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ABSTRACT. The almost unitarily equivalence relation, e, between 
operators is defined. It is shown th at some properties are shared by almost 
unitarily equivalent operators. Various results related to e are proved . 

1 Let H be a Hilbert space and let L(H) denote the algebra of all bounded linear 
operators on H If Sand T are in L(H), then Sand T are called unitarily equivalent if 
there is a unitary operator Usuch that S = U-1TU, or equivalently , S = U*TU. We 
call Sand T almost unitarily equivalent, SeT, if there is a unitary operator U 
such that the following two conditions are satisfied : 

T*T = U*S*SU, (a) 

T* + T = U* (S * + S) U. (b) 

If S, T,F E L(H), then it can be easily shown that (i) S 8 S, (ii) SeT if and 
only if T 8 S, and (iii) if S 8 T, and T 8 F , then S e F. 

In the first section of this paper we show that some properties are shared by almost 
unitarily equivalent operators. 

Proposition 1.1 If T E L(H) such that T 8 0, then T = O. 

Proof. T 80 implies that there exists a unitary operator U such that 0 = U*T*TU 
which implies that T*T = O. Thus, by (Berberian 1976, Theorem 2(6) T = O. 
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Proposition 1.2 If T E L(H) such that T 8 1, then T = 1. 

Proof. Let A + iB be the cartesian decomposition of T, then T 8 1 implies 
that there is a unitary operator U such that 

1* 1 = u* (T*T) U, (i) 

1* + 1 = U* (T* + T) U, (ii) 

From (ii) we conclude that 21 = U*(2A)U which implies that A = UU* = 1. From (i) 
we conclude that 1 = T*T = (A 2 + B 2) + i (AB - BA). Thus 1 = A 2 + B2 which 
implies (since A2 = 1) that B2 = O. Since B is hermitian, B = O. Thus T = A = 1. 

Definition 1.1 The numerical range , W (T) , of an operator Tin L(H) is the set of all 
complex numbers of the form (Tf,f ), where f varies over aU vectors on the unit 
sphere . The numerical radius , w (T) , of T is defined by weT) = sup { IAI: ), E W(T)} . 

Proposition 1.3 If S, T E L(H) such that s e T, then w(T*T) = w(S*S). 

Proof. By assumption there is a unitary operator U such that T*T = U* S* SU 
Hence , w(T*T) = w(U*S*SU)). Since w is unitarily invariant in the sense that 
w(U*TU) = weT) for any operator T and any unitary U (Halmos 1982) we have 
w(T*T) = w(S*S). 

Corollary 1.1 If S,T E L(H) such that SeT, then IIsll = II Til . 

Proof. Since S8 T, T*T = U*S*SU which implies that II T*TII = IIs*slI. Since 

IIA *AII = IIAI12for any A E L(H) , IITII2= IIsI1 2which implies that Iisil = IITII. 

Corollary 1.2 If S, T E L(H) such that S8 T and Sis a contraction , then T is a 
contraction. 

Proof. Since S e T, IISII = IITII .Since Iisil :5 1, IITII. :5 1, that is Tis a contraction . 

Proposition 1.4 If S, T E L(H) such that S e T and T is partially isometric, then 
S is partially isometric . 
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Proof. Since S 8 T, there is a unitary operator Usuch that U*S*SU = T*T. Since T 
is partially isometric, T*Tis a projection. Thus U*S*SUis a projection which means 
that (U*S*SU) (U*S*SU) = U*S*Su. This implies that U*S*SS*SU = U*S*SU, 
which implies that UU*S*SS*SUU* = UU*S*SUU*. Thus, we have (S*S)2 = S*S, 
which means that S*S is a projection . Thus S is partially isometric. 

Definition 1.2 T E L(H) is called a 8-operator if T* + T commutes with T*T. The 
class of all 8-operators in L(H) is denoted by 8 . 

Proposition 1.5 If S, T are in L(H) such that TEe and T 8 S, then SEe. 

Proof. T 8 5 implies that there exists a unitary operator U such that U*T*TU = S*S 
and U*(T* + T) U = S* + S. Thus we have (U*T*TU) [U*(T* + T) UJ = 
S*S(S* + S) which implies that 

U*T*T(T* + 'T)U = S*S(S* + S). (A) 

Also, we have [U*(T* + T)U] (U*T*TU) = (S* + S)S*S which implies that 

U*(T* + T)T*TU = (S* + S)S*S. (B) 

Since TEe, then the left hand sides of (A) and (B) are equal , which implies that 
(S* + S)S*S = S*S(S* + S). Thus S E 8. 

Proposition 1.6 If S, T E L(H) such that S 8 T and S is compact , then Tis 
compact. 

Proof. Since S 8 T, there is a unitary operator U such that T*T = U·*S*Su. Since 
S is compact , U*S*SU is compact which implies that T*T is compact. Thus, by 
(Kreyszig 1978), T is compact. 

Definition 1.3 An operator T E L(H) is called skew-adjoint in case T * = - T. 

Proposition 1.7 If S, T E L(H) such that S 8 T and S is skew-adjoint, then Tis 
skew-ad joint. 
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Proof. Since 5 8 T, there is a unitary operator U such that U*(T*+ T)U = 5*+5 
= 0 (since 5 is skew-adjoint). Thus, T* + T = 0 which means that T is skew-adjoint. 

