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ABSTRACT

KEYWORDS

Dropout is a pervasive problem in longitudinal clinical trials, and it 
is the result mainly of non-responses due to individuals who leave 
the study and are therefore lost to follow-up. The current paper 
deals with incomplete longitudinal clinical trials data when there are 
dropout. Statistical methods that ignore the mechanism for dropouts 
are susceptible to biased inference. This article focuses on dropouts 
missing at random (MAR). The study demonstrates application and 
the performance of likelihood-based and inverse probability weighting 
(IPW) in handling dropout in longitudinal continuous responses. The 
main objective of this paper is to compare the performance of these 
methods under different dropout rates. Data from a study with individual 
heart rate as the outcome is used to investigate the performance of the 
considered methods. Based on this longitudinal clinical trial data, results 
from IPW will be compared with those obtained from likelihood-based 
analysis. The performance of these methods are compared in terms of 
bias and efficiency.
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تحليل إحصائي لمقارنة طريقة معكوس الاحتمال المُرَجَح وطريقة الإمكان الأعظم
لمُعالجة البيانات الطبية المفقودة عشوائياً

المُستلخص

الكلمات الدالة

تعتبر مشكلة البيانات المفقوده واحده من اهم مشاكل بيانات التجارب في المعالجات السريريه 
عشوائيا.  المفقوده  البيانات  هكذا  لمعالجة  طريقتين  بدراسة  البحث  هذا  يهتم  المدى.  طويلة 
الطريقه الاولى هي المعروفة بطريقة معكوس الاحتمال المرجح اما الطريقه الثانيه فتعرف 
بطريقة الامكان الاعظم. الهدف الرئيسي من هذه الورقه هو مقارنة أداء الطريقتين على ضوء 
نسب مختلفه للبيانات المفقوده. لتحقيق هذا الهدف يتم استخدام بيانات تجارب سريريه خاصه 
بمرضي القلب. و تتم مقارنة نتائج الطريقتين باستخدام بعض المقاييس الاحصائيه منها التحيز 

و الكفاءة.
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Introduction
Longitudinal clinical trials studies are frequently 
designed to collect data on every patient within a sample 
at each measurement occasion. In such studies, dropout 
often arises, in the sense that an individual’s outcome 
can be missing at one follow-up time before the end of 
the follow-up period for whatever reason, resulting in a 
monotone missingness pattern. This paper however only 
pays attention to the monotone missing data pattern that 
results from attrition. In this pattern, when patient drops 
out from the study prematurely, no more measurements 
are obtained on that patient. The implication of dropout 
is best understood by considering the process (i.e., the 
mechanisms) leading to the incompleteness. Based 
on classifications given by Rubin (1976, 1987), these 
mechanisms can be classified into three categories: 
missing completely at random (MCAR), missing at 
random (MAR), and missing not at random (MNAR).

Methods and Materials
There are two common methods that can be used for 
dealing with longitudinal clinical trials data when there 
are dropouts missing at random (MAR). One is the so-
called inverse probability weighted (IPW) estimating 
equations. In this method, the complete measurements 
are weighted using the inverse of their probabilities 
of being observed in order to adjust for dropout. IPW 
comes from Robins et al, (1995). The authors stated 
that IPW deals with incomplete longitudinal data 
arising from an MAR mechanism. In the context of 
survey analysis, IPW was first discussed in Horvitz and 
Thompson (1952). The method has been recognized 
as an attractive approach because it does not require 
complete specification of the joint distribution of 
the longitudinal responses but rather is based only 
on specification of the first two moments (Grace and 
Wenqing, 2009). More details of this technique can be 
found in Fitzmaurice et al,  (1995), Yi and Cook (2002a, 
2002b), Carpenter et al,  (2006), and Seaman and White 
(2011). However, Robins et al,  (1995), Robins and 
Rotnitzky (1995) and Scharfstein et al,  (1999) have 
proposed improved IPW estimates that are theoretically 
more efficient. However, such estimates require the 
dropout mechanism to be MAR.

An alternative technique that is valid under 
the MAR assumption is likelihood-based analysis. 
In contrast to IPW, this method uses the observed 
measurement without weight. The strength of the 
likelihood-based analysis relies on the accurate 
formulation of the likelihood of the data as it is. In 

doing so, under valid MAR mechanism, suitable 
adjustments can be made to parameters at times when 
data are prone to incompleteness due to the within-
patient correlation. For incomplete longitudinal clinical 
trials data, a mixed model only needs a dropouts are 
MAR (Mallinckrodt et al, , 2003a, 2003b; Verbeke 
and Molenberghs, 2000). These mixed effects models 
permit the inclusion of patients with dropouts at some 
time points, including both dropout (which is a special 
case of monotone missingness pattern) and intermittent 
missingness patterns (Verbeke and Molenberghs, 2000). 
For continuous measurement data, this amounts to the 
general linear mixed model (Verbeke and Molenberghs, 
2000).

