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ABSTRACT. An encryption scheme is randomized if many ciphertexts 
correspond to a given plaintext. In this paper we propose a simple and 
effective randomized public key encryption scheme. The scheme is based on 
the problem of finding a square root modulo n, where n is a product of two 
large distinct primes. The proposed scheme does not reveal any partial 
information and breaking it is as hard as factoring n. A randomized public key 
signature scheme is also proposed. 

A cryptosystem protects readable information (plaintext) from unauthorized access 
by transforming it into unintelligible form (ciphertext). The transformation process is 
known as encryption. A legitimate user has extra information to help carry out the 
reverse transformation, known as decryption. The extra information is known as the 
decryption key. A cryptosystem defines two algorithms, one for encryption (E) and 
the other for decryption (D). These algorithms use extra parameters known as 
encryption and decryption keys (k). In other words, a cryptosystem is defined by two 
mappings, Ek: Messages ~ Ciphertexts and Ok: Ciphertexts ~ Messages. A general 
cryptosystem is designed with the assumption that the encryption and decryption 
algorithms as well as the ciphertext are known to outsiders. Thus it is essential that the 
key space be too large to make exhaustive search for the key infeasible.For a long time 
cryptosystems were designed with the assumption that both encryption and decryption 
keys are to be kept secret. These cryptosystems, known as secret-key cryptosystems, 
do not offer a solution to the problem of a secure transfer of the keys between the 
sender and receiver in the first place. It was not untii 1976 when Diffie and Hellman 
(Diffie and Hellman 1976) suggested that only the decryption key be made secret, 
while the encryption key can be made public. Thus the idea of public key 
cryptosystems was born. 
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In a public key cryptosystem, each user X maintains two keys; an encryption key 
(ex) which is made public and a decryption key (dx) which is kept secret. The 
encryption keys for all users are maintained by a trusted authority and published in a 
public directory, much like a phone directory. A user A wishing to send a message M 
to another user B looks up the encryption key for B, computes C = EB(M) and sends 
C. The user B upon receiving C recovers the original message as M = DB(C) ' The 
notation EB, DB means using the encryption key , eB, and the decryption key , dB . of 
user B respectively. 

Public key cryptosystems offer many advantages over secret key cryptosystems: 

1 - The number of keys required for n users will be 2n keys compared with about n2 

keys in a secret key cryptosystem. 
2 - Transfer of the (encryption) key is no problem since it is made public. 
3 - In a secret key cryptosystem, the knowledge of (plaintext, ciphertext) pairs usually 

enable an attacker to discover the key. Thus to make these systems secure it is 
essential that the key size be large for large messages and that it is changed often. 
On the other hand, a public key cryptosystem is secure against this type of attack 
and the key size is independent of the message size and rarely needs to be 
changed. 

Despite their advantages . none of the public key cryptosystems proposed thus far, 
can compete in speed with commonly known secret key cryptosystems such as Data 
Encryption Standard (National Bureau of Standards 1977). Though no practical 
cryptosystem (public key or otherwise) is proven to be unbreakable , breaking some 
public key cryptosystems has been proven to be equivalent to solving some known 
difficult problems. 

Mathematical Background 

Given some fixed positive integer n, any integer x can be written as x = q x n + r, 
where q and r are integers and 0 ::::; r < n. Here r is the remainder when dividing x by 
n. This remainder is referred to as x mod n. 

Addition (multiplication) of numbers modulo n is same as ordinary addition 
(multiplication) except that the result is reduced modulo n. For any integer x, the 
additive inverse of x mod n, denoted by -x mod n, is defined such that x + (-x) mod n 
= O. The multiplicative inverse of x mod n, denoted by X-I mod n, is defined such that 
xx- 1 mode n =1 (usually x x y is written as xy) . Clearly the additive inverse of x mod 
n is n-x. The multiplicative inverse of x mod n exists only if gcd (x,n) =1, where 
gcd(x,n) denotes the greatest common divisor of x and n, and it can be found using the 
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Euclid's gcd algorithm. This algorithm also enables the determination of integers a 
and such that gcd(x,n) = ax + bn. Thus X-I mod n= a mod n. 

Let P be a prime number. A positive integer a < p is a quadratic residue modulo p 
if there exists some positive integer x < p such that x2 mod P = a, otherwise, a is a 
quadratic nonresidue. For example, 2 is a quadratic residue modulo 7 since 42 mod 
7=2. Thus the quadratic residues modulo p is the set {12 mod P, 22 mod p,oo., (p_l)2 
mod p}. As it turns out the set contains (P-l)/2, assuming that p is an odd prime, 
distinct elements. The equation (in the unknown x) x2 mod p=a where p is an odd 
prime and a is a quadratic residue, modulo, has two distinct integer (modulo p) 
solutions of the form x, p-x. If a is not a quadratic residue modulo p then the equation 
has no integer solutions. 

