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ABSTRACT. A famil y of numerical methods is developed for the numerical solution 
of fourth order parabolic partial differential equations in one space variable with 

lime dependent boundary conditions. 

The methods arise from a two·step , one·parameter famil y for the numerical 
solution of systems of second order ordinary differential equations with time 
dependent source terms. Global extrapolation procedures in time only and in both 
space and time are discussed . 

1. Introduction 

It is well known that fourth order parabolic partial differential equations arise in 
the study of the transverse vibrations of a uniform flexible beam (e.g. Gorman 
1975) . Numerical methods for the approximate solution of such problems have 
been developed and analysed by a number of authors: chronologically , these 
include Collatz (1951) , Du Fort and Frankel (1953) , Crandall (1954) , Douglas 
(1956), Albrecht (1957), Conte (1957), Conte and Royster (1957) , Richtmyer 
(1957), Lees (1961), Evans (1965) , Fairweather and Gourlay (1967), Andrade and 
McKee (1977), Twizell and Khaliq (1983), ter Maten and Sleijpen (1983a,b,c , 
1986) , ter Maten (1986) and Sleijpen (1986). 

In the present paper a family of methods is developed which is second order 
accurate in space and second or fourth order accurate in time . The family arises 
from a two-step , one-parameter method for the numerical solution of systems of 
second order ordinary differential equations with time dependent source terms. 
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Linear stability analyses, following well known procedures, determine the stability 
properties of the methods. Global extrapolation is used to improve accuracy. 

2. The Associated System of Ordinary Differential Equations 

The constant coefficient fourth order parabolic partial differential equation in 
one space variable, the vibrating beam problem , is given by 

(2.1) 

where !! is the ratio of flexural rigidity of the beam to its mass per unit length. The 
time dependent boundary conditions associated with (2.1) will be assumed to have 
the form 

u(Xo,t) = Po(t), U(Xbt) = PI(t), t > 0, (2.2) 

(2.3) 

and the initial conditions to be given by 

u(x,O) = go(x) , Xo,;;; x ,;;; Xl, (2.4) 

-
au 

(x,O) = gl(X), Xo,;;; x ,;;; Xl ' (2.5) 
at 

In (2.2), (2.3) , (2.4) and (2.5) the functions Po(t), PI(t) , go(x), gl(X) are continuous. 

The space interval Xo ,;;; x ,;;; XI will be divided into N+1 subintervals each of 
width h so that (N + l)h = XI- Xo and the time variable discretized in steps of 
length f. The open rectangular region R = [Xo < x < Xd x [t > 0] and its 
boundary oR consisting of the axis t=O and the ordinates x=Xo, x=X1 are thus 
covered by a rectangular mesh of points with coordinates (Xo+mh,nf) where 
m=0,1, .. ,N+1 and n=0,1,2, .. ..The theoretical solution of {(2 .1) , (2.2), (2.3), 
(2.4) , (2.5)} at the grid point (xm,tn) == (Xo+mh,nf) is, of course, u(xm ,tn) : the 
theoretical solution of an approximating difference scheme at this grid point will be 
denoted by V:;' with un = U(nf) = [Vj' , V2 ,.. .,V~]T, T denoting transpose . 

Assuming that u = u(x,t) is sufficiently often differentiable , the space 
derivative a4u/ax4 in (2.1) may be replaced by the finite difference approximant 

a4u/ax4 = h- 4 {u(x-2h,t) - 4u(x-h,t) + 6u(x,t) - 4u(x+h,t) 

+ u(x+2h,t)} + 0(h2) (2.6) 
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in which x = Xo+mh (m=1 ,2, ... ,N) and t = nf(n=O,l, ... ). For m=l and m=N, 
equation (2.6) introduces the points (Xo-h,t) and (X1+h,t) which are outside R. It 
is easy to show, using (2.3), that 

(2.7) 

and 

(2.8) 

and it is these expressions which will be used when (2.6) is used with x = Xo+ hand 
x = X1-h in (2.1) . 