The current study focuses on the comparison of 
LMM and IPW to handling incomplete longitudinal 
clinical trials data due to dropout. The application 
will be confined to the continuous measurements. Our 
goal will be to compare the performance of these two 
methods, under three different dropout rates. In both 
methods the dropout mechanism is assumed to be 
MAR. In order to compare the performances of the two 
methods, the data set we use is originally complete (no 
dropouts), and the dropout will be created by generating 
missing measurements at random. The comparison will 
be based on a heart rate trial data, which gives heart 
rate observations for patients exposed to three different 
treatments as reported in Milliken and Johnson 
(2009). The performance of these two approaches 
will be assessed on two criteria, namely bias and 
efficiency. In Section 1, we present the notation and 
concepts of possible mechanisms that can lead to the 
dropout process. In Section 2, the two approaches 
mentioned above (Inverse Probability Weighting 
(IPW) & Likelihood-based LMM) are then considered 
in more detail as the principle approaches to be used 
in the analysis. Section 3, contains the design of the 
application study and offers a description of the dataset 
used in the analysis in detail (description of the data, 
model formulation, generating dropouts and the MAR 
mechanism, analysis of IPW, and assessment criteria) . 
The results of the study based on the generated dropout 
data in our application , and discussion of the results 
considered as conclusion of the study. 
(1)  Dropout Mechanism
Suppose that  individuals are to be observed at  
occasions. For the  th individual  we can 
form a  vector , where  is the
th outcome for individual , which can be continuous 
or discrete depending on the study problem. Each 
individual has a  covariate matrix . The 
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covariates may be both time stationary and time varying. 
In longitudinal studies, individuals can be unobserved 
at all  occasions on account of some stochastic missing 
data mechanism. Now, suppose  is a  random 
vector for the  th individual, whose  th component 

 equals 1 when  is fully observed, and equals 0, if 
not. The full data information for the  th individual are 
given jointly by  and , with a joint distribution that 
can be expressed as 

	    (1)
where  and  are vectors that parameterize the 
joint distribution. The “missing data mechanism”, 

 is parameterized by  . In general, 
the mechanism of missing data can depend on the 
full vector of responses,  (including possibly 
unobserved component of ) and the matrix of 
covariates . We denote the observed and unobserved 
components of  by  and , respectively. Rubin 
(1976, 1987), specified three distinct missing data 
mechanisms. First, data that is MCAR, meaning 
that the missingness process does not depend on 

. Second, the missing data is said to be MAR if, 
the missingness process depends on the observed 
responses and probably on measured covariates, 
but not on the unobserved responses, i.e., 

. The third 
missing data mechanism allows the missingness process 
to depend on the unobserved responses, and here such 
a process is called missing not at random (MNAR). 
However, an MNAR process is also allowed to depend 
on the observed outcomes, or in probability terms, 

. In terms 
of likelihood based inference, Rubin (1987) showed 
that an MCAR is a special case of MAR, and these 
two mechanisms are referred to as being “ignorable”. 
In contrast, an MNAR mechanism is referred to as a 
“non-ignorable” mechanism. More specifically, the 
likelihood inference is based on 

   

     
(2)

 Therefore, 

      		
(3)

 Under dropout MAR process, the likelihood 
contributions factor is: 

         (4)
 

The likelihood in (4) factorizes into two components 

of the same functional form as the general factorization 
of the full data  given in (1). Further, if the 
parameters  and  are disjoint which is to say the 
parameter space of the full vector vector  is the 
product of the individual parameter spaces, the so-called 
separability condition, then inference can be based on 
the marginal observed data density only. Hence, when 
the separability condition is satisfied via a likelihood 
framework, ignorability is equivalent to MAR and 
MCAR. However, an MNAR mechanism is defined 
as a “non-ignorable” mechanism in the context of the 
likelihood framework. See, Little and Rubin (2002) 
for details on the derivation of the contribution to the 
likelihood attributable to the missingness mechanisms. 
Recall that our focus in this study is on missing data 
due to patient dropout, that is; all components of  will 
be missing, and all components of  will be 0 starting 
from the dropout time. The dropout time for the  th 
individual can be defined by introducing a quantitative 
variable 

       
(5)

and hence the model for dropout process can be 
rewritten as 

    
(6)

where is a realization of the the variable . In Equation 
(5), it is assumed that all subjects are observed on the 
first occasion so that  takes values between 2 and 
. The maximum value  corresponds to a complete 
measurement sequence. Using Equation (6), a dropout 
missing completely at random (MCAR) model reduces 
to  while 
the dropout missing at random (MAR) model is given 
by: , 
where dependence on  is only through . 

