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ABSTRACr. Let 6. be the Unit disk Izl '" 1 in the complex plane C. The 
well known Bernstein's theorem on the bounds of the derivative of an nth 
degree polynomial f: C ---> C states that if f(6.)~6. then 1f'(6.)1 '" n (i.e. 
1f'(z)1 '" n for Izl '" 1). This result was generalized by Szego and sharpened 
by Lax under an additional condition. Here, we obtain quite a general 
theorem that deduces all these results as corollaries and· furnishes a chain 
of interesting new results, some of which offer more general versions 
(sometimes sharper estimates for 1f'(z)l) of the theorems of Bernstein , 
Szego, and Lax. In fact, we present a unified approach to the basic nature 
of the problem and its solution underlying Bernstein's theorem and other 
related Bernstein-type results. 

1. Introduction 

In the complex plane C, we let D(a,r) denote the closed disk with center at the 
point a I: C and radius r;;;' O. We agree to write 6. r = D(O,r) for r > 0 and 6. = 6. 1 

for the unit disk. We denote by no the class of all polynomials f: C ~ C of degree n 
and, for a given set A ~ C, we write IAI = {Ial : aI:A}. By a circular region in C we 
mean an open (or closed) set whose boundary is a circle or a straight line. Given ~ 
I: C and f I: no, the polar-derivative Dt;; f(z) of f with pole ~ is defined by 

(1.1) Dt;; f(z) = nf(z) + (~-z) f(z). 

The following version of the famous theorem due to Laguerre (1898) (See 
also Marden 1966) on the zeros of polar-derivaiives, will be needed in the sequel. 
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Theorem 1.1 

If all the zeros of a polynomial f: C ~ C lie in a circular region C, then 

Dl; fez) 9= 0 V 1;"z t C. 

In this paper, we shall obtain a general theorem that deduces the following 
results as corollaries and furnishes a number of other interesting new results. 

Theorem 1.2 

(Bernstein 1926). Iff E rtn such that f(6) <:;;; 6 , then f'(6) <:;;; 6 n. This result is 
best possible and the extremal polynomial is fez) = o:zn, where 10:1 = 1. 

Szego gave the following generalization of Theorem 1.2. 

Theorem 1.3 

(Szego 1928). If f E rtn such that IRe f (6)1 ~ 1, then f'(6) <:;;; 6 n. 

Note that the above theorem is best possible and the extremal polynomial is 
fez) = a + ~zn, where Re a = 0 and I~I = 1. 

Theorem 1.4 

(Lax 1944). If f E rtn such that f( 6) <:;;; 6 and f has no zeros in Izi < 1, then 

f' (6) <:;;; 6 nJ2 • 

Observe that Theorem 1.4 gives a sharper bound for If' (6)1, than the one 
given by Theorem 1.2, under the additional condition on the zeros of f. 

2. The Sets with Disk Property 

We begin with the following definition . 

Definition 2.1. 

Given a subset S of C, let 

QJs = {D(a,r) : D(a,r) <:;;; S}. 
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We say that S has the disk property (briefly, d. p.) if 

(2.1) peS) = sup {r: D(a,r) £ 2)s} < 00, 

and caJl peS) the core-radius of S. For each fixed a£S, we write 

(2.2) Pa(S) = sup {r: D(a,r) ~ S}. 

In view of (2.1) and (2.2) we clearly have Pa (S) ~ peS) . A point ao £ S is called a 
core-center of S if Pa (S) = peS) and the set of all core-centers of S will be denoted 

o 

by core (S). 

Clearly, a set S with d.p. has interior points if and only if p(S) > O. In each of 
the following examples, the set S has d.p. and core (S) and p(S) are as indicated . 

Example 2.2 

(i) peS) = r and core (S) = {a} for S = D(a,r) . 

(ii) If S = D(a,r) - {b}, where b£D(a,r), then peS) (r + Ib-al)/2 and 

{z: Iz-al = r/2} if b a , 

core (S) 

1{a+ro e'S} if b =!= a, 

where ro = (Ib-al - r)/2 and e = arg(b-a) . 

(iii) If S is any closed or open infinite strip of width 21.. , then peS) = A and core 
(S) is the set of all points on the axis of the strip. Same is true , in particular, for the 
strips 

S {z: IRe zl ~ A} SA (say), 

and 

S = {z: 11m zl ~ A} = st (say) . 

(iv) Consider the strips SA and st of Example (iii) above. Given a£SA and 
b£S t , let L(respectively, L *) denote the set of all points on the straight line 
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through the point a (respectively, b) drawn parallel to the boundary of SA 
(respectively, S't). If S = SA - L, then p(S) = (A+ IRe al)/2 and 

{z: IRe zl = Al2} if Re a 0, 

core (S) {z: Re 	z if Re a > 0, 

{z: Re 	z if Re a < ° 

where 	Ao = (A-IRe al)/2 so that °~ Ao < Al2. 