The definition of a quadratic residue is generalized by allowing the modulus to be 
any positive integer n but restricting x in the above definition to be relatively prime 
with n (i.e. gcd (x,n)=I). For example, 4 is a quadratic residue modulo 21 since 162 

mod 21=4 and gcd (16,21)=1. If the modulo n is a product of two distinct odd primes 
p and q then rp (n)= (P-l) (q-l) and one quarter of these are quadratic residues 
modulo n, where rp (n) counts the number of elements in the set { 1,2,oo.,n-l} that are 
relatively prime with n. For example, the set of quadratic residues modulo 15 contains 
(2x4)/4= 2 elements, namely 1 and 4. The equation in the unknown x, x 2 mod n =a 
where n is a product of two distinct odd primes and a is some known quadratic residue 
modulo n has four distinct integer (modulo n) solutions of the form x,n-x, y and n-y 
and exactly one of these is a quadratic residue modulo n. If a is not a quadratic 
residue then the equation has no integer solution. The solutions to the equation, 
thanks to the Chinese Remainder Theorem, are given by the expression(wl XI + W2 X2) 
mod n, where WI = q (q-I mod p), W2 = p (p-I mod q), x is either XI or (P-Xl), and y is 
either X2 or (q-X2) where XI and X2 are the solutions to the equations x2 mod p = a and 
x2 mod q = a respectively. Solving these last two equations is particularly easy when p 
mod 4 =q mod 4=3 and the solution is given by the formula XI = a(p+I)/4 mod p and 
X2 = a(q+I)/4 mod q. As an example, to find the solutions to x2 mod 21 = 4, we 

compute XI = 4(3+1)/4. mod 3 = 1 and X2 = 4(7+1)14 mod 7 =2. We also compute WI = 
7 (7-1 mod 3) = 7, W2 = 3 (3-1 mod 7) =15. Thus we obtain (7xl + 15 x2) mod21= 
16, (7x2 + 15x2) mod 21 =2, (7xl + 15x5) mod 21= 19 and (7 x 2 + 15 x 5) mod 
21 = 5. 

If n is a product of two odd primes p and q, then the factors p and q can be easily 
2found if two independent solutions x and yare known for any quadratic equation x = 

a mod n. As a matter of fact some factoring algorithms are based on this (Pomerance 
1984). It can be shown that gcd(x + y,n) is either p or q and gcd(x-y,n) is either p or 
q. 
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A notion relevant to the design of public key cryptosystems is the concept of a one 
way function and a trapdoor one way function. A function f is a one way function, if for 
almost all points x in its domain,the computation of f(x) given x is easy but given f(x) 
the determination of x is generally difficult. Here easy means requiring short 
computer time (i.e. minutes or hours) and difficult means requiring very long (i.e. 
hundreds of years) computer time. If, on the other hand, x can be determined easily 
from f (x) only when some secret (trapdoor) information is known and generally 
remains difficult to find even when the algorithm for computing f(x) is made public , 
then f is a trapdoor one way function . 

Squaring modulo n , where n is a product of two odd primes p and q, where p mod 
4 = q mod 4 =3 is a trapdoor one way function, since squaring modulo n is easy but 
finding square root is difficult unless the factorization of n (trapdoor) is known. In 
general ,the problem of finding x such that x a=b mod n (here a, band n are all fixed 
positive integers) can be solved easily if the factorization of n is known. Thus f (x) = 
xa mod n is believed to be a trapdoor one way function. On the other hand, consider 
the problem of finding x such that aX= b mod n. This is known as the discrete logarithm 
problem for which there is no known trapdoor. Thus it is believed that f(x)= aX mod n 
is a one way function . Computing f(x) by repeated squaring requires on the order of 
log(x) (i.e. ~ log(n)) multiplication operations whereas the fastest known algorithm 
for computing the inverse of f(x) requires on the order of Vn multiplication 
operations. Another example of a candidate one way function is integer 
multiplication. It is easy to multiply very large integers whereas there is no known 
efficient algorithm for factoring a very large integer. On the other hand, it is never 
proven that such an algorithm does not exist. Thus it is still open whether integer 
multiplication is indeed a one way function or not. 