(2)  Methods for Handling Dropouts
(2.1)  Inverse Probability Weighting (IPW)
This method is a standard method used for handling 
MAR dropout in longitudinal clinical trials (Robins 
et al, 1995), however it requires specification of a 
dropout model in terms of observed measurements 
and/or covariates. Generally, IPW is used in marginal 
models for discrete measurements than for continuous 
measurements. In this study, IPW is adopted for dealing 
with continuous measurements in order to correct the 
bias that is caused by MAR dropout. The key idea 
behind IPW is that if individual  has a probability of 
being observed at occasion  of , then, this individual 
should be given weight, , so as to minimize the bias 
caused by dropouts in the analysis. The weight  
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for the  th individual at time  is assigned as inverse 
of the cumulative product of fitted probabilities, 

, where  
is a  vector of unknown parameters. In order 
to discuss the idea of what weights are, we follow 
illustration provided by Carpenter et al,  (2006). 
Suppose that we have the following data,  then the 
average response is 3.

Group A B C
Response 222 333 444

However if we have missing values as shown 
in the table below,  then the average response is 
19/6, which is biased.

Group A B C
Response 2?? 333 ?44

In order to correct this bias, we calculate the 
probabilities of being observed in each group 
corresponding to 1/3 in group A, 1 in group B and 
2/3 in group C. We thereafter calculate a weighted 
average, where each observation is weighted by 1/
[Probability of observed response]. In this case the 
weighted average is given by 

        

(7)

which now corrects the bias. The conclusion to be drawn 
from this simple illustration is that IPW has eliminated 
the bias, by reconstructing the full population by up-
weighting the data from individuals who have small 
chance of being observed. Generally, it may give 
biased, but consistent, parameter estimates (Carpenter 
et al, 2006). To discuss the above mentioned idea of 
IPW in longitudinal data setting, we now describe 
the IPW approach, thereby illustrating how IPW can 
be incorporated into the conventional generalized 
estimating equation (GEE) by Liang and Zeger (1986), 
as based on the article by Robins et al,  (1995). The 
primary idea behind GEE methodology is to generalize 
the usual univariate likelihood equations by introducing 
the covariance matrix of the vector of response, . 
The GEE methodology is used to model the marginal 
expectation of responses as a function of a set of of 
covariates. We briefly introduce the classical form of 
GEE (Liang and Zeger, 1986). Let 
denote an  covariates matrix, where its  th row is 
given  based on  predictor variables 
or covariates,  denote the response variable and hence 

 the  observed response vector, 

and ,  and . Now, 
assume the marginal regression model is given as 
	 	 (8)	
 where  is the  regression parameters of interest 
and  is a link function, a function of the mean 
response. Assume the  covariance matrix for  
is: , where  is a diagonal matrix 
of variance functions,  is the working correlation 
matrix of  as a function of  the correlation parameter, 
and  is the dispersion parameter. The collection of 
parameters in the covariance matrix are assumed to 
contained in the parameter vector . Then the GEE 
estimators for regression parameters are the solutions 
of 

	
(9)

 where is the derivative matrix of the mean 
vector  with respect to . The GEE methodology is 
very popular especially for analysis of marginal models 
for discrete responses than for continuous responses. 
However, in this study, we restrict our attention to 
the continuous response. Consequently, the following 
assumptions can be made for the marginal models with 
the continuous response,   
 (2.1.1) The mean of  is related to the covariates 

by an identity link function:  
The link function  generally relates the 
expected values,  of the response vector,  
to the covariate matrix . It takes the general 
form , where  denotes 
the linear predictor vector whose  th row is 

This function, 
i.e., , should be monotone and differentiable. 
Thus, in the case of monotonocity, we can 
define the inverse function  by the relation 

. Here, we note that the choice 
of link function depends on the distributional 
assumptions on the data. Therefore, for a 
continuous response with normal assumption, as 
in our case, the link function is an identity link:

 and the inverse simply 
Under this identity link, the expected value 
of the response is simply a linear function of 
the covariates multiplied by their regression 
coefficients. 

(2.1.2) The variance of each , conditional on the 
effects of the covariates, is  and does not 
depend on the mean response. Namely, 
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 is a known “variance function”, 
therefore . Here 

 denotes the variance of the conditional 
normal distribution of the response, given the 
covariates. The assumption that the variance 
is constant over time may be unrealistic 
and to relax it, a separate scale parameter, 

 could be estimated at the  th occasion if 
the longitudinal design is balanced on time. 

(2.1.3) The within-individual correlation among 
repeated responses is modelled by assuming, 
for example, a first-order autoregressive AR(1) 
covariance structure, , 
which stand for the pairwise correlation between 
observations, for all  and  and . The 
AR(1) specifies homogeneous variances. In 
addition, it specifies that the correlations between 
observations on the same subject are not equal, 
but decrease toward zero with increasing length 
of the time interval between observations. 
In the context of the marginal models with an 
identity link function, the generalized least 
square means (GLS) of  can be considered 
as a special case of the GEE. Therefore, the 
estimates of parameters in marginal model for 
continuous response with an identity link are

    (10)

where  is the REML (Restricted Maximum 
Likelihood Estimation, that can be used to 
find the best unbiased estimates (Verbeke and 
Molenberghs, 2000)) estimate of  and 

 