Consider the time level t=nf and apply (2 .1) with (2.6), and (2.7) or (2.8) 
when necessary, to the N grid points at this value of t. This leads to the system of 
second order ordinary differential equations, with a time dependent source tenn, 
given by 

d2u 
- 2 = l!AU(t) - l!w(t) == f(t ,U) , t > 0 	 (2.9) 
dt 

with initial conditions 

U(O) = go and dU(O) / dt = gl . 	 (2.10) 

In (2 .9) the matrix A is given by 

t8mIT9M7 5 -4 1 o 
-4 6 -4 1 

1 -4 6-4 1 
\ \ \ \ \ 

\ \\ \ \ 
\ \ \ \ 

\\ \\\A (2.11)\ \ \ \ 
\ \ \ \

\ 
\ \ \ \ \\ , \ \ \ \ 

\ \ \ 

1 -4 
\ 

6 -4 1 
o 	 1 -4 6 -4 

1 - 4 5 

while the vector w(t) is given by 

(2.12) 
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3. Numerical Methods 

3.1 Introduction and Analyses 

Denoting f(t ,U) at time t=neby fn , the family of numerical methods is derived 
from the two-step, one-parameter family 

(3.1) 

which gives 	a numerical solution to the linear system (2.9) subject to (2.10). 

Theory relating to the numerical solution of ordinary differential equations 
e.g. Lambert 1973) shows that the local truncation error of (3 .1) has the form 

assuming that U(t) is sufficiently often differentiable with respect to t. 

Clearly, (3 .1) is a second order numerical method provided a =1= /2 : the 

method is then Numerov 's method for the solution of (2.9). It may then be shown 
that the principal parts of the local truncation errors of numerical methods arising 
from (3.1) for the solution of {(2 .1), (2.2), (2 .3), (2.4), (2.5)} have the form 

1 	 h2 Cl
6
u + C eq-2 Clqu (3 .3) 6 	 f! Clx6 q Cltq 

1 	 1
where, from (3.2), i=4 when a=l= 12 and i=6 when a 12' and C i depends 
on a. 

To determine the stability of numerical methods yielded by (3.1) for the 
solution of fourth order parabolic equations , it is convenient once more to resort to 
theory associated with methods for second order ordinary differential equations 
where it is usual to introduce the single linear test problem 

u(t) = wu(t), t > 0; u(O) = go, u'(O) = gl 	 (3.4) 

in which· denotes differentiation with respect to t , and w < °is a real constant. 
2Writing e = ew, so that e< 0, it is easy to show that the interval of absolute 

stability of the single-equation form of (3.1), when used to solve (3.4), is given by 

(3 .5) 

It follows from (3.5), therefore , that eE(- 00,0] only for a = i and that the stability 
interval is a sub-interval of the negative real number line provided a < t. 
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In the context of fourth order parabolic partial differential equations , w is 
related to f,t and to the eigenvalues As(s= 1 ,2, ... ,N) of the matrix A , given by 

As = 16h-4sin4[sJt/{2(N+1)}], s=1,2 , .. . ,N , (3.6) 

by the relation w == - f,t/.., where /.. is some eigenvalue of A. Writing r = €/h2 and 
using (3.5) and (3.6), it may then be shown that the stability interval of the finite 
difference method arising from (3.1) for a chosen value of a is given by 

(3 .7) 

Confining further discussion of the family of methods to those for which 0 <S; a 
<s; t it is evident that there are three methods, based on three particular values of 
a, which are of interest to the user. These are discussed in the following 
subsections. 

3.2 An Explicit Second Order Method 

This method is determined by putting a==O in equation (3.1) and using (2 .9) to 
give the only explicit method of the family, namely 

(3.8) 

where wn = w(n€) is given by (2.13) with t=n€. The principal part of the local 

truncation error of this method is given by (3 .3) with q=4 and C4 = 11
2 

, A 

conventional stability analysis along the lines described in section 3.1 shows that 
the method is stable provided 0 <s; r <s; 1I(2f,t1). This method was first developed by 
Collatz (1951) . 

