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AssTrRACT. The almost unitarily equivalence relation, ©, between
operators is defined. It is shown that some properties are shared by almost
unitarily equivalent operators. Various results related to © are proved.

1 Let H be a Hilbert space and let [(H) denote the algebra of all bounded linear
operators on H. If Sand T are in L(H), then S and T are called unitarily equivalent if
there is a unitary operator [Jsuch that § = U~ ‘TU, or equivalently, § = U*TU. We
call § and T almost unitarily equivalent, § © T, if there is a unitary operator U
such that the following two conditions are satisfied:

T*T = U*S*SU, (a)

T+ T=U*(S*+ 8 U. (b)

If S,T,F ¢ L(H), then it can be easily shown that (i) S & §, (ii)) S © T if and
only if T@ §, and (iii) if S© T, and TS F, then SO F.

In the first section of this paper we show that some properties are shared by almost
unitarily equivalent operators.

Proposition 1.1 If T € L(H) such that T & 0, then T = 0.

Proof. T & 0 implies that there exists a unitary operator U such that 0 = U*T*TU
which implies that T*T = 0. Thus, by (Berberian 1976, Theorem 2(6) T = 0.
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Proposition 1.2 If T € L(H) such that T® 1, then T = .

Proof. Let A + iB be the cartesian decomposition of T, then T ©I implies
that there is a unitary operator [J such that

I*1 = U* (T*T) U, (i)

*+1=U"T*+7U, (ii)

From (ii) we conclude that 2] = U*2A)U which implies that A = UU* = [. From (i)
we conclude that [ = T*T = (A?+ B?) + i (AB — BA). Thus | = A*> + B? which
implies (since A* = J) that B> = 0. Since B is hermitian, B = 0. Thus T= A = I.

Definition 1.1 The numerical range, W(T), of an operator Tin L(H) is the set of all

complex numbers of the form (Tf f), where f varies over all vectors on the unit
sphere. The numerical radius, w (T), of T is defined by w(T) = sup {|\|: h € W(T)}.

Proposition 1.3 If S, T € L(H) such that § & T, then w(T*T) = w(S*S).

Proof. By assumption there is a unitary operator U such that T*T = U* §* SU.
Hence, w(T*T) = w(U*S*SU)). Since w is unitarily invariant in the sense that
w(U*TU) = w(T) for any operator T and any unitary U (Halmos 1982 ) we have
w(T*T) = w(S*S).

Corollary 1.1 If S,T € L(H) such that S © T, then ||§]| = ||T||.

Proof. Since § © T, T*T = U*S*SU which implies that || T*T]|| = ||S$*S||. Since
lA*A|l = |A|]* for any A € L(H), ||T||*> = ||S|| ? which implies that ||S|| = || T]|.

Corollary 1.2 If S,T € L(H) such that § © T and § is a contraction, then Tis a
contraction.

Proof. Since § O T, ||S|| = ||T||. Since ||S|| = 1, || T||. = 1, that is Tis a contraction.

Proposition 1.4 If S, T € L(H) such that § © T and T is partially isometric, then
S is partially isometric.
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Proof. Since S © T, there is a unitary operator U such that U*S*SU = T*T. Since T
is partially isometric, T*Tis a projection. Thus U*S*SU is a projection which means
that (U*S*SU ) (U*S*SU) = U*S*SU. This implies that U*S*SS*SU = U*S*SU,
which implies that UU*S*SS*SUU* = UU*S*SUU*. Thus, we have (S*$)? = $*S,
which means that $*S is a projection. Thus § is partially isometric.

Definition 1.2 T € L(H) is called a 8-operator if T* + T commutes with T*T. The
class of all 8-operators in L(H) is denoted by 6.

Proposition 1.5 If S, T are in L(H) such that T € 6 and T ©S, then S € 6.

Proof. T ©§ implies that there exists a unitary operator U such that U*T*TU = $*S
and UX(T* + T) U = $* + S. Thus we have  (U*T*TU) [UXT* + T)U]=
S$*S(S*+ S) which implies that

U*T*T(T* + T)U = S*S(S* + S). (A)
Also, we have [U*(T* + T)U] (U*T*TU) = (S* + $)S*S which implies that

U*T* + T)T*TU = (S* + S)S*S. (B)

Since T € 6, then the left hand sides of (A) and (B) are equal, which implies that
(S* + S)S*S = S*S(S* + S). Thus S € 6.

Proposition 1.6 If S, T € L(H) such that S© T and S is compact, then T is
compact.

Proof. Since § © T, there is a unitary operator [ such that T*T = U*S*SU. Since
S is compact, U*S*SU is compact which implies that 7*T is compact. Thus, by
(Kreyszig 1978), T is compact.

Definition 1.3 An operator T e L(H) is called skew-adjoint in case T~ = — T.

