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ABSTRACT. A necessary condition for a subharmonic function in IR” to have a
non-constant harmonic minorant is obtained. This resuit is shown to be a
variation of Bocher’s theorem in R".

1. Preliminaries

Let E, denote the fundamental singularity of the Laplacian operator A at 0 e R", n =
2. It is given by —log | x | whenn=2and — 1/(n — 2) 0, | x |" “whenn =3,0,
being the area of the unit sphere in IR". For any compact set K in IR", Hy (R"\ K)
will denote the set of harmonic functions in JR" \ K which behave like E, (x) as | x |
— o, In other words, se Hy (J/R" \ K) if there is a constant « such that, as | x | — =,
| s(x) — alog | x || —0ifn=2,and |s(x) |<| «|/|x|"*ifn =3 (see Anandam
and Al-Gwaiz (1993)).

We first note that any function in Hy(JR") must be the constant 0. This follows
from
Lemma 1.1

If a function u is harmonic in JR" and majorized, i.e. bounded above, by a function
in Hp outside a compact set, then u is a constant.
Proof.

Ifn = 3, any function in HytendstoOas | x | — e, hence limsup | , | ~u (x) =0
and, by the maximum principle, u is a constant in [R". In IR* we first use the mean
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value property to convert the growth condition on u to a condition on | u|, and then
the divergence theorem to show that the partial derivatives 9,u = 9u/d x; and du =
du/3x, are both 0.

If u is bounded above by a function in H, outside a compact set in IR?, then there
are numbers R > 1 and « > O such thatu (x) = «clog | x | forall | x | = R. Since uis
harmonic in JR?, its positive part u* = 4 (| u | + u) is a subharmonic function which
satisfies

ut (x) = alog | x| forall | x| = R.
Hence, if M (r,u*) denotes the mean value of u* on | x | = r, then

M(ru®) = « log r for all r = R.

+

Since | u | = 2u* — u, this implies that

M(r,| u|) =2«logr —u(0) (1.1)

and consequently %M(r, ful) = 0asr— =

Let X € IR? satisfy | Xo | = 2R and D = {x € IR* :| x — X0 | < R}. Since
3,u is harmonic in IR?, we have by the mean value property

1
| 81 u (X()) I = Jt_Rz fD al u(x)dx.

Now the divergence theorem gives

R
n R?

| 8y (xg) | = | [77u(R.6) cos 6 RAB | = 2 M(R,| u ).

2
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As | Xo | = 2R — = we conclude, in view of (1.1), that 3;u (xo) — 0. Consequently
3,u=0. Similarly 3,u =0, and hence u is constant in [R*. O

Bocher’s theorem characterizes the behaviour of a positive harmonic function in
the neighbourhood of an isolated singularity xq € IR". There is no loss of generality in
choosing the point xq to be the origin 0, and the neighbourhood to be the unit ball B,
= {x € R": | x| < 1}. Bocher’s theorem then states (see Helms 1969): If u is a
non-negative harmonic function in By\{ 0}, there is a constant « = 0 and a harmonic
function v in B, such that u = «F, + v in B\{0}.

Noting that the inversion x — x/ | x |2 in R™{0} preserves positivity and
harmonicity, the function

- 1 X
u (x)=WTT U(—lx_lz—) | x |>1,

is positive and harmonic in | x | > 1 if and only if u is positive and harmonic in 0 <
| x | <1. Thus, if u satisfies the hypothesis of Bécher’s theorem, then

0 (X)-_-—ln_2 ocEn(l—i—T) +v(|—x)(|7)] in | x|> 1 (1.2)

As | x | = =, the right-hand side of (1.2) is of the form — —;— log | x| +

v (0) + o (1) if n = 2, and of the form — 0+v(0)|x|2'“+

.
(n-2)

o (| x [*™") if n = 3.Consequently Bocher’s theorem has an equivalent version where
the singular point is at o:
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Bocher’s theorem

Let u be a non-negative harmonic function in B% = {x € R":| x | > 1}. Thenu=s+
¢, where seHy (B%) and c is a constant.

Corollary

Let u be a harmonic function which is defined outside a compact set K in IR*, n = 3,
and bounded on one side. Then u (x) has a finite limitas | x | =« .Moreover,
u (x) — 0 if and only if u € Hy (R"\K).

2. L-Potentials

Definition 2.1.

A subharmonic function in R" is admissible if it has a harmonic majorant outside a
compact set.

Proposition 2.1.

If s is an admissible subharmonic function in R, then s has a harmonic majorant in
B

Proof.

s being admissible, there is an R > 1 and a harmonic function u in | x | = R which
majorizes s in | x | > R. For any a > R, let

and let v be a harmonic function in 1 < | x | < a such that

Oon |x| =1
o=

u(x)on | x| = a.

Now consider the function «h + v where « is a positive constant. Since h (x) < Oin
| x | <a,wecan make « large enough so that oh (x) + v (x) <u(x)on | x | = R. By
the maximum principle, oh (x) + v (x) = u (x) on R <| x |< a. Define
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u (x)in | x| > a
t(x)={

ah (x) + v(x)in1l <|x|=a,

so that ¢ is a continuous superharmonic function in | x |> 1. Since the subharmonic
function s is upper bounded in 1 = | x | = a, there is a positive number ¢ such that
t(x) + c=s(x)inl < |x| = a, and hence t(x) + ¢ = s(x) in | x |> 1.
Consequently there is a harmonic function hin | x |> 1such that t (x) + ¢c= h (x) =
s(x)in| x | > 1.