3.3 An Unconditionally Stable Second Order Method 

Writing a = * in (3.1) leads to the method 

(1+*f,t€2A)Un+1 = (21-!f,t€2A)Un 
- (I+*f,t€2A)Un- 1 

- if,t€2(wn+l+2wn+wn-l). (3.9) 

The local truncation error of (3 .9) is given by (3.3) with q = 4 and C4 = - ~. 
It is easily verified from (3.7) that the method is unconditionally stable. 

The superior stability property of (3.9), compared to (3 .8), is partly offset by a 
slight loss of accuracy and the need to obtain the solution implicitly. Fortunately, 
the coefficient matrix I +if,t€2A is symmetric and quin-diagonal and it is easy to 
compute the solution vector Un+1 using a standard decomposition algorithm for 
such a matrix (see Twizell 1984) . 
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3.4 A Fourth Order Method 

This method is obtained by putting a = /2 in (3.1). The method is given 
by 

(1+ 1- lIe2A)Un+ 1 = (21 - ~ ~e2A)un - (1+ ----.! ~e2A)un-l
12 r- 6 12 

_ 1- ~e2 (wn+ 1 + lOwn + wn- 1) (3.10)
12 

and its local truncation error has principal part given by (3.3) with q=6 and 

C6 = - 2!0' It follows from (3.7) that the method is stable for r in the interval 

o :s: r :s: H6/~)i . The solution using (3.10) is also found by employing a 
quin-diagonal solver. 

3.5 Solution at the First Time Step 

It is clear that, using (3 .8), (3 .9) or (3.10) with t=e requires knowledge of u(e) 
which, unlike U(O), is not given explicity in the initial conditions. It follows from 
(2 .9) and (2.4) that 

(3.11) 

where wO is determined from (2.13). Differentiating the differential equation (2.9) 
and the equation (2.13), and using (2.4) and (2.5) whenever appropriate, gives 

(3 .12) 

(3 .13) 

(3 .14) 

so that 

or 

1
u(e) = (1-!~e2A + 24 ~2e4A2)go + e(I - --{~e2A + 1~0 ~2e4A2)gl 

__1_ ~e2~(60wo+20ewo+5e2wo+e3wo)+ _1_ ~2e4A(5wo+ewo+0(e6). 
120 120 (3 .16) 
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The approximation given in (3.15) may be used with (3.8) and (3 .9) while the 
approximation given in (3 .16) may be used with (3.10). 

4. Global Extrapolation Procedures 

4.1 Global Extrapolation on Two Time Grids 

Consider again the time discretization described in section 2 of the paper, 
where the time interval 0 ~ t ~ T = oe is divided into 0 subintervals each of 
length e. This discretization yields a set of time levels tn = nf (n=0 ,1, ... 0). 
Suppose now that these time levels are renamed t~l ) = ne(n=0,1 , ... 0) and 
that the grid points (xm,tn) == (Xm , t~l ) ) form a grid named G J • 

It follows from (3 .2) that , after integrating (2.9) to time t=T=Of , using (3 .1) 
with an appropriate value of a, the global error, £0 ,]' is given by 

(4 .1 ) 

where the functions eq,]' eq+,2,100 . are independent of e(e.g. Verwer and de Vries 
1985) and q is the order (in time) of the method . 

Suppose now that the interval 0 ~ t ~ T is divided into 20 subintervals each of 
length if giving a discretization G2 consisting of the 20+ 1 time levels tF) = 
!if(i=0,1 , 00 .,20). Clearly the time points t~2) (r=0,2,4 , 00. ,20) of G2 are coinci
dent with the time points t~lh ne(n=0,1, 00',0) of G]. The notation V' = Vr(f) 
will be used to denote the approximation to u(rf ) obtained using (3.1) on grid G2: 
The vector Vet) , like the vector Vet) , has N components because grids G] and G2 
each have N points at each time level. 

The application of (3 .1) to find the solution at time T=tg) of G2 gener
ates the global error 

which , like £0 ,1, is O(fq) , so that U(T) and VeT) are both approximations of order q 
to u(T). 

