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Leading One Detector (LOD) is an important and preliminary stage used
for the normalization process in floating point multiplication, floating point
addition/subtraction and in logarithmic converters. In this paper the authors
propose various gate level architectures for the LOD. The LOD circuit
is evolved using the evolutionary algorithm (EA) and using the evolved
lower order LOD gate structure, various higher order LOD circuits are
constructed using a hierarchical methodology. To obtain better results,
the evolutionary algorithm is modified and a novel shuffling operation is
performed to prevent the algorithm from settling in the local minima. The
convergence and the robustness of the evolutionary algorithm is verified
using standard test functions. The constructed LOD circuits are synthesized
using Cadence® RTL Compiler® using TSMC 180nm library. The results
obtained in terms of cell area and power of the elite LOD circuits show that
the proposed evolved-architecture outperforms the existing circuits. The
proposed architectures show a maximum of 31.18% improvements in Cell
area and 31.27% in power for the 64-bitLOD circuit with an increase of

3.9% in the propagation delay.
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Introduction

Floating-point multiplication and addition are the
most common floating-point operations used in
various digital signal processing techniques. The
speed of the Leading Zero Anticipator (LZA) is
important in designing high speed floating point
addition and its significance is highlighted in
(Suzuki; et,al, 1969). A clear analysis of various
application data shows that the signal processing
algorithms require an average of 40% multiplication
and 60% addition operations (Pappalardo; et,al,,
2004). As the floating-point multiplication and
addition is the most complex part of various DSP
algorithms, it needs to be optimized to overcome
the critical bottlenecks viz., latency and area.
Leading One Detectors (LODs) and Leading One
Position Detectors (LOPDs) determines the location
of the most significant one or a leading bit in a
given binary. The position of leading one is used
for normalization process and shifting process in
the floating point multiplication, floating point
addition and also in binary logarithmic converters
(Oklobdzija, 1993). Over the years, the Very Large
Scale Integration (VLSI) community has developed
various architectures for LODs and LOPDs, aimed
primarily at reducing the overall latency (Khalid,
et,al,, 2006). Research has been going on to evolve
various combinatorial circuits in a constrained space
with minimum effort (Vesselin; et,al,, 2000). The
major contribution and objective of our work is to
evolve and to construct various LOD architectures
and to implement the evolved LOD circuit using
HDL. Further a comprehensive analysis of power
consumed, latency and gate count is done for
various evolved LOD architectures. We propose
a novel shuffling operation in the evolutionary
algorithm to reduce the runtime of the algorithm
and to prevent the algorithm from settling in the
local minima. The strength and weakness of the
evolutionary algorithm which is used for evolving
the combinatorial circuits is discussed. The genetic
algorithm for evolving LOD circuits is discussed in
detail in section 2. Section 3 analyses the evolved
gate structure of 4-bitLOD and the design of 8-bit,
16-bit, 32-bitand 64-bitLOD based on the evolved
4-bitLOD circuit. Section 4 compares the synthesize
results and section 5 provides conclusion.
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Material and Methods

(1) Genetic Algorithm (GA) for Evolving
Leading One Detectors (LOD) circuits

The Genetic Algorithm (GA) is an adaptive search
algorithm suitable for solving combinatorial
optimization  problems. We  propose an
evolutionary methodology involving Cartesian
genetic programming (CGP) for evolving the LOD
circuits as shown in figure 1. Perhaps the figure 1
shows the steps involved in evolving the LOD net
list, synthesizing and creating the netlist database.
Based on the fitness function and the solution
space, the GA finds the global maxima or the global
minima. The convergence of the GA is guaranteed
depending on the search space, the fitness function
and the various genetic operations performed. An
initial random population is generated and those
populations which satisfy the fitness measure can
be taken as the initial population. Thus using these
initial populations, more offspring are generated
and each offspring is checked using the fitness
function.
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Figure 1: Genetic Algorithm (GA) for Evolving
Leading One Detectors (LOD) Circuits