	  
(11)

where  is an estimate 
of  which yields a robust estimator of 

when substituted in equation (12). With 
incomplete data that are MAR, the GEE method 
provides inconsistent estimates of the model 
parameters (Liang and Zeger, 1986). In weighted 
generalized estimating equation (WGEE), an 
individual’s contribution to the usual GEE is 
weighted by the inverse probability of dropout 
at particular time point, given the individual 
did not leave or dropout in any of the periods 
occasions (Robins et al, 1995). Therefore, 
setting all assumptions that are made in this 
section together, we will get valid parameter 

estimates in longitudinal studies with MAR 
dropout by solving the weighted estimating 
equations 

	  
 (12)

where  is a diagonal matrix which 
contains inverse probability weights for  th 
patient,  for 

, , and  is 
a  working covariance matrix for  and 

 is a  working correlation matrix, 
which are assumed known. The missingness 
is taken into account through specification of 
a  diagonal weighting matrix of 

 and 
 if the  th subject is observed at time 

, and 0 for the unobserved time. The weight, 
 is the inverse of the probability that the  

th subject is observed at the  th time, which 
is often unknown and needs to be estimated. 
It requires modeling the missing process in 
order to obtain the weights . We denote 

 as 
the probability of a response being observed at 
time  for the  th subject given the subject is 
observed at the time . If the missingness is 
assumed to be MAR, we have 

  (13)
where the missingness mechanism only depends 
on observed data and may be specified up to a 

 vector of unknown parameters, . Here, 
 can be modeled as a logistic regression model 

of , a vector of predictor, which may include 
missingness indicator variables, covariates and 
previous responses: 

     (14)
 or by inverting the logit function we have: 

    
(15)

 The log partial likelihood for  th subject takes 
the form 

(16)
 Differentiation of (16) in terms of  gives the 
estimating equations 

	 (17)

AGJSR 31 (2/3) 2013: 154-166، Ali Satty et al



159

 Setting (17) equal to zero yields , therefore, 
we can obtain estimate of , which is 

. According to Hogan et al (2004), in 
addition to MAR dropout, two assumptions 
must be fulfilled, to provide consistent 
estimates of parameters  in weighted method. 
First assumption (Non-zero probability of 
remaining in study): Conditionally on past 
history of observed responses and covariates, 
the probability that individual  is still in the 
study at time  is bounded away from zero or 
formally, 
. Second assumption (Correct specification of 
dropout model): The probability of dropout 
model must be correctly specified, i.e., 

 
When MAR and monotone 
missingness assumptions hold, the 
probabilities of remaining in the study, 

	 (18)

 Thus, the weight , the inverse of the 
unconditional probability of being observed at 
time , can be calculated as, 

	 
(19)

and  for . Therefore, if the above 
two assumptions due to Hogan et al,  (2004) 
hold, and if dropout occurs according to the 
MAR mechanism, then the estimators of the 
parameters  in the weighted marginal model 
for a continuous response with an identity link 
will be of the form 

(20)

 and, 	

         
(21)

   
where  is consistent for , and  is a consistent 
estimator of  under a correctly specified 
model, 

(2.2)  Likelihood Based MAR
The second method for handling incomplete longitudinal 
clinical trials data is the likelihood-based method of 
using available data instead of weight. For continuous 

measurements, Laird and Ware (1982) proposed the 
Likelihood-based mixed effects models which are 
valid under MAR dropout. This likelihood-based MAR 
analysis is also termed likelihood-based ignorable 
analysis, or direct likelihood analysis (Verbeke and 
Molenberghs, 2005). In contrast to IPW, Likelihood-
based analysis uses the observed data without the need 
of weight. Namely, no additional data manipulation 
is necessary when a likelihood-based analysis is 
envisaged, provided the software tool used for analysis 
is able to handle measurement sequences of unequal 
length (Molenberghs and Kenward, 2007). In doing 
so, for the MAR assumption, suitable adjustments can 
be made to parameters at times when data are prone 
to incompleteness due to the within-subject correlation. 
Thus, even when interest lies in a comparison between 
two treatment groups at the last measurement time, 
such a likelihood analysis can be conducted without 
problems since the fitted model can be used as the basis 
for inference. When a MAR mechanism holds, a direct 
likelihood analysis can be obtained with no need for 
modeling the dropout process. It is preferred over the 
conventional simple methods, particularly when tools 
like the generalized linear mixed mixed effect models 
(Molenberghs and Verbeke, 2005) are assumed. The 
advantage of this method is its simplicity, it can be 
fitted in standard statistical software without involving 
additional programming, using such tools as SAS 
software, PROCs MIXED, GLIMMIX and NLMIXED. 
The use of these procedures have been illustrated by 
Verbeke and Molenberghs (2000) and Molenberghs 
and Verbeke (2005). Despite the flexibility and ease 
of implementation of likelihood-based method, there 
are fundamental issues when selecting a model and 
assessing its fit to the observed data which do not occur 
with complete data. The method is sensible under linear 
mixed models in combination with the assumption of 
ignorability. Such an approach, tailored to the needs of 
clinical trials, has been proposed by Mallinckrodt et al 
(2001a, 2001b). For incomplete longitudinal clinical 
trials data, a mixed model only needs MAR dropout to 
hold. According to Verbeke and Molenberghs (2000), 
these mixed-effect models permit the inclusion of 
subjects with dropout at some time points for both 
dropout patterns, namely monotone and intermittent. 
Since likelihood-based ideas can be used with a variety 
of likelihoods, in this study we consider the general 
linear mixed-effects model (Laird and Ware, 1982) as 
a key modeling framework which can be combined 
with the ignorability assumption. For  the vector of 
observation from individual , the model can be written 
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as follows 	(22) 
where  ,   and  
are independent. The meaning of each form in equation 
(22) are described as follows.  is the  dimensional 
response vector for subject , containing the outcomes 
at  various measurement occasions, ,  
is the number of subjects,  and  are  and 