Rabin's Public Key Cryptosystem 

The problem of factoring a large integer is the basis for the now famous RSA 
public key cryptosystem (Rivest and Adleman 1978). A variation of this cryptosystem 
was proposed by Rabin (Rabin 1979). Rabin's scheme is simpler and more efficient 
than RSA and breaking it is easily proven to be equivalent to factoring (breaking 
RSA is conjectured to be equivalent to factoring). 

In Rabin's scheme each user selects two large primes p and q where p mod 4 = q 
mod 4=3, and publishes n = p x q as his public key and keeps p and q secret. To send 
a message M (assumed to be a large positive integer and gcd(M,n) = 1) , to a user 
whose public key is n, the message is encrypted as C = M2 mod n. Upon receiving C, 
the quadratic equation (in the unknown x) x 2 = C mod n is solved using a simple 
formula in terms of p and q as explained in the previous section. Breaking Rabin's 
encryption scheme system easily shown to be equivalent to factoring the encryption 
modulus, n. 
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Rabin's scheme has a minor problem , namely that there is 4 : 1 ambiguity about the 
original message that was sent. Williams (Williams 1980) proposed a modification to 
Rabin's system to remove this ambiguity . 

Randomized Encryption 

Randomized encryption schemes are those schemes in which more than one 
ciphertext correspond to a plaintext. These shemes are considered semantically 
secure, i.e. schemes that ensure the secrecy of all partial information about 
transmitted messages. 

In the secret-key cryptosystems randomized encryption is exemplified by 
homophonic substitution. In a homophonic substitution cryptosystem a message M 
consisting of a string from an alphabet Al is encrypted into a random ciphertext C of 
symbols from an alphabet A 2, where IA 21 > IAll. If Al has t symbols then A2 is 
partitioned into disjoint non empty subsets Sj'S (1:::; i :::; t) so that symbol Sj from Al is 
encrypted into a random element of the subset Sj .The key is the partition (Sl ,S2 .. . St). 

EIGamal (EIGamaI1985) proposed a randomized public key cryptosystem based on 
the discrete logarithm problem . In this system , all users of the system are informed of 
a large prime p together with a primitive root g modulo p (i .e. Powers of g modulo p 
generate all the elements{1 ,2, ... ,p-1} ). The private key of a user is an integer d 
chosen at random by the user where 1 < d< p and the corresponding public key e= gd 
mod p. 

In order to send a message M to a user with public key e , the sender chooses a 
random integer r,1 < r< p and computes K = er mod p and sends the pair (Cl>~) 
where C1=gr mod p and C2 = KM mod p. 

The receiver first recovers K from C l as K = Cl 
d mod p. This follows since K= er 

mod p= (gdy mod p = (gf)d mod p. = C1d mod p. Then the receiver recovers M form 
~ as M= ~(k-lmod p) mod p. 

One difficulty with EIGamal's cryptosystem is that of finding a pnmltve root 
modulo a very large prime p. Our proposed cryptosystem does not have this kind of 
problem. The proposed cryptosystem can be looked at as introducing randomization 
in Rabin's scheme. The underlying theory of quadratic residues has been used as a 
basis for building a pseudo-random sequence generator used in a public key 
encryption scheme (Brassard 1988, Blum et al. 1986) . 
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Proposed Encryption Scheme 

In this cryptosystem each user selects as his public key an integer (n) whcih is a 
product of two large distinct primes (around 100 decimal digits each) p and g where p 
mod 4=q mod 4=3. The user also computes and keeps secret the values WI =g (g-I 
mod p) mod n, and W2 = P (p -1 mod q) mod n. The message space is the set of positive 
integers > n. 

To send a message M to a user whose public key is n, the sender selects at random 
a quadratic residue r mod n (to do this , let r=r 12 where rl is a randomly chosen integer 
in {2, ... ,n} and gcd (rl,n) = 1) , and sends the pair (e l , e 2) , where e l = r2 mod n, 
and e 2 = M+r mod n. The receiver first recovers r as r = (WI Xl + W2X2) mod_~ , 
where Xl=e

l 
(P+l) /4 mod p and X2=el(q+l)/4 mod q. Then he recovers Mas M=(e2 ) 

mod n. 

Note that for any X, X is a quadratic residue modulo n if and only if Xis a quadratic 
residue modulo p and modulo q. Thus since e l is a quadratic residue modulo n, it is 
a quadratic residue modulo p (q). Also Xl (X2), being a product of quadratic residues , 
is a quadratic residue modulo p (g). But the expession used by receiver for revaluates 
to a quadratic residue modulo p and modulo q since it evaluates to Xl modulo p and X2 
modulo q. Thus the expression for r gives the quadratic residue solution modulo n. 