Consider now the approximation 

veE) = cxV + (1-cx)U 
(4 .3) 
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and the associated global error 

£(V) = ex£20 ,2 + (l-ex)£O,l ( 4.4) 

It is easy to show that the tenn in eq in (4.4) vanishes when the parameter ex takes 
the value 

(4.5) 

The global extrapolation carried out using the two grids G1 and G 2 has thus 
produced an approximation V(E) defined by (4.3) which is of order q + 2 (in time) 
provided ex takes the value given by (4.5). Specifically , the global extrapolation of 
(3.8) or (3.9) gives the approximation 

V(E) = ..! V - ~ U 	 (4.6)
3 3 

which leads to a finite difference method which has principal local truncation error 
0(h2+e4

) for the solution of {(2.1), (2.2), (2.3), (2.4), (2.5)}. Note, the same 
space increment is used with G 1 and G2 and the increase in accuracy obtained by 
(4.6) is not related to h. The global extrapolation of (3.10) gives the approximation 

V(E) = 16 V - ~ U (4.7)
15 15 

which yields a finite difference method with 0(h2+e6
) local truncation error. The 

stability properties of (3.8), (3.9) and (3.10) are unaffected by global extrapolation. 

4.2 Global Extrapolation 	on Two time- and Two-space Grids 

Suppose now that, in addition to halving the time increment, the space 
increment h is halved also . There are thus 2N + 2 subintervals each of width kh in 
the space interval Xo ~ x ~ Xl at each of the 2Q+ 1 time levels of the time 
discretization G2 described in section 4.1. Further renaming the points (xm , t~1)), 
of grid G 1 as (x~), t~1)), with m=0,1, ... ,N+1 and n=O,l, .. . ,Q (thUS including 
boundary points and initial points), the points of G2 are thus (x~), t~2») with 
m = 0,1, .. . , N+1 and r = 0,1, .. ,2Q. Halving both space and time increments 
produces a third grid G 3 which has grid points (Xf2), tF») with i 
0,1, .. ,2N+2 and r = 0,1, ... ,2Q (assuming that the solution is sought on G3 at time 
T=2Que)). The notation WS = W(se) will be used to denote the approximation to 
u(se) obtained using (3.1) on grid G3 . Unlike U(t) and V(t) the vector W(t) has 
2N + 1 components because grid G 3 has 2N + 1 points at each time level. 
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Clearly the space coordinates X~2) (i=0,2 , . .. ,2N+2) of G 3 are coincident 
with the space coordinates x~) (m=0 ,1, .. . ,N+1) ; of G 1 and G 2 and it will be 
useful to define the operator Irh by 

Effectively , this operator isolates those elements of W which correspond to the 
elements of U and V . 

The application of (3.8), (3.9) or (3 .10) to find the solution at time T generates 
local truncation error vectors (cf (3 .3)) which have simplified forms 

(4.8) 

(4 .9) 

(4 .10) 

respectively, where C and D are independent of hand e, q =2 for methods (3 .8) and 
(3.9), and q=4 for method (3.10) . 

Considering the approximation 

(4 .11) 

and the resulting error vector 

(4 .12) 

where 0: and ~ are parameters, it may be shown that the terms in h2 and eq vanish 
when 

4
(i) 0: = 3 ' ~=O , 1 - 0:-~ = - ~ for (3 .8) and (3.9) (4.13) 

and 

4 4 1
(ii) 0: = ~= - 1 - 0:-~ - 15 for method (3.10) (4.14)3 ' 15' 
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(the reader is referred to an internal Technical Report by Twizell (1987) for a 
generalization of these findings). The space-time extrapolations of methods (3.8) 
and (3.9) generate finite difference methods which are 0(h4+e4) while the 
space-time extrapolation of (3.10) produces a method which is 0(h4+e6 

). It is 
interesting to note that, because ~=O in (4.13), the space-time extrapolations of 
(3.8) and (3.9) use only two grids whereas three grids are required in the 
space-time extrapolation of (3.10). 

Modification to the stability condition given by (3.7) is required if the finite 
difference method associated with a particular value of a is to remain stable on G 3. 