 dimensional matrices of known covariates, 
 is the -dimensional vector containing the fixed 

effects,  is the -dimensional vector containing 
the random effects and  is a  dimensional vector 
of residual components, combining measurement 
error and serial correlation. Finally  is a general 

covariance matrix whose  th element is 
 and  is a  covariance matrix which 

generally depends on  only through its dimension 
, i.e., the set of unknown parameters in  will not 
depend upon . This means marginally  

 Thus if we define  
as the general covariance matrix of , then  

 
from which a marginal likelihood can be contributed 
to estimate . In the likelihood context, Little and 
Rubin (1987) and Rubin (1976) stated that when 
MAR assumption and mild regularity conditions 
hold, parameters  and  are independent, and that 
likelihood based inference is valid when the missing 
data mechanism is ignored. In practice, likelihood of 
interest is then based on the factor  (Verbeke 
and Molenberghs, 2000). This is referred as ignorability.
(3)  Application Study
This section describes the application of the 
aforementioned methods for handling dropouts in 
longitudinal clinical trials data. The methods are 
applied to data from heart rate experiment, for which 
initially there are no actual dropouts.
(3.1)  Description of the Data
Here, we have to make it clear that as our current study 
is essentially an application study rather than a case 
study, we tested the performance of the two approaches 
by generating dropouts from a complete data. So, our 
main interest was to generate a random sample of the 
whole dataset, and then to use it for the analysis. The 
data set to be analyzed in this study originates from the 
clinical trial to study the effect of three treatments on 
heart rate of humans. Full details of this experiment 
are given in Millikin and Johnson (2009). It is an 
experiment involving three drugs (AX23, BWW9, 
and CTRL) and where each subject was measured 

repeatedly at four different time points  
After the drug was administered, each patient’s heart 
rate was measured every five minutes for a total of 
four times. To be precise, each patient’s heart rate was 
measured 5, 10, 15 and 20 minutes after administering 
the treatment. This experiment illustrates the layout 
for a simple repeated measures experiment. The large 
size of experiment units is the subject, and the smaller 
size experiment unit is the time interval when using the 
split-plot in time notation. At the start of the study 
female human subjects were randomly assigned to each 
drug. 

The objective of this experiment was to investigate 
the drug-response effects, i.e. if the drugs have an 
effect on heart rate, compare drug groups with each 
other, including time effects and to find the least-square 
means. In this paper, we consider the significance of 
drug main effects, time main effects and the interaction 
of time and drug effects, and we are also interested to 
investigate the differences between the drug and time 
effects in least-square means. 
 (3.2)  Model Formulation
In the proceeding, we analyze the data from the clinical 
trial introduced above by formulating a model based on 
the data with heart rates. According to the study design, 
we include the fixed categorical effects of drug, time, 
and drug-by-time interaction. Therefore, the continuous 
outcome for the analysis reported here was heart rate, 
or as we will denote it in the remainder of this study, 
HR. Let  denote the heart rate of patient  where 
=1,...,8, at time  for =1,...,4, on drug , where =1, 
2, 3. We consider the following linear model for , 
where the response of the subject  at time : 