Example: 

Suppose a user A has selected p=7 and q = 11. Thus n = 77 , Wj = 11 (11- 1mod 7) 
mod 77=22 , and W2 = 7(7-1 mod 11) mod 77 = 56. 

A user B who likes to send a message M =10 to A, would , say, select rl=3 . Thus 
r=rl2 mod 77= 9 and r2 mod 77=4. He then would send the pair (4,19). 

The receiver AcalculatesxJ=4(7+1)/4 mod 7=9 and x2=4(11 +1)/4 mod 11= 9. Then 
he computes r= (W1Xl + W2X2) mod n =(22.9+56.9) mod 77=9 , and recovers M= 
(19-9) mod 77=10. 

In this scheme, the sender should ensure that r2 > n; otherwise , r can be recovered 
by an attacker by taking ordinary square root. This is not much of a restriction since 
the range that is excluded for the choice of r is [1 ,v'i1l which accounts for a proportion 
of yn/n = llyn. But this proportion decreases as n increases and for n being about 
200 decimal digits this proportion is quite negligible. On the other hand, the proposed 
scheme has several desirable properties . The message M can be freely chosen as any 
positive integer < n and short messages need not be padded . Also there is no 
ambiguity in the decryption process. Overall , the proposed scheme offers some 
important benefits over Rabin 's at the expense of some data expansion (doubling the 
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amount of the information sent) -- unavoidable cost with randomized encryption 
(Brassard 1988) . Though the sender does two squaring operations, this cost is 
somewhat offset by the fact that the receiver does not need to find more than one 
solution for the quadratic equation. The test for gcd(r ,n)= 1 need not be implemented' 
since out of the values {1 ,2, ... n-1} only a very negligible proportion (=(p+q)/pq) 
fails this test. 

Signing Messages 

The purpose of signing a message is two-fold , to assure the receiver of the identity 
of the sender (sender authenticity) and of the message integrity (message 
authenticity). A message is authentic if it has not undergone any tampering or 
distortion after it was signed . Both of these independent requirements can be met by a 
process known as digital signature. Like a hand-written signature (or a fingerprint), a 
digital signature provides some undeniable and unforgeable link to its originator. 
However, unlike a hand-written signature , a digital signature is message dependent; 
otherwise it can be cut and pasted to other messages . Several digital signature schemes 
are described in Seberry and Pieprzyk (1989). A proposal for a digital signature 
standard is discussed in (Rivest et al. 1992) . 

Let m denote the number of quadratic residues mod n where n is a product of two 
large primes p and q (i.e . m= (p-1)(q-1)/4). Since the set of quadratic residues mod n 
is a group under multiplication mod n, it follows that for any quadratic residue x, xm 
mod n =1 This implies that Xk mod n=xk mod m mod n. To sign a message M by a 
sender whose modulo is n , the sender selects at random a positive integer r such that 
gcd(r,m)= 1 and calculates s=r- 1 mod m and C = (M2y mod n. He then sends 
the triple (M,C ,s). Here the pair (C,s) is a message authenticator since it is 
determined from M and the message originator knowledge of the factorization of n. 

CSThe receiver accepts M as authentic if M2 mod n = mod n . 

A signature scheme is secure if it does not allow an attacker to find the user's 
private information or to sign arbitrary messages on the user's behalf. If an attacker 
recovers r then he will be able to sign new messages using rand s. However, it is not 
easy to recover r from C since this corresponds to solving an instance of the discrete 
logarithm problem. But then the determination of m from sand n seems impossible. 
As a matter of fact the determination of m is equivalent to factoring n, since 
m = 0(n)/4 and the knowledge of 0 (n) enables the computation of p and q using 
the following equations. 

p + q = n- 0(n) + 1 (1) 

p - q = ((p + q)2 _ 4n) 112 (2) 
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It is very unlikely that the message M can be tampered with in a meaningful way 
and still satisfy this test. One possible tampering is to transform (M, C,s) into (Mk 
mod n, Ck mod n, s) for an arbitrary integer k . However this approach does not enable 
an attacker to sign an arbitrary message MI=Mk mod n , since this corresponds to 
solving an instance of the discrete logarithm problem. As noted by EIGamal 
(EIGamal1985), this problem is present in all existing digital signature schemes. This 
problem is solved by imposing some structure on valid messages (e.g.A message is 
some English text) so that the preceding attack is very unlikely to result in a message 
with a valid structure. 

In E1Gamal's scheme, the message authenticator gives rise to a linear equation in 
three variables: the message, the user 's private information, and a random value. If 
the same random value is used to sign two different messages, then one gets two linear 
equations in two unknowns, the random value and the user's private information, and 
therefore is able to discover the user 's private information. 

