¢. Now, the proof is complete in view of
the observation (v). "
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3. The Main Result

We state and prove the following main result of this paper which generalizes a
number of known theorems and furnishes some interesting new results with
sharper bounds.

Theorem 3.1

If S has d.p. and fex, such that f{(A;) CS,r >0, then f'(A ) C A,y where p
= p(S). This result is best possible and the extremal polynomial is f(z) =
a+PBpz™/r", where |B| = 1 and a € core (S), provided §S is closed and core (S) + ¢.

(See Marden M., § 13, exercise 15).

Proof. Given wgS, the polynomial g(z) = f(z)—w has all its zeros in the
circular region C—A, (since f(A,) C S). By Theorem 1.1, Deg(z) F 0 for any
C,zeA,. Since Dyg(z) = D f(z)—nw (cf. (1.1)), it therefore follows that (1/n)D.f(z)
does not assume any value outside S for any T,zeA,. That is,

(3.1) (1/n)Dcf(z)eS V C,zeA..
Consequently, for each ze/A,, the point

(3.2) tfi(z)/n + w* eS V Le A,

where w* = f(z)—zf' (z)/n €S for all ze A, (put & = 0 in (3.1)). Since {&f!(z)/n:
teA,} = D(,r [f'((z)|] /n) for all zeA,,

(3.2) implies that

D(,r |f'(z)[/n) + w* = D(w*, r|f(z)

/n) C SV zeA,.

From this and the hypotheses on S we conclude that r|f'(z)|/n < p for all zeA,.
That is, |f'(A,)] =< np/r and the first statement of the theorem is established.

Regarding the second statement of the theorem, observe that the interior of
D(a,p) lies in S (since ae core(S)) and so D(a,p) C S (since S is closed). For the
polynomial f considered, we see that |f(z)—a| < p for |z| =< r and so f(A,) C S.
Clearly, |f'(z)] = np/r for |z| = r, and the proof of the theorem is complete.

The above theorem deduces Bernstein’s Theorem 1.2 on takingr = 1 and S =
A = Ay, so that p(S) = 1 and core (S) = {0} by Example 2.2(i). Similarly, it
deduces Szegd’s Theorem 1.3 when we taker = 1 and S = {w:|Re w| =< 1}, so that
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A1 = A and p(S) = 1 as observed in Example 2.2(iii). More generally, various
other possibilities for S as disks of radius s(in particular, say, S = Ay) in the above
theorem provides the estimate (since p(S) = s)

(33) fl(Ar) c Ans/r-

Similarly, if S is an arbitrary strip of width 2X, as in Example 2.2(iii), then the
above theorem offers the estimate

(3'4) fl(Ar) c A‘n)\/r'

Note that the estimates for |f'(z)| in the theorems due to Bernstein and to Szegé
are the special cases s = r = A = 1 of the estimates in (3.3) and (3.4).

Next, we employ Theorem 3.1 to get a more general form of Lax’s Theorem
1.4 and to obtain a sharper bound for f'(z) than the one given by Szegé’s Theorem
1.3 under an additional condition. In the remainder of this section, Int A denotes
the interior of a subset A of C.

Theorem 3.2

Let fem,, such that f{(A,) C A (r,s > 0). Ifag/\, such that f(z) % a for all ze Int
A, then f (A,;) C Agr, where R = n(s+ |a|)2r < ns/r if ae Int A,.

Proof. To prove the theorem, if suffices to show that |f'(z,)| < R for |z,| = r
(use maximum-modulus principle for f'). To this end, we proceed as follows: For
each 0 # |z| < r, we apply Example 2.2(ii) and Theorem 3.1 with A, replaced by
Ay, and obtain

f(AR) M C Do + faly2ial-

In particular,

(3.5) If'(z)] = n(s + |a])/2|z].

If z is made to approach z, along any path lying completely in Int A, the
continuity of f' and the inequality (3.5) give

If'(zo)) = Lim |fz)] < Lim n(s+ |a)) _ R

Pand X Ea 2 z ’
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and the theorem is established.

Forr=s =1 and a = 0, Theorem 3.2 is essentially Theorem 1.4 due to Lax
(1944).

Theorem 3.3

Let S, denote the strip of Example 2.2 (iii). Let ferw, such that f(/\,) C Sy. If
aeSy such that Ref (z) + Re aforall ze Int A, thenf'(A,) C A, where p = n(A +
|[Re a|)/2r < nMr if ae Int S,.

Proof. The proof is based on the technique employed in the proof of
Theorem 3.2 (use Example 2.2(iv) in place of Example 2.2(ii)).

Remark 3.4

Forr = A = 1and a = 0, Theorem 3.3 improves upon the bound for |f'(z)| in
Szegd’s Theorem 1.3 under an additional condition on the zeros of Ref(z), in the
same manner as Lax’s Theorem 1.4 improves upon the bound in Bernstein’s
Theorem 1.2 under an additional condition on the zeros of f.

Thus for, we have used Theorem 3.1 in obtaining a chain of new results which
provide more general versions of the known theorems due to Bernstein (1926),
Szegd (1928), and to Lax (1944), but all rallying around disks and strips (only
particular instances of sets S with d.p.).

Let us remark that Theorem 3.1 can not be viewed in isolation just as another
result contributed to the family of Bernstein-type problems, contrary to what has
been the case with existing results. In fact, the general character of Theorem 3.1
exhibits a unified approach to the basic nature of the problem (and its solution)
underlying Bernstein’s theorem or other related Bernstein-type results due to
Szegd (1928), Lax or (possibly) others. In this light, all such results may now be
seen as individual reflections of the general character of the sets S used in
Theorem 3.1. It is only a matter of picking a right S (whose p(S) can be
determined) to contribute a new result to the echelon of Bernstein’s Theorem. It
would neither be worthwhile nor productive to take up such an endless task.
However, we shall collect only two new interesting results as demonstration in the
following remark.
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Remark 3.5

Under the notations and hypotheses of Theorem 3.1, we have the following
results:

(i) If S is the set of all points common to the disk A; and a closed sector of
angle 2« (< m) with vertex at origin, then f'(A,) C Ag, where

R = (ns/r) sin «/(1+sinw)

(See Example 2.2.(vii)). In particular, if S is the closed upper half of the disk A,
then f(A,) C Angar-

(ii) If S = {z: |[(Re z)(Imf(z)| = k}, k > 0, then

f'(Ar) © Aneiy/t by Example 2.2(v).
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