  (23)
  where  denotes the drug-by-time 
interaction and  are unknown independent and 
identically distributed normal random error, with mean 
0 and variance  As mentioned above, in this data 
set, there are no actual dropouts. This provides us with 
an opportunity to generate dropouts missing at random 
in order to compare the performance of MI and IPW 
methods to deal with dropouts.
 (3.3)  Generating Dropouts and the MAR Mechanism
Since there are no dropouts in the example data set 
described above, it provides us with an opportunity 
to design a comparative study to compare the two 
methods to deal with dropout using the results from the 
complete data analysis as the reference. We used the full 
data set to artificially generate dropouts by mimicking 
the MAR mechanism. From the complete data set 
described above, 1000 random samples of  were 
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drawn. The dropouts in HR were created according to 
the MAR assumption, assuming the missingness in HR 
is related to observed values, in the sense that patients 
with higher HR at one measurement occasion tend to 
dropout out of the experiment at the next occasion. 
The implication of the MAR assumption in our case is 
that, patients who are observed to be weaker (deduced 
by way of their previous observed measurement) are 
more likely to dropout when they reach a certain value 
of the HR, as long as their probability of dropout does 
not further depend upon their missing measurements. 
The other predictor variables other than HR, were 
however kept intact. For MAR, three dropout rates were 
implemented. The dropout rates were set at 10%, 20% 
and 30%. Dropouts were created in HR by randomly 
deleting 10%, 20%, and 30% of all measurements 
greater than 75 as a threshold indicating high heart rate. 
The observations that triggered the missing data were 
kept but all other subsequent observations were deleted. 
This scenario was generated or replicated 1,000 times. 
Each generated samples was analyzed using LMM 
and IPW to derive parameters of interest. A monotone 
missing pattern was assumed, which is to say that for 
each patient, if a HR’s observation was deleted for a 
third time point, the subsequent observation in the 
fourth time point for that patient was also deleted.
(3.4)  Analysis of IPW
The IPW method was applied to each generated sample 
using two SAS macros provided by Molenberghs 
and Verbeke (2005). The macros are DROPOUT and 
DROPWGT. These macros construct the variables 
“dropout” and “previous measurements” and to pass 
the weights (predicted probabilities) to be used for 
WGEE. In contrast to LMM, the IPW approach needs 
a model for the dropout mechanism. Therefore, for 
the MAR assumption, we assume the IPW models 
the missingness mechanism via logistic regression 
model, introduced in model (24), which requires the 
data to be MCAR or MAR. IPW was applied using to 
the following steps: 1) The dropout model was fitted 
within logistic regression using DROPOUT macro. 
The outcome variable “dropout” indicator for HR was 
generated, and it was binary taking the value 1 when the 
HR is observed, 0 otherwise, consequently indicating 
whether or not dropout occurred at a given time from 
the start of the measurement until the end of the study 
period (Molenberghs and Verbeke (2005)). In the 
dropout model, predictor variables were the outcomes 
at previous occasions , supplemented with 
genuine covariate information. To estimate the dropout 
probabilities, we used the following logistic regression 

of dropout indicators 

 (24)
 where  is the binary indicator at the previous 
occasion. 2) Using data and fitted probabilities from 
step (1), a weighted regression of the response variable 
in model (12) was fitted based on the inverse of the 
“probability of a patient dropping out at a given time 
and was not missing in all the previous times” as 
weights. This was done by using the DROPWGT macro 
in SAS. These weights were defined at the individual 
measurement level and were equal to the product of the 
probabilities of not dropping out up to the measurement 
occasion (Molenberghs and Verbeke (2005)). The last 
factor was the probability of either dropping out at that 
time or continuing with the study. 3) Once the selected 
model (24) is fitted and the weight distribution checked, 
we formulate the full-data regression model using 
inverse probability weighting. The weighted regression 
model is formulated by re-defining the response as 

 and covariate as . Now, 
let  denote the heart rate from patient  at time  for 

. Further, let  be a vector of covariates with 
length , where . Then, the mean response 
model can be expressed as follows 

 (25)
 where the covariate  denotes the time, the covariate 

 denotes the drug group, the covariate  denotes 
the drug by time interaction,  is the population 
average intercept and  is the average rate 
of change due to the time, drug main effects and their 
interaction. Since the response variable of interest at 
each occasion was the HR which is continuous, we 
used the identity link function and the scale parameter, 

. In addition to the marginal model in (25), the 
covariance structure of the correlated HR weights on 
a given patients should be modeled. In the application 
of IPW only first order-autoregressive AR(1) and 
compound symmetry covariances can be implemented. 
The other structures, such as unstructured covariance, 
toeplitz and heterogeneous (AR), may easily present 
computational problems. Therefore, we used the AR(1) 
covariance structure since it is the most reasonable in 
longitudinal data analysis problems. Using model (25), 
the parameter estimates can be calculated as the root of 
the weighted estimating equations 

	
(26)

 where  and  are vectors of  and covariates, 
respectively, for  th patient and  is a diagonal 

AGJSR 31 (2/3) 2013: 154-166، Ali Satty et al



162

matrix consisting of inverse probability weights for the 
 th patient. Model (25) was fitted using SAS procedure 
GENMOD with a WEIGHT statement.
(3.5)  Assessment Criteria
The performance of LMM and IPW was assessed on 
two criteria, namely bias and efficiency. These two 
criteria have been used by Schafer and Graham (2002) 
to study the performance of list-wise deletion, single 
imputation, maximum likelihood and MI. Also, they 
used by Graham and Schafer (1999) to evaluate the 
the performance of multiple imputation using small 
multivariate data sets. Here, we defined these criteria 
as follows: bias refers to the differences between the 
average of the 1,000 coefficient estimates and the 
corresponding true coefficient obtained from a mixed 
model analysis of the original complete data. Thus, a 
better technique is that which does on average approach 
the population value with less bias. Efficiency was 
defined as the variability of the estimates around the 
true population coefficient. It was calculated by the 
average width of the 95% confidence interval. The 95% 
confidence interval width is approximately four times 
the magnitude of the standard error. Thus, a wider 
interval implies a less efficient method. 