The fittest offspring can be taken as the parent for the
subsequent iterations and after performing genetic
operation to the parent, it yields fittest individual.
Each individual is termed as chromosome which is
a representation of the intended gate-level circuit
as an array of bits or integers and the chromosome
carries all the necessary information (logic gates
and their interconnections) of a complete gate-level
circuit. The genetic operation like cross-over and
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mutation is performed on the parent chromosome
to obtain the child or offspring. To preserve elitism,
only the best chromosome is selected and passed
from one generation to the other (Mahdiani; et,al,
2010) & (Benkhelifa; et,al, 2007) . In crossover, the
parts of chromosome are exchange between parents
and in mutation the bits of the parent chromosome
are inverted to obtain the child. The resulting child
chromosome resulting from the genetic operation
can be taken as the parent chromosome for the
next iteration. Multiple iterations are performed
till we get the exact functionality of the circuit.
The circuit evolution process is carried out till
the algorithm yields an elite chromosome which
matches the fitness function or the evolutionary
process can be stopped after a predefined
number of iterations (Lohn; and Hornby, 2006);
(Benkhelifa; et,al,2007); (Mahdiani; et,al,2010) &
(Mazare; et,al,2011). The evolved gate structure

which implements the complete functionality is
synthesized and stored in the net list database and
the best circuit is chosen taking into consideration
the number of logic levels and gates.

(1.1) Gate Array Structure

We propose to use a GA framework as shown in
the Figure 2 built from an 8§X8 array of logic cell
and each logic cell can be any of the logic gates
viz., AND, OR, NOT and WIRE. The first layer
of 8 gates take the direct inputs (X0, X1, ..., X8)
and the subsequent layers can take input from
the previous layers of gates and also can take the
direct inputs (X0, X1, ..., X8). Thus a total of 8
layers are formed and the binary representation of
these array forms the chromosome. Thus a higher
flexibility is given to the gate structure to increase
the possibility of more gate structures for the given
function.

Figure 2: Logic Element of Dimensions 8X8 Array

G(1.1)] |G(1.2)] |Gi(1,3)] |G(1.4)] |G(1.5)] |G(1.6)] |G(1.7)] |G(1,8)
a1 [6@2)| |623)| [624)| [c25)| [c26)| [6@7)| [c28)
G(3.1)] |G(3.,2)] |G(3,3)] |G(3.4)] |G(3,59)] [G(3.6)] |G(3.7)] |G(3.8)
Gi4,1)| |G(4,2)] |Gi(4.3)] |1G(4.4)] |G(4,5)] |G(4.6)] |G(4,7)] |Gi(4,8)

In-Put Out-Put
Variable| |g(5.1)| |G(5.2)| |6(5.3)| [c(5.4)| [G(5.5)| |6(5.6)] |a(5.7)| |c(5.8) |Variable
ce.1)| [66.2) [66.3)] |c6.4)| |c6.5)| [c6.6)| |ci6.7)] |G(6.8)

G(7.1)| |G(7.2)] |GI(7,3)| |G(7.4) |G(7.5)] |G(7.6)] |G(T.7)] |GI(7.8)
a@.1)| [66.2)| [68.3) [c68.4)| |c8.5)| [c6.6)| |c8.7) |c8.8)

(1.2) Genetic Operators (Variation)

The mutation and crossover operators are used
as the genetic operator. From the conducted
experiments, it is clear that our problem converges
better if we use mutation as the genetic operator
rather than crossover. The mutation rate determines

147

the time taken for the convergence of the algorithm
and it is found that a 50% mutation rate is suitable
for our problem. If the algorithm gets struck in a
local minima we shuffle the chromosome before
passing the offspring to the next generation and
this is called shuffling mechanism.
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(1.3) Representation

This framework consists of fixed number of 64
logic elements arranged in an array structure of 8 X
8 dimensions. A fixed length binary representation
of the gate array structure forms the phenotype
and the individual gate description forms the
genotype. The number of logic elements in the
gate array structure is fixed to 64 of dimension 8
X 8 array and each logic element can be any of the
four gates viz., AND, OR, NOT and WIRE. The
output of a particular gate can be connected to the
output of the gate array structure or it can drive the
input of the gates in the subsequent layer. Thus it
improves the generation of more combination of
circuits for the same function. The Logic elements
are referenced by position within the chromosome
with circuit inputs are encoded in the first section
of chromosome. The encoding ensures that the
number of inputs and outputs described by a
chromosome remains consistent after the genetic
operation. Table 1 show the parameters used in the
genetic algorithm.