Before we give the next proposition we need the following theorem. 

Theorem 1.1 An operator T E L(H) is hermitian if and only if (T + T*l ~ 4 T*T. 

Proof (Istratescu 1981). 

Proposition 1.8 If 5, T E L(H) such that 5 8 T and 5 is hermitian, then T is 
hermitian. 

Proof. 5ince 5 8T, there is a unitary operator U such that U*5*5U = T*T, which 
implies that 

U*(45*5)U = 4T*T. (i) 

Also, 5 8 T implies that U*(5*+5)U = T * + T, which implies that 
U*(5* + 5) UU*(5* + 5) U + (T*+ T/. Thus 

U* (5* + 5/ U = (T* + 1)2. (ii) 

Since 5 is hermitian , (5* + 5)2 = 45*5. Substituting in (ii) we get U* (45*5) U = 
(T* + T) 2, which implies , by (i) , that (T* + 1)2 = 4T*T. Thus , by the above 
theorem , T is hermitian. 

Proposition 1.9 If 5, T E L(H) such that 5 8 T and 5 is a projection , then T is a 
projection. 

Proof. 5 8T implies that there is a unitary operator U such that 5*5 = U*T*TU 
and 5* + S = U* (T* + T) U. Since S is a projection, it is hermitian and 52 = 5. By 
proposition 1.9, T is hermitian . Thus 5 = U*T2U and 25 = U*(21) U which implies 
that T 2 = T. Hence T is a projection . 

2 In this section we prove various results related to 8. 

Proposition 2.1 If S, T E L(H) are unitarily equivalent, then S 8 r. 
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Proof. Since Sand T are unitarily equivalent , then there is a unitary operator U such 
that T = U*Su. Thus T * = U*S*U, which implies that T*T = U*S*UU*SU = 
U*S *SU, and T* + T = U*S*U + U*SU = U*(S* + S) U. Thus S 8 T. 

Proposition 2.2 If S,T E L(H) such that S 8 T and S is hermitian, then Sand T 
are unitarily equivalent. 

Proof. S 8 T, implies that there is a unitary operator U such that T* + T = 

U*(S* + S) U. Since S is hermitian , by Proposition 1.9, Tis also hermitian. Thus, we 
have 2T = U*(2S) U which implies that T = U*Su. Hence T and S are unitarily 
equivalent. 

Proposition 2.3 jfT E L(H) is in e, then there is a normal operator N in L(H) with T 8 N. 

Proof. Consider the operator 

T* + T + i V 4T*T - (T* + T) 2 

N= 
2 

then by (Campbell and Gellar 1977 , p.30S) N is normal with N*N = T*Tand N* + N 

T* + T. Since the identity operator J is unitary and since T*T = J*N*NJ and 

T* + T = J*(N* + N)J, T 8 N. 

Lemma 2.1 If S, T E L(H) such that T is isometric and S 8 T, then S is 
isometric. 


Proof. S 8 T implies that there is a unitary operator U such that T*T = U*S*Su. 

Since T is isometric, T *T = J which implies that S*S = 1. Thus S is isometric. 


Next, we give a characterization of isometric operators in terms of 8 . 

Proposition 2.4 T E L(H) is isometric if and only if T 8 U for some unitary U. 

Proof. Suppose that Tis isometric; then it is in 8. Thus , by Proposition 2.1 there is a 
normal operator N with T 8 N. By Lemma 2.1, N is isometric . Thus N is unitary. 


Now , suppose that T 8 U for some unitary U; then there is a unitary V with 

V *T*TV = U*U = 1. This implies that T*T = VV* = J. Thus T is isometric . 
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Let TE L(H) be unitary . Then T*T = IT* (=1). Thus T*T = I*IT*I which 
means that T 8 T*. Since T * = T- 1

, we have T 8 T - J
• If T E L(H) such that 

T 8 T- 1,then it is not necessary th:1t Tis unitary,as the following example shows. 

o2 
Example : Consider the operator T = on the two-dimensional space R 2. 

~ 0 

Then it can be shown that T 2 = I which implies that T = T - 1 . Thus T 8r1. 

However, II Til > I which means that T is not unitary. 

In the next propositIOn, we give a condition under which T 8 T - 1 implies 
that T is a scalar multiple of a unitary operator. First we need the following result. 

Theorem 2.2 An invertible operator T E L(H) is a scalar multiple of a unitary 
operator if and only if IITII li T - I II = 1. 

Proof. (Shah and Sheth 1975 , p .181). 

Proposition 2.5 Let T E L(H) such that T 8 T- I and Tis a contraction; then Tis 
a scalar multiple of a unitary operator. 

Proof. Since T is a contraction and T 8 T- 1
, then , by Corollary 1.2, T- J is a 

contraction. Thus II T-III :s 1 which implies that II Til II T -III :s 1. On the other hand 
we have II Til II T - III 2: II IT - III = 11111 = 1. Thus II Til II T - III = 1 which implies, by 
the above theorem, that T is a scalar multiple of a unitary operator. 
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