Results
The results of bias and efficiency of the drug main 
effect means and the time main effect means are given 
in Table 1 for the LMM and IPW methods.

Here we have to make it clear that we do not 
show full output, as the results of interaction terms are 
excluded. An examination of bias criterion revealed 
that LMM was notable for consistently producing less 
biased estimates vis-a-vis those estimates in IPW. It 
would appear that Mallinckrodt et al, (2003a, 2003b) 
recommendation to use likelihood-based analysis for 
incomplete longitudinal data with continuous outcomes 
is supported by the results presented here. In addition, 
this advantage of LMM is well documented in terms of 
continuous outcomes (see, Verbeke and Molenberghs, 
2000). As a result, the bias of the estimates by IPW 
appeared to be independent of the dropout rates. The 
results based on LMM and IPW were somehow similar 
for 10% in some cases. They yielded estimates closer 
to each other. We refer here to estimates of time1, time3 
and time4. Generally the bias for LMM is negligible, 
regardless of the dropout rate, with some exceptions. 
The exceptions were with the estimates of time1 and 
time4 under 10%, as well as the estimates of time4 under 
20% and the estimates of BWW9 and time4 under 30%. 

As noted above, a wider interval implies a less efficient 
approach, thus the widest and hence the worst, 95% 
confidence intervals are highlighted. Across all the three 
dropout rates, IPW was uniformly the worst approach 
in terms of efficiency, regardless of the dropout rates. 
Estimates which showed more efficient were time2 
for 20% and 30%. The LMM was more efficient most 
frequently. Hence, LMM was more robust than IPW 
against loss of efficiency due to increased dropout rate.

Table  1: Bias and Efficiency of LMM and IPW, under
 Different Dropout Rates: MIXED Least Squares Means
 (Interaction Terms are not Shown)

Bias Efficiency

Dropout Effect LMM IPW LMM IPW

AX23 0.28 1.20 0.89 1.15

BWW9 -0.18 -1.75 0.90 1.13

10% CTRL 0.29 1.25 0.89 1.10

Time1 0.50 0.48 0.96 1.61

Time2 0.50 1.45 0.96 1.13

Time3 0.18 0.22 1.09 1.26

Time4 0.49 0.46 1.07 1.12

AX23 0.41 1.40 0.93 1.14

BWW9 0.38 1.40 0.94 1.07

20% CTRL 0.64 1.90 0.94 1.04

Time1 0.98 1.90 0.96 1.37

Time2 0.48 1.33 0.99 0.78

Time3 1.10 1.37 1.27 1.54

Time4 0.24 0.14 1.27 1.34

AX23 1.24 1.46 1.08 1.20

BWW9 1.14 1.01 1.08 1.08

30% CTRL 1.13 1.20 1.09 1.20

Time1 0.56 1.41 0.97 1.16

Time2 1.01 1.07 0.98 0.74

Time3 1.05 1.27 1.55 1.68

Time4 0.83 0.64 1.58 1.66

Note: The largest bias and less efficiency for each 
given estimate presented in bold. LMM=linear 
mixed model; IPW=inverse probability weighting. 
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Table  2: Bias and Efficiency of LMM and IPW, under Different Dropout Rates: Pairwise Comparisons among Drug 
Main Effect Means and Time Main Effect Means - Differences of Least Squares Means