Table 1: Parameter used in GA

SI. No. Parameter Value

1 Population Size 50

2 Mutation Rate 5% - 90%
3 Tournament Size 1-8

4 Elitism Size 1-2

(1.4) Fitness Function

Each individual chromosome is taken and the set of
all possible inputs are given and the corresponding
outputs are evaluated. The degree of closeness
of the obtained outputs with the actual outputs
is calculated and it forms the fitness value of the
individual chromosome. The fitness function
is the required design to be obtained. For each
chromosome the fitness function is calculated. The
fitness of the each chromosome with the required
fitness is measured. The chromosome with the better
fitness is chosen for the next generation and the
process is repeated until the desired chromosome
is obtained with the required fitness. Fitness of
the individual in a population is calculated using
fitness function, (Mahdiani; et,al/,2010), and for
evolving LOD we represent the required fitness
function as a fitness table shown in table 2.
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Table 2: Representation of Fitness Function of
4-bitLOD

Input Output f“g(g)
X3[X2|X1[{X0[Y3|Y2[YL|Y0| V
0] 0]0[O0O]O0O]O0]O0]O0 1
O|O0]O0O |1 []O0O]0]O0]1 0
o0 ] 1 [X]O0]O0]1]0O0 0
O |1 | X [X]|]0[|1]0]0O0 0
I X | X[ X|1]0/]0]O0 0
(1.5) Population
An initial 100 random-seeded chromosomes

are selected and an initial evaluation process is
done based on the fitness function. The selected
best 50 chromosomes are taken as the initial
population. The Evolutionary algorithm evolved
the 4-bitLOD with only a random-seeded initial
population. Hence it is clear that a 100% functional
combinational circuit can be evolved with random-
seeded initial population.

(2) Evolved 4-bitand Higher Order LODs

In binary logarithmic circuits, the primary operation
is to determine the integer and the fractional parts.
The position of the leading one bit represents the
integer part of the logarithm. The fractional part
is obtained by shifting the input using the output
from the LOD. So it is necessary to design a circuit
which detects the leading one bit position with less
hardware and consumes low power and operates
with high speed. The LOD produces logic-1 in
the output where the input has the leading 1 and
all other outputs will be logic 0. The leading one
detector discussed in paper used the multiplexers
as the building block (Vesselin; et,al,, 2000).
Replacing the standard 2:1 multiplexer using the
basic logic gates will be beneficial if we can reduce
the latency. In the proposed method, we evolve the
architecture of the 4-bitLOD using the basic 2-input
logic gates viz., AND, OR, NOT and WIRE and
the evolved gate level circuit shows performance
benefits. Using the evolved 4-bitLOD the higher
order LODs of various sizes are be constructed as
discussed in (Vesselin; et,al,, 2000). In Figure 3,
the best evolved 4-bitLOD is shown.
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(2.1) 8- Bit LOD

For constructing an 8-bitLOD from the evolved
4-bitLODs, we require two 4-bitLODs and eight
2-input AND gates in the output stage. The zero
flag of the most significant 4-bitLOD serves as an
enable signal to the AND gates in the output stage.
Thus a series of eight 2-input AND gates replaces
the multiplexer from the output stage and reduces
the overall latency of the 8-bitLOD circuit. Figure
4 shows the architecture of 8-bitLOD.

(2.2) 16-bitLOD

The architecture of 16-bitLOD 1is similar to the
technique discussed in (Vesselin; et,al,, 2000). The
16-bitLOD is constructed using five 4-bitLODs
and sixteen 2-input AND gates. The first stage has
four 4-bitLODs and the 16 bit input is partitioned
into four groups of 4 bit each which is given to the
first level of LODs. Hence the outputs of the first
stage of LODs are the decoded binary value whose
output is logic-1 in the corresponding position of
the leading one of the individual 4-bitinputs given
to each LOD. Figure 5 shows the architecture
of 16-bitLOD circuit constructed using evolved
4-bitLOD circuit. The next stage is a single 4-input
LOD meant for selecting the leading one from the
outputs of the previous stage. Hence among the
four LODs from the first stage, the leading LOD
which has the leading one is selected.