Definition 2.2

An admissible subharmonic function s in JR" is an L-potential if the least harmonic
majorant (LHM) h of s in B* is in Hy (B%).

Proposition 2.2

In R", n = 3, sis an L-potential if and only if — s is a Newtonian potential, in the
sense that s = E, * u for some positive measure w in R".

Proof.

If s is an L-Potential in R", n = 3, then s < h in B, for some h € H, (B%}). Hence h
satisfies the condition | h(x) | = | « | / | x |"?ina neighbourhood of the point at .
Since h (x) = 0 as | x | = o, the maximum principle implies that s = 0 in R".
Furthermore, limsup| , | s (x) = 0 because h is the LHM of s in B%. By the Riesz
representation, — s is therefore a Newtonian potential in R". a

Proposition 2.3

Every admissible subharmonic function in JR", n = 2, is the unique sum of an
L-potential and a harmonic function in R".

Proof.

Let s be an admissible subharmonic function in IR", and u be the LHM of s is BY.
Then u is of the form u = v + h, where v € Hy (B%) and h is harmonic in IR" (see
Anandam and Al-Gwaiz 1993;theorem 2.2). Consequently, if we set g = s — h, then g
1s subharmonic in JR" and v is its LHM in B%,. Since v € Hy (B%), g is an L-potential,
and s = g + h is the required decomposition.

To show that this decomposition is unique, suppose s = ¢’ + h’ is another such
decomposition. Then g= ¢’ + h' — hin IR". Now if v and v' are the LHM of g and ¢’,
respectively, in B, thenthe LHM of g=¢q' + h' ~ hisv' + h’ — h. Hencev=v' +
h' — h,sothat i’ — h=v — v' € Hy. By the remark preceding lemma 1.1, A’ — h=0.

a
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Remark: From propositions 2.2 and 2.3, it follows that if s is a subharmonic function
in R", n = 3, with the associated measure du (x) = A sdx / (n—2) o, (in thesense
of distributions), then s is admissible if and only if

f d“—(x_) is finite.
| x| >1 | X ’" 2

When n = 2, the same result is true with du (x) = A sdx/2 n. To see this, note that
a subharmonic function s in IR* has a harmonic majorant outside a compact set if and

only if the flux of s at infinity is finite. But the flux of s is a constant multiple of the
total measure associated with s.

3. Global Version of Bocher’s Theorem

Theorem 3.1

Every admissible subharmonic function IR", n = 2, which is bounded below, is an
L-potential up to an additive constant.

Proof.

Let s be an admissible subharmonic function in IR" such that s = m, where mis a
constant. By proposition 2.3, s = g + h, where g is an L-potential and h is a harmonic
function in IR". Let v € Hy be the LHM of g in BY. Since ¢ + h=m, v=m — hin BY.
Bylemma 1.1, m — h, and hence h, is a constant. a

This theorem provides a necessary condition for a subharmonic function in IR" to
have a non-constant harmonic minorant:

Corollary

If s is a subharmonic function minorized by a non-constant harmonic function in
IR", then s* = § (| s| + s) is not admissible.

Proof.

Suppose u is a non-constant harmonic function in R” such that u = s. If s* were
admissible then, by theorem 3.1, it would be an L-potential up to an additive constant.
By lemma 1.1, u is then a constant, thereby contradicting the hypothesis. d

We shall now prove that theorem 3.1, which expresses a global property of
admissible subharmonic functions in JR", is a variant of Bdcher’s theorem, which
expresses a local property of positive harmonic functions in a punctured
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neighbourhood of a point in JR®™ U {=}. Here we shall use the version of Bdcher’s
theorem where the singular point is taken at infinity:

(i) Let u = 0 be a harmonic function in | x | = a with 0 < a < 1. Define

| x |

log Tif n =2
ha () =
1 - if n =3

El

Then h, (x) is positive harmonic in | x | > a and tends to 0 as | x | — a.

For any continuous function f on the unit sphere | x | = 1, let D,f denote the
Dirichlet solution in | x | < 1 with boundary value fon | x | = 1, i.e. Dif is the
harmonic function in | x | < 1 which tends to fas | x | = 1. If o > 0 is chosen large
enough, then

D, (u+ ahy) =2 u=u+ ahy,on |x| = a.

This implies that D; (u + ah,) = u + «h, in a =| x |= 1. Hence

{u+ochnin|x|>1
s:

Dy (u+ ah,)in [x] =1

is acontinuous admissible subharmonic function in JR" which is positive, since u = 0
by hypothesis and both « and h, are positive. By theorem 3.1, s is therefore an
L-potential up to an additive constant. Hence the LHM of sin | x | > 1is of the form
v + a constant, where v € Hj.

But since sis harmonicin | x | > 1, its LHMin | x | > 1is s itself. Therefore u+
ah, = v + aconstant, with v € Hy. Now h,, up to an additive constant, belongs to Hy,
hence the same is true of u. This proves Bocher’s theorem.

(ii) On the other hand, let s = m be an admissible subharmonic function in R", and
suppose his the LHM of sin | x | > 1. Since h = m, Bocher’s theorem implies that,
up to an additive constant, h € Hy. Hence, up to an additive constant, s is an
L-potential.
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