Bias Efficiency

Rate Effect Drug Time Drug Time LMM IPW LMM IPW

Drug AX23 BWW9 0.47 0.55 1.27 1.61

Drug CTRL CTRL 0.02 0.04 1.27 1.60

Drug CTRL CTRL -0.47 -0.50 1.27 1.58

Time 1 2 0.28 0.97 1.37 1.89

10% Time 1 3 0.50 0.74 1.44 2.03

Time 1 4 0.03 0.02 1.44 1.97

Time 2 3 0.58 0.59 1.42 1.75

Time 2 4 0.99 0.99 1.46 1.60

Time 3 4 0.48 0.76 1.52 1.69

Drug AX23 BWW9 0.24 0.73 1.33 1.56

Drug CTRL CTRL 0.21 0.39 1.33 1.54

Drug CTRL CTRL 0.14 0.12 1.33 1.49

Time 1 2 0.39 0.43 1.38 1.54

20% Time 1 3 0.68 1.02 1.57 2.02

Time 1 4 0.15 0.24 1.59 1.93

Time 2 3 0.54 0.76 1.67 1.84

Time 2 4 0.89 1.10 1.62 1.54

Time 3 4 0.63 0.94 1.83 2.09

Drug AX23 BWW9 0.23 0.32 1.53 1.62

Drug CTRL CTRL 0.25 0.22 1.54 1.71

Drug CTRL CTRL 0.26 0.37 1.53 1.63

Time 1 2 0.49 0.82 1.41 1.36

30% Time 1 3 0.89 1.05 1.82 2.03

Time 1 4 0.64 0.76 1.84 2.01

Time 2 3 0.72 0.88 1.90 1.94

Time 2 4 0.91 1.16 1.90 1.94

Time 3 4 1.15 1.01 2.62 2.37

Note: The largest bias and less efficiency for each given estimate presented in bold. LMM=linear mixed 
model; IPW=inverse probability weighting. 
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We now discuss the pairwise comparisons among 
drug main effect means and time main effect means by 
looking at Table 2, which shows the results of bias and 
efficiency for the differences of least squares means.
Examining these results we find the following. When 
compared with the results based on IPW, the LMM 
method offered better performance across all the dropout 
rates. LMM contained less biased estimates as compared 
to IPW, except for estimates of pairwise comparisons 
among (time1, time4) under 10%, (BWW9, CTRL - 
time3, time4) under 20%, as well as (AX23, CTRL - 
time3, time4) under 30%. For 10% dropout, the estimates 
associated with LMM became nearly indistinguishable 
from those with LMM as both methods yielded similar 
estimates, and in one case - pairwise comparison 
among (time2, time4)-they provided the same estimates. 
In terms of efficiency condition investigated, table 2 
has shown that as expected (see, table 2), the results 
were very comparable to what was found in Table 1 
(see, table 1). Since a wider interval implied a less 
efficient, thus the widest also implies the worst, 95% is 
highlighted. Efficiency by LMM was better than IPW, 
as the later yielded larger estimates. In other words, 
LMM tends to have smallest estimates. Thus, LMM 
was more efficient than IPW most frequently, with few 
exceptions. Specifically, estimates which showed less 
efficiency under LMM were (time2, time4) and (time3, 
time4) for 20% and 30% rates, respectively. As a result, 
the degree of difference in the width of the intervals 
between the two methods increased with increasing 
dropout rate. This explains that the dropouts have a 
serious impact on the the performance of both methods.

Discussion and Conclusion
We have discussed the performance of using the 
likelihood-based and IPW methods for handling 
continuous outcomes, when there are dropout missing 
at random in longitudinal clinical trials data. Both of 
the methods were selected for their solid foundations 
on the MAR dropout mechanism, and both methods 
can be used for continuous measurements, however 
a great deal of work applying the IPW has been 
devoted to binary measurements data indeed. Because 
both methods come from two opposing schools of 
thought, little comparison has been done between 
them. Our objective was to compare them for handling 
incomplete longitudinal clinical trials, under three 
different dropout rates. From the complete data set, 
we generated MAR dropout. The comparison between 
the two methods was based on a heart rate trial data, 
and the estimates corresponding to likelihood-based 

were then compared to those obtained from IPW. The 
comparison was assessed using two criteria, that is; 
bias and efficiency.

In general, our findings favoured likelihood-based 
over IPW. The likelihood-based analysis using LMM 
consistently outperformed IPW in terms of bias and 
efficiency. By considering both criteria simultaneously, 
likelihood-based performed best under all three 
dropout rates when compared with the IPW approach. 
This is to be expected as the likelihood-based analysis 
does well for continuous measurements as well as for 
the assumption of MAR (Molenberghs and Kenward, 
2007). The likelihood-based approach was less biased 
and considerably less variable than the IPW approach. 
The lower variability achieved by the likelihood-
based approach makes it desirable in most statistical 
analyses. This agrees with the theoretical results in 
that IPW can be less efficient and less powerful than 
likelihood estimators under a well specified parametric 
model, see, Seaman and White (2011) and Schafer and 
Graham (2002). Given these results, it appears that 
either the likelihood-based analysis for MAR dropouts 
with continuous measurements are preferable to the 
IPW approach. The latter approach was irrespective 
of the type of parameter of interest, associated with 
greater estimation bias as well as less efficiency.

The findings further revealed that despite the 
mechanism of dropout was MAR, the performance of 
IPW was unsatisfactory. This explains that IPW has 
shortcomings, as shown clearly in the current analysis. 
This can be justified by the fact that IPW is more widely 
used in marginal models for discrete measurements 
than for continuous measurements (see, Robins et 
al 1995; Fitzmaurice et al, 1995). Despite these 
drawbacks, IPW can be considered as the longitudinal 
binary method of choice for the primary analysis 
when MAR dropout holds because of its simplicity 
and the ease with which it can be implemented as. 
Therefore, IPW might become attractive in specific 
circumstances. Specifically, with respect to marginal 
models under discrete measurements. In conclusion 
we submit that the use of the likelihood-based and 
IPW methods should be conducted with care when 
the longitudinal clinical trials data have dropouts in 
continuous measurements. Further, it appeared from 
the current analysis that the dropouts have a serious 
implication on the type of outcome. Consequently, to 
carefully address dropout using likelihood-based and 
IPW, the effect must be thoroughly explored by way 
of carefully designed simulation studies as well as a 
theoretical investigation.
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