Similarly, if S = S't - L't then p(S) and core (S) are also given by the above 
expressions provided we replace Re a by 1m a and Re z by 1m z. 

(v) p(S) 	= (2k)! and core (S) {o} if 


S = {z: I(Re z) (1m z) ~ k}, k > 0. 


(vi) If S = {z: IRe zl ~ a, 11m zl ~ b}, a ~ b > 0, then p(S) b 

and 

core (S) = {z: 1m z = 0, IRezl ~ a - b}. 

(vii) Given r > 0, 0 < ex ~ nl2 and °~ f3 ~ n12, let 


S = {z: Izl ~ r, f3-ex ~ arg z ~ f3 + ex} U {o}. 


Then 	p(S) = r sin 00(1 +sin ex) and core (S) = {zo}, where 

(viii) If S is the set of points on or inside an ellipse with lengths of axes 2a and 
2b, then p(S) = min {a,b} and core (S) is the center of the ellipse. 

(ix) Define a real-valued function h: [0, + co) __ [0,2) by h(x) = 2x1(1 +x) 
and let 

S = {z: Re z ~ 0, °~ 1m z ~ h (Re z)}. 

Then S has d.p. with p(S) = 1 and core (S) = <1>. 
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Above examples illustrate fairly well that the class of sets having d.p. and a 
nonempty core is abundant. For unbounded sets with d .p., core (S) mayor may 
not be empty (see Examples 2.2 (iii)-(v) and (ix)). Nevertheless, for bounded sets 
we have the following result. 

Theorem 2.3 

If S is a nonempty bounded subset of C, then S has d.p. and core (S) 9= cp. 

Proof. The first part follows trivially from the boundedness of S. To prove 
the second part, let without loss of generality peS) > 0 and 

Sn = {aES: Pa(S) ~ peS) - lin}, n = 1,2,3, 

Then we observe the following: 

(i) Each Sn 9= cp by the definition of peS). 

(ii) Each Sn is bounded in view of the boundedness of S. 

(iii) Sn+l ~ Sn for every n ~ 1 (trivial). 

(iv) Each Sn is closed. To see this pick any n and fix it. Take any sequence 
aj E Sn such that aj ~ ao and consider an arbitrary point x such that 
Ix aol < peS) - lin. Then there exists a positive integer m such that 

Therefore, 

and so XES (since am ESn). Thus, the interior of the disk D(ao, p(S)- lin) lies in S 
and, by (2.2), PaD ~ peS) -lin. 

That is, aoESn and Sn is closed. 

(v) core (S) n Sn (easy).
n" J 

From observations (i) - (iv), the sets Sn, n ~ 1, from a decreasing sequence 
of nonempty sets, and hence n Sn 9= cp. Now, the proof is complete in view of 
the observation (v). 

n~l 
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3. The Main Result 

We state and prove the following main result of this paper which generalizes a 
number of known theorems and furnishes some interesting new results with 
sharper bounds. 

Theorem 3.1 

IfS has d.p. and fEnn such that f(6 r ) <;;; S, r > 0, then f'(6 r ) <;;; 6 np/p where p 
= p(S). This result is best possibJe and the extremal polynomial is f(z) = 

a+~pznlrn, where I~I = 1 and a E core (S), provided S is closed and core (S) =F <1>. 

(See Marden M., § 13, exercise 15). 

Proof. Given wts, the polynomial g(z) = f(z)-w has all its zeros in the 
circular region C-6 r (since f(6 r ) <;;; S). By Theorem 1.1, Ol;g(z) =F 0 for any 
t,zE6 r . Since Ol;g(z) = Ol;f(z)-nw (cf. (1.1)), it therefore follows that (l/n)Ol;f(z) 
does not assume any value outside S for any t,zE6 r . That is, 

Consequently, for each zE6 p the point 

where w* = f(z)-zf (z)/n ES for all zE6 r (put t = 0 in (3.1)). Since {tft(z)/n:
' 

tE6 r } = O(O,r If'(z)1 In) for all zE6 p 

(3.2) implies that 

O(O,r 1f'(z)l/n) + w* = O(w*, rlf'(z)l/n) <;;; S V zE6 r . 

From this and the hypotheses on S we conclude that rlf'(z)l/n ",; p for all zE6 r . 

That is, 1f'(6 r )1 ",; np/r and the first statement of the theorem is established. 

Regarding the second statement of the theorem, observe that the interior of 
O(a,p) lies in S (since aE core(S)) and so O(a,p) <;;; S (since S is closed). For the 
polynomial f considered, we see that If(z)-al ",; p for Izl ",; r and so f(6 r ) <;;; S. 
Clearly, 1f'(z)1 = np/r for Izl = r, and the proof of the theorem is complete. 