Note that the roles of sand r in the above scheme are interchangeable. Thus the 
sender can select s to be a smaJi number to make the verification procedure time 
efficient. Selecting s to be small also means that the signature itself is about the same 
size as the message. It is advisable that r should be large enough so that its recovery by 
exhaustive search is infeasible . 

The signing procedure can be made more efficient by not changing r so often This 
may not compromise the scheme, since in this way the scheme can be thought of as a 
variation of the RSA-based signature scheme. In RSA rand s are selected to be such 
that rs = 1 mod 0 (n) (rather than rs= 1 mod 0 (n)/4). If we vary s with each message 
(in RSA s is fixed and is part of the public key) then the authenticator of a message M 
is simply (C=Mf mod n , s) and the message M can be any value such that gcd (M ,n) 
which is almost always guaranteed. In this case, assuming the message has a certain 
structure, the message itself need not be sent. The receiver recovers M as CS mod n 
and accepts it as authentic if it has a valid structure. 

Securing and Signing Messages 

In certain applications, like the signing of a public contract, a signed message need 
not be encrypted . If the message is to be both signed and made secure then the above 
schemes of securing and signing a message can be combined . This can be done by one 
of two methods , depending on the order of applying sign and secure operations . To 
illustrate this , assume that a sender A with public key nA is to send a secure and signed 
message to a receiver B with a public key nB ' 
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1. 	 (Sign then secure) The sender A with some message M computes (C,s) which is an 
authenticator for M. He also selects at random a quadratic residue r mod nB' He 
then sends (M+r mod nB, r2 mod nB, C,s). The receiver B first finds r from the 
second component and M from the first component. Then he verifies that M is 
authentic and originated from A by verifying that M2 mod nA =(C)s mod nA. 

2. (Secure then sign) The sender A with a message M selects at random a quadratic 
residue r mod nB and computes C=M+r mod nB. He also computes (O,s) which is 
an authenticator for C based on a different random number other than r. He then 
sends (C, r2 mod nB, O ,s). The receiver B first verifies that C is authentic and 
originated from A by verifying that C2 mod nA =(O)Smod nA' He then finds r from 
the second component and M from the first component. 

This latter method has a strange property in that it allows a thi rd party to verify 
the signature of a message without being able to read the actual message. 

User Identification 

The password based user identification scheme commonly used to identify users in 
a computer system is vulnerable to a replay attack. An eavesdropper who is a able to 
intercept some one's else password can use it to enter into the system. A neat solution 
to this problem is provided by using a public key cryptosystem . Each user registers his 
pupblic key encryption scheme with the system. Whenever a user logins to the system, 
the system generates a random message M, and lets C=E(M) . The system sends C to 
the user which in turn replies with D(C). The user is allowed to use the system only if 
the reply is M. It does an impersonator no good to monitor an exchange between a 
user and the system since he is likely to face a different challenge when he tries to 
login into the system. Alternatively a signature scheme can be employed as a basis for 
a user identification scheme by challenging the user to produce a valid signature for an 
arbitrarily chosen message . 

In either scheme there must be an assurance to the user that the above interaction 
does not help the system in figuring out the user's private information. As noted by 
Brassard (Brassard 1988), the encryption scheme should resist chosen-ciphertext 
attack, in which an attacker (system) gives the user an encrypted text and asks for the 
corresponding plaintext. Consider the situation where the proposed encryption scheme 
is used but the system cheats and sends (r2 mod n, C=M+r mod n), where r is a 
quadratic nonresidue mod n instead of r being a quadratic residue as demanded by the 
encryption scheme. Then from the user's reply which is C-r the system will figure out 
the other independent solution rl to the quadratic equation and thus be able to factor 
n. 
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On the other hand, consider the situation where the proposed signature scheme is 
employed . Having seen one signature (M, Mr mod n, s) for a message M, the attacker 
might ask for a signature to another message Ml and gets (MI, MI rl mod n, Sl). Even if 
Mlis chosen to have a link to the user's private information (e.g.MI= MS mod n), the 
user is free in his choice of rl and Sl and it is not clear if the signature for MI will be of 
any help in figuring out some useful information about the user's private information 
such as knowing r or rl . Unlike the encryption scheme , the signature scheme leaves 
the randomization element in the user's hand. For further information about 
authentication in computer systems refer to (Woo and Lam 1992). 

Concluding Remarks 

We proposed some new encryption and signature schemes. The security of these 
schemes is based on the supposed difficulty of factoring. The encryption and signature 
schemes overcome certain problems present in similar past schemes . The proposed 
schemes are efficient in terms of the processing required and the amount of data that 
has to be communicated . 
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