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ABSTRACT. We investigate Bayesian estimation of P(X<Y) when X and Y foUow the 
bivariate exponential distribution of Marshall and Olkin with two parameters. Bayes' 
estimators are derived in case of natural conjugate prior. The Bayes' variances of the 
estimators are derived. A numerical example is given. 

1. Introduction 

The problem of estimating P = P(X < Y) has been discussed by several authors 
when X and Y have certain specified distributions. Downton (1973) derived the 
minimum variance unbiased estimator (MVUE) of P when X and Yare 
independent normal variables. Tong (1974) obtained the MVUE of P in the 
exponential case. Johnson (1975) gave a correction to Tong's result. Beg (1980) 
derived the MVUE of P for truncation parameter distribution. Abu-Salih and 
Al-Fayoumi (1986) gave four estimators for P in case of power-function model. 
This problem originated in the context of reliability of a component of strength Y 
subjected to a stress X. The component fails if at any time its strength is exceeded 
by the stress applied to it. This type of reliability model is known as stress-strength 
model. 

Awad et al. (1981) have derived three estimators of P when X and Y have a 
bivariate exponential (BVE) distribution. The BVE distribution was derived by 
Marshall and Olkin (1976) as a failure model of a two-component system when 
there exists a positive probability of simultaneous failure of the two components 
beside the individual failure of each one. In this model, we assume the existance of 
three independent sources of shocks in the environment. A shock from source (1) 
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destroys component (1) and occurs at an exponential radnom time of failure rate 
parameter AI' A shock from source (2) destroys component (2), and occurs at an 
exponential random time of parameter A2. Finally , a shock from source (3) destroys 
both components and occurs at an exponential random time of parameter ~. We 
restrict ourselves to the case of two parameters, namely when A2 = AI ' We denote 
the distribution by BVE IAI , ~. The joint survival probability function of BVE 
IAb~ distributin is given by 

(1.1) _ 
F(x,y) P (X> x, Y> y) 

exp[ -AI(X+Y) Aomax (x,y)], x;30 , y;3o 

1 o , otherwise 

where (Ab ~) is a realization of the random vector (AbAO) that assumes the values 
in the set Q given by 

Hence , P(X<Y) = If dF(x ,y) = 
x<y 

P(X> Y) = Sf dF(x ,y) 
y< x 

and P(X=Y) 1-P(X<Y) - P(X> Y) 

Po 

where A = 2Al + ~. 

Our objective is to estimate the above probabilities using Bayesian approach. 


Ldt .f = ( A; , ~ )be a realization of .f = ( A~ , ~) 


In this paper we derive Bayes' estimators of ( A~ , ~) 


under the assumption that Al and Ao are independent apriori and each has a 
gamma prior density. 
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2. Likelihood Function 

In the sequel was use (T" T2) instead of (X,Y). Let (TI' T2) have the bivariate 
exponential distribution given by (1.1) . Denote this distribution by BVEIAI ,Ao. Let 
{Ij = (Tlj , T2j )}j=1 denote a random sample of size n from BVEIAbAo, and {!.j = 
(t lj , t2j)}j=1 be the corresponding set of sample values. Let no be the number of 
observations in the region {tl = t2}. Denote the random counterpart of no by No. It 
has been shown by Bhattacharyya and Johnson (1973), that the set (No, I: max (Tlj , 
T2), I:(Tlj + T2j)) constitutes a set of minimal sufficient statistics for the BVEIAI ,Ao 
family. Therefore, the likelihood function of a sample of size n from this family is 
given by: 

0, otherwise, 
n 

where "tl = I: 
j=1 

(tl; + t2j), 

n 

"to = j~ 1 max (t1;, t2;). 

(Bemis et aJ. 1972 and Bhattacharyya and Johnson 1973). 

We write (2.1) in the fonn 

(2 .2) 

n-no 
L(Al,Ao) = ~ (Dfll<l). Ar- nO+ j A.8-;. exp{ -Al"tl-Ao"to}, (AbAo)EO 

j=O 

, otherwise = ° 
3. Bayes' Estimator for f 

In this paper we are interested in the case where we have prior infonnation 
about 1..1 and Ao which can be quantified mathematically by 

(3.1) 

where gi(1.;) 0: Aj,-I eO"!.,, i=O,l 

and °< 1.; <<X , Vi > 0, 1.; > 0, i=O,1. 