Proposition 1.7 If S, T € L(H) such that § © Tand S is skew-adjoint, then T is
skew-adjoint.
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Proof. Since S © T, there is a unitary operator U such that U*(T*+T)U = S*+$
= 0 (since S is skew-adjoint). Thus, T* + T = 0 which means that T is skew-adjoint.

Before we give the next proposition we need the following theorem.
Theorem 1.1 An operator T € L(H) is hermitian if and only if (T + T*)* = 4 T*T.
Proof (Istratescu 1981).

Proposition 1.8 If S,T € L(H) such that S© T and S is hermitian, then T is
hermitian.

Proof. Since S OT, there is a unitary operator [/ such that U*S*SU = T*T, which
implies that

U*(4S*S)U = 4T*T. (1)

Also, § ©T implies that U*(S*+S)U = T* + T, which implies that
U*(S* + §) UUXS* + S) U + (T*+ T)> Thus

U* (S* + $)’U = (T* + T~ (ii)

Since § is hermitian, (S* + §)> = 4S*S. Substituting in (ii) we get U* (4S*S) U =
(T* + T)*, which implies, by (i), that (T* + T)> = 4T*T. Thus, by the above
theorem, T is hermitian.

Proposition 1.9 If S,T € L(H) such that § ©T and § is a projection, then T'is a
projection.

Proof. S ©T implies that there is a unitary operator U such that §*S = U*T*TU
and $* + §= U*(T* + T) U. Since S is a projection, it is hermitian and §? = §. By

proposition 1.9, T'is hermitian. Thus § = U*T?U and 2§ = U*(2T) U which implies
that 72 = T. Hence T is a projection.

2 In this section we prove various results related to ©.

Proposition 2.1 If S,T € L(H) are unitarily equivalent, then § ©T.
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Proof. Since S and T are unitarily equivalent, then there is a unitary operator Usuch
that T = U*SU. Thus T* = U*S*U, which implies that T*T = U*S*UU*SU =
U*S*SU, and T* + T = U*S*U + U*SU = UXS* + §) U. Thus S ©T.

Proposition 2.2 If S,T € L(H) such that S ©T and § is hermitian, then S and T
are unitarily equivalent.

Proof. S ©T, implies that there is a unitary operator U such that T* + T =
U*(S* + S) U. Since S is hermitian, by Proposition 1.9, Tis also hermitian. Thus, we

have 2T = U*(2S)U which implies that T = U*SU. Hence T and S are unitarily
equivalent.

Proposition 2.3 if T€ L(H) is in 8, then there is a normal operator Nin L(H) with TON.

Proof. Consider the operator

T*+ T+ iVAT*T - (T*+ 1)

N = ;
2

then by (Campbell and Gellar 1977, p.305) Nis normal with N*N = T*Tand N*+ N

T* + T. Since the identity operator [is unitary and since T*T = [*N*NI and

T*+T =I%N*+ N)I, T ON.

Lemma 2.1 If S,T € L(H) such that T is isometric and § ©T, then S is
isometric.

Proof. S ©T implies that there is a unitary operator U such that T*T = U*S*SU.
Since T is isometric, T*T = [ which implies that $*§ = J. Thus § is isometric.

Next, we give a characterization of isometric operators in terms of ©.
Proposition 2.4 T € L(H) is isometric if and only if T ©U for some unitary U.

Proof. Suppose that T is isometric; then it is in 6. Thus, by Proposition 2.1 there is a
normal operator N with T ©N. By Lemma 2.1, N is isometric. Thus N is unitary.

Now, suppose that T ©QU for some unitary U; then there is a unitary V with
V*T*TV = U*U = [. This implies that T*T = vV* = [. Thus T is isometric.
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Let T'e L(H) be unitary. Then T*T = TT* (=]). Thus T*T = I*TT*I which
means that T ©T*. Since T* = T~', we have T OT ' If T € L(H)such that
TOT ™' then it is not necessary that T is unitary,as the following example shows.

02
Example: Consider the operator T = on the two-dimensional space R2
30

Then it can be shown that T?> = I which implies that T = T~'. Thus T T .
However, || T|| > I which means that T is not unitary.

In the next proposition, we give a condition under which T &7 implies
that T is a scalar multiple of a unitary operator. First we need the following result.

Theorem 2.2 An invertible operator T € L(H) is a scalar multiple of a unitary
operator if and only if ||T| [T/ = 1.

Proof. (Shah and Sheth 1975, p.181).

Proposition 2.5 Let T € L(H) such that T ©T 'and Tis a contraction; then T is
a scalar multiple of a unitary operator.

Proof. Since T is a contraction and T ©T?, then, by Corollary 1.2, T~ ' is a
contraction. Thus || 7 ~!|| = 1 which implies that || T|| ||T ~!|| = 1. On the other hand
we have ||T|| [|T || = ||TT =Y = ||1}| = 1. Thus || T|| ||T ~!|| = 1 which implies, by
the above theorem, that T is a scalar multiple of a unitary operator.
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