This stability criterion must refer to the finest grid (G 3) and so the ratio r=e/h2 on 
the coarse grid G 1 must satisfy the more stringent condition 

(4.15) 

if the space-time extrapolation defined by (4.11) is to be stable. 

4.3 Comparison of the Implementation Costs of the Extrapolations 

The cheapest of the numerical methods to implement is, of course, the explicit 
method given by (3.8) . The additional costs of. the other two methods, given by 
(3 .9) and (3.10), are summarised in Table 4.1. These additional costs are due 
largely to the need to solve a quindiagonal linear system (of order N on grids G 1 

and G2 and order 2N+1 on grid G 3) each time either method is used : like method 
(3.8), method (3.9) is used 0-1 times on G 1 and 20-1 times on G 3 while method 
(3.10) is used 0-1 times on G 1 and 20-1 times on each of G 2 and G3 . The 
additional costs of method (3.10) include N extra multiplications and N extra 
subtractions because ~*O in (4.11) for this method. 

Table 4.1. Additional costs in implementing methods (3.9) and (3.10) in comparison to method (3.8) 

method grids 
multiplications 
or divisions 

additions or 
subtractions 

(3.9),(3.10) G 1 only lINQ-lIN -16Q+ 16 8NQ- 8N-13Q+13 
(3.9),(3.10) G 1, G2 33NQ-22N-48Q+32 24NQ-16N-39Q+26 

(3.9) G 1, G3 55NQ-33N-26Q+21 4ONQ-24N-23Q+18 
(3.10) G 1, G2 , G3 77NQ-43N-58Q+37 56NQ-31N-49Q+31 

S. Numerical Results 

To observe the behaviour of the three numerical methods (3.8) , (3 .9) and 
(3 .10), they and their time-only and space-time global extrapolations were tested 
on the following problem. 
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Problem 

0; 0 < x < 1, t > 0, 

with initial conditions 

au 
u(x,O) = 0, at (x,O) cos nx; 0 ~ x ~ 1 

and time-dependent boundary conditions 

. a2u
u(O,t) = - u(l ,t) = smt, -2 (O,t)ax 

which has theoretical solution 

u(x,t) cos nx sin t. 

The increments hand f were, first of all, given the values 0.1 and 3n/400 
respectively , and the solution computed for t=3n/2 so that 200 applications were 
required of each two-step method tested . These values of hand f give r=f/h2 = 
2.36 which is well inside the stability interval 0 < r ~ ! n2 = 4.93 of the second 
order explicit method (3.8) for this problem, and of the stability interval 0 < r ~ 
tn2y'6 = 6.04 for th!. fourth order implicit method (3.10). The errors u - U in the 
computed solution U at time t=3n/2 are contained in Tables 5.1, 5.2 and 5.3 for 
the numerical methods (3 .8), (3 .9) and (3 .10) respectively. The errors are given for 
x=0.1(0.1)O.5 only, the errors for x=0.6(O.1)0.9 being the same in magnitude but 
opposite in sign to those for x=O.4( -0.1)0.1. 

Table 5.1. 	Error u- Uat points x=O.I(O.I)O .S when t=31[/2 using the explicit method (3.8) with h=O. 1 
and £=31[/400 

x 

0.1 

one-grid 

0.141( - 2) 

time-onJy 
extrapolation 

0.141(-2) 

space-time 
extrapolation 

0.42S( -4) 
0.2 0.197(-2) 0.198(-2) 0.718( -4) 
0.3 0.170( -2) O. 179( -2) 0.739( -4) 
0.4 O. 104(-2) 0.104( -2) 0.469( -4) 
O.S 0.30S( -17) -O. ll1( -16) 0.164( - 16) 
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Table 5.2. Error u- U at points x=0.1(0.1)0.5 when t=3:n:/2 using the second order implicit method 
(3.9) with h=O.l and e=3:n: /400 

time-only space-timex one-grid 
extrapolation extrapolation 

0.1 0.142( -2) 0.141( -2) 0.404( -4) 
0.2 0.198( -2) 0.198( -2) 0.730( -4) 
0.3 0.173( -2) 0.179( -2) 0.787( -4) 
0.4 0.104(-2) 0.103( -2) 0.500( - 4) 
0.5 0.160( -16) 0.192(-15) 0.130( -15) 

Table 5.3. Error u-U at points x= 0.1(0.1)0.5 when t=3:n:/2 using the fourth order implicit method 
(3 .10) with h=O.1 and e=3:n:/400 

x one-grid 
time-only 

extrapolation 
space-time 

extrapolation 

0.1 0.141(-2) 0.141(-2) 0.428( -4) 
0.2 0.197( -2) 0.198(-2) 0.715( -4) 
0.3 0.169( -2) 0.179( -2) 0.751( -4) 
0.4 0.104( -2) 0.104( - 2) 0.489(-4) 
0.5 -0.326( -16) 0.543( - 16) 0.148( -15) 

It is noted that, as indicated in the discussion of local truncation errors, the 
second order explicit method (3.8) gives slightly better results than the implicit 
method (3.9). The superiority of the latter method is in its stability properties as it 
may clearly be used when the former method does not satisfy (3.7) with a=O. As 
the value of e used in the numerical experiment was small, the improvement in 
accuracy predicted by the local truncation error of (3.10) is not reflected in Table 
5.3 where results are quoted only to three significant figures. 

Next, the value of ewas decreased to 3n/800 and results obtained on grid G2 

of section 4.1 . These results together with those on grid G j were then combined as 
indicated by equations (4.6) and (4.7) to give globally extrapolated results (in time) 
at time t=3nI2 . The errors associated with this extrapolation technique are also 
reported in Tables 5.1,5.2 and 5.3 for the three methods (3.8), (3.9) and (3.10). 
Again, the improvements in accuracy predicted by the theory are not evident 
because the time steps used on G j and G2 were small. 
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Finally , keeping the smaller time step 3rt/800 and halving the step size in x to 
0.05, results were obtained on grid G3 of section 4.2 . In the cases of the two 
0(h2+€2) methods given by (3 .8) and (3 .9), the results obtained on grid G3 were 
combined with those obtained on grid G 1 as indicated by (4.11) and (4.13) to give 
globally extrapolated results which were 0(h4 + (4) . In the case of the 0(h2+ (4) 
method (3.10) the results obtained on grids G1 , G2 and G3 were combined in the 
way indicated by (4 .11) and (4.14) to give 0(h4+€6) results . The errors relating to 
the space-time extrapolations are also contained in Tables 5.1,5.2 and 5.3 for the 
three methods (3 .8), (3.9) and (3.10), respectively . Following the space-time 
extrapolations there is a marked increase in accuracy though, again, the extra 
accuracy predicted by the theory for method (3 .10) is not evident; this, again, is 
because the time step used on G3 is small . It is noted that the ratio 
time-step/(space-step)2 on grid G3 is 3rt/2 = 4.71 which is just inside the limit 
indicated by (3.7) with a=O for the explicit method (3 .8). 

6. Conclusions 

A family of numerical methods has been developed in this paper for the 
numerical solution of fourth order parabolic partial differential equations in one 
space variable which govern the transverse vibrations of a uniform flexible beam. 
The boundary conditions were taken to be time dependent. 

In developing the numerical methods, the method of lines approach was used . 
The resulting system of second order ordinary differential equations was solved 
using a one-parameter, linear two-step method giving a family of finite difference 
methods for the solution of the partial differential-equation. One member of the 
family was seen to be 0(h2+€4), the others to be 0(h2+€2). 

A global extrapolation method utilizing two-time grids was developed to 
increase the accuracies to 0(h2+€6) and 0(h2 +f4), respectively. Global extrapola
tion in both space and time was also considered, increasing the accuracies to 
0(h4+€6) and 0(h4+€4), respectively. 

The methods were tested on a problem with periodic boundary conditions. It 
was seen that the extrapolation procedure involving both space and time produced 
noticeable reductions in error. 
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