The above theorem deduces Bernstein's Theorem 1.2 on taking r = 1 and S = 

6 = 6 1 , so that p(S) = 1 and core (S) = {O} by Example 2.2(i). Similarly, it 
deduces Szego's Theorem 1.3 when we take r = 1 and S = {w:IRe wi",; I}, so that 
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6. 1 = 6. and p(S) = 1 as observed in Example 2.2(iii). More generalJy, various 
other possibilities for S as disks of radius s(in particular, say, S = 6. 5 ) in the above 
theorem provides the estimate (since p(S) = s) 

(3 .3) f'(6.,) k 6. n s/,· 

Similarly, if S is an arbitrary strip of width 2A, as in Example 2.2(iii), then the 
above theorem offers the estimate 

(3.4) f'( 6. ,) k 6. nlJ,' 

Note that the estimates for 1f'(z)1 in the theorems due to Bernstein and to Szego 
are the special cases s = r = A = 1 of the estimates in (3.3) and (3.4). 

Next, we employ Theorem 3.1 to get a more general form of Lax's Theorem 
1.4 and to obtain a sharper bound for f'(z) than the one given by Szego's Theorem 
1.3 under an additional condition. In the remainder of this section , Int A denotes 
the interior of a subset A of C. 

Theorem 3.2 

Let fot n such that f( 6.,) k 6. , (r ,s > 0). If aE6. s such that f(z) {o a for all ZE Int 
6." then f' (6.,) k 6.R, where R = n(s+ lal)/2r < nslr if aE lnt 6. 5 ' 

Proof. To prove the theorem , if suffices to show that 1f'(zo)1 .:;; R for IZol = r 
(use maximum-modulus principle for n. To this end, we proceed as follows: For 
each 0 {o Izl < r, we apply Example 2.2(ii) and Theorem 3.1 with 6., replaced by 
6. lzl and obtain 

In particular, 

(3.5) 1f'(z)l.:;; n(s + lal)l2lzl. 

If z is made to approach Zu along any path lying completely in lot 6." the 
continuity of f' and the inequality (3.5) give 

Lim Lim n(s+ lal)If(z)1 .:;; R,z_,~ 2 /zl 
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and the theorem is established. 

For r = s = 1 and a = 0, Theorem 3.2 is essentially Theorem 1.4 due to Lax 
(1944). 

Theorem 3.3 

Let SA denote the strip of Example 2.2 (iii). Let fEnn such that f(6 r ) S SA. If 
aESAsuch that Ref (z) 1= Re a for all ZE Int 6" then f( 6 r ) S 6,.., where f.! = n(t.. + 
IRe al)/2r < nAIr if aE Int SA. 

Proof. The proof is based on the technique employed in the proof of 
Theorem 3.2 (use Example 2.2(iv) in place of Example 2.2(ii». 

Remark 3.4 

For r = t.. = 1 and a = 0, Theorem 3.3 improves upon the bound for If(z)1 in 
Szego's Theorem 1.3 under an additional condition on the zeros of Ref(z), in the 
same manner as Lax's Theorem 1.4 improves upon the bound in Bernstein's 
Theorem 1.2 under an additional condition on the zeros of f. 

Thus for, we have used Theorem 3.1 in obtaining a chain of new results which 
provide more general versions of the known theorems due to Bernstein (1926), 
Szego (1928), and to Lax (1944), but all rallying around disks and strips (only 
particular instances of sets S with d.p.). 

Let us remark that Theorem 3. ~ can not be viewed in isolation just as another 
result contributed to the family of Bernstein-type problems, contrary to what has 
been the case with existing results. In fact, the general character of Theorem 3.1 
exhibits a unified approach to the basic nature of the problem (and its solution) 
underlying Bernstein's theorem or other related Bernstein-type results due to 
Szego (1928), Lax or (possibly) others. In this light, all such results may now be 
seen as individual reflections of the general character of the sets S used in 
Theorem 3.1. It is only a matter of picking a right S (whose peS) can be 
determined) to contribute a new result to the echelon of Bernstein 's Theorem. It 
would neither be worthwhile nor productive to take up such an endless task. 
However , we shall collect only two new interesting results as demonstration in the 
following remark. 
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Remark 3.5 

Under the notations and hypotheses of Theorem 3.1, we have the following 
results: 

(i) If S is the set of all points common to the disk 6. s and a closed sector of 
angle 2<x « J't) with vertex at origin, then £'(6. r ) ~ 6. R , where 

R = (ns/r) sin <X/(1 +sin<x) 

(See Example 2.2.(vii)). In particular, if S is the closed upper half of the disk 6.., 
then £'(6. r) ~ 6. nsl2r ' 

(ii) If S = {z: I(Re z)(Imf(z)1 ,,;;; k}, k > 0, then 
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