The final stage is the array of 2-input AND gate
which is enabled by the output of 4-input LOD
in the second stage. Hence the enabled group of
four 2-input AND gate will carry the output of
4-input LOD in the first stage and the outputs of
all other AND gates are zero. The replacement
of multiplexers in the output stage with the AND
gates reduces the overall propagation delay of the
circuit.
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Figure 4: 8-bitLOD Constructed using the Evolved 4- Bit LOD
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Figure 5: Architecture of 16-bitLOD
(2.3)Architecture of 32-bit and 64-bit LOD
The 32-bitLOD is constructed similar to 16-bitLOD and is shown in Figure 6.
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Figure 6: 32-bitLOD Constructed from 4-bitLOD

The first stage has eight 4-input LODs and the 16-bitLOD discussed earlier. The zero flag from
second stage has two 4-input LODs to determine the 4-bitLOD in the second stage of the most
the leading group of 4-bits from each group of 16 significant 16-bitselects the corresponding output
bits. The zero flag of the 4-bitLOD in the second of the 4-bitLODs and all other outputs are made
stage can be used to find the leading one in the zero. A similar method followed for constructing
most significant 16-bit. The third stage has series 32-bitLOD is used to construct a 64-bitLOD circuit
of 3-input AND gates similar to the last stage of from 4-bitLOD circuit and is shown in Figure7.
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Figure 7: 64-bit LOD Constructed from 4-bit LOD
(3) Comparison of Synthesize Results Table 3: Results of Various LOD Circuits
Candence™ RTLCompiler™ with TSMC 180nm LOD Cell Area  |Power Del
library is used to synthesize and to analyze the cell Circuit  |(um?) (nW) elay (ps)
area and power consumed by the various LOD 4-bit 019.051 0245.710 | 0296
architectures. The results obtained for LODs of 8-bit 069.149 0745.000 | 0506
various sizes are tabulated in Table 3. 16-bit 153.821 1706.154 | 0831

The evolved gate level architecture shows 32-bit 331.632 2795.282 | 0978
promising enhancements in power area as depicted 64-bit 673.142 5468.400 | 1303

in table 4.

Table 4: The Synthesis Results Obtained for Various LOD Architectures of Various Sizes

Comparison of Size of the (Oklobdzija, (Dimitrakopoulos; Proposed
P Circuit 1993). et,al, 2008) method(LOD)
. ) 16-bit 213.087 178.642 153.821
(a) Area for Various LOD 73, 465.996 389.971 331.632
Circuits (uLm?)
64-bit 978.133 791.021 673.142
) " 16-bit 2363.02 1980.845 1706.154
Power for Various
2-bit 4255.32 1. 2795.282
LOD Cireuits (nW) 32-bi 553 3391.66 795.28
64-bit 7956.52 6415.529 5468.402
(¢) Comparison of 16-bit 792 792 831
Delay for Various LOD 32-bit 928 928 978
Circuits(ps) 64-bit 1183 1183 1303

Figure 8 shows the plot of various synthesis
results. From the Figure 8 (c) it is clear that the pace
of increase in delay has been reduced because of
the architectural changes and it is less pronounced
as the size of the LOD circuit increases. Perhaps
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when compared to other existing architectures, the
proposed LOD circuits have a slight increase in
the propagation delay and a huge reduction in cell
area and hence the power consumed as compared
in table 4 (see, table 4).
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Figure 8: Plot of Various Synthesis Results
((a) Plot of power for various sizes of LOD; (b) Plot of cell area for various sizes of LOD. & (c) Plot of speed for
various sizes of LOD)
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We compare the cell area, power and the delay of
various higher order LOD circuits constructed using
lower order LOD. Candence® RTLCompiler®
with TSMC 180nm library is used to synthesize
and to analyze the cell area and power consumed
by the various LOD architectures. The synthesis
results obtained for various LOD architectures of
various sizes are shown in table 4. The evolved gate
level architecture shows promising enhancements
in power and area.

Conclusion

In this paper, we have discussed an evolutionary
approach to the design of various LOD circuits.
Though the higher order circuits cannot be
completely evolved because of the limitation of
the population size and search space, we have
discussed few methods to construct higher order
LODs from the evolved lower order circuits. Thus
the gate level evolution of LOD circuits has proven
performance benefits. As the design complexity
increases, convergence of evolutionary algorithm
to suit the fitness function will take more time
and in some cases algorithm will settle to a local
maxima and the shuffling mechanism introduced
in the GA will answer this problem.
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