20 M.S. Ahu-Salih 'lTlU A.A. Shamseldin 

It is to be mentioned that the hyperparameters Vi, <Xi, i=O,1 have to be assessed 
apriori. This assessment assumes that Al and Ao are independent apriori, and each 
has a gamma prior density. We note that (3.1) is a conjugate prior for (2.2). 
Besides this fact, gamma prior densities are "flexible enough to capture almost any 
kind of prior experience" (Bhattacharyya 1967). For more details on the choice of 
prior densities on the parameter space which are capable of summerizing the 
experimenter's prior knowledge, one is referred to Raiffa and Schlaifer (1961). Let 

Q = (~,.!:0 where Q = (no,LO,LI) is a realization of the vector 

(No, L 
n 

max (T}j,T2j ), L 
n 

(Tlj +T2j )) and h = (Vj,<Xi, i=O,I) 
J=I j=1 

are the values of the hyperparameters. From (2.2), (3.1), and using Bayes' theorem 
we get the joint posterior density function of AI,Ao to be: 

(3.2) 
nO-I,AoIQ) = C( Q). L

n, 
<1') Af,+vl+j-I 

j=O 

o < A} < 00, 0 < Ao < 00, 

= 0 , otherwise 

Inegrating (3.2) with respect to Al and Ao and equating the result to one, we get, 

(3.3) 

r (n+vo-j) 

• Ao • 
The Bayes' estimator Po of Po = -, against squared-error loss L (Po,Po) = 

A 

• 2" • (Ao )(Po- Po) , IS given by Po=E A 
1
Q To evaluate the posterior mean, we first 

derive the posterior density of 

v = Ao 
A 
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Using (3.2) we find the posterior density of V to be: 

(3.4) 

", r (n+n) +v) +VO)
n(vlQ) qQ) L <1').

j=O 2nl+vl+j 

o , otherwise 

Formula (3.4) can be written In the form 

(3.5) 


n(vI4) C@ = L
"I 


j=O 

o , otherwise, 

where ~ 

The density In (3.5) can be put In the closed form : 

(3.6) 

n(vlQ) 

vno+vo-l (1-vt,+vl - 1 (l+vt' · 

o , otherwise. 
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Using (3.5) and the integration formula: 

Lxb- l(l-x)"-b-l(l-px)-adx = 


B(b,c-bh FI(a,b;c;p), Rec>Reb>O, 1~ 1 <1, 


where B(b c-b) = r(b)r(c-b) and 

, r(c) , 

2FI(a,b;c;z) is the hypergeometric function . Erdelyi et al. (1953), we easily get the 
Bayes' estimator of Po to be: 

(3.7) 

D, 
Po = E(VIQ) = C(g) E 

j ~O 

The variance of Po is equal to the marginal posterior variance of and 
is given by: 

(3 .8) 


Var (Po) = Var ( ~ IQ) = E(V21Q) - {PO}2 


Since PI = !(1-Po), the Bayes' estimator of PI against squared error loss is 

(3.9) 

PI = ~ (1 - Po) 

The variance of PI and covariance of Po and PI are given by: 
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(3.10) 


(3.11) 

Cov (I\,Pl) 

4. A Numerical Example 

A random sample of size 10 of two component parallel systems was simulated. 
It was assumed that the failure times (TJ , T2) in each system follows the BVEIAl ,Ao. 
The results are listed in Table 1. 

Table I. Observed values of failure times (T,.Tz) for 10 simulated BVEIA,.~ paraUel systems: A, = 2. 
~ = 1 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

T, 

0.3252 
0.2077 
0.1200 
0.4144 
0.1693 
0.0838 
0.6834 
0.3592 
0.2525 
0.4319 

From Table 1, the jointly minimal sufficient 

to 

(T1j ,T2j ), E (Tlj +T2j ) takes the value Q = 
j=l 

compute the Bayes' estimates for Po = ~ 

Tl 

2.0345 
0.3181 
0.1200 
0.1459 
0.5512 
0.0838 
0.3303 
0.3592 
0.4320 
0.4319 

10 
statistic 12 	 = (No, E max 

j=l 

(4, 5.9393, 	 8.6138) . We shall 

Al
and PI = 	 T for the case of 

a vague prior knowledge (<Xj = 0, Vi = 0, i = 0,1). 

.. 
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The Bayes' estimators for Po and PI with respect to the quadratic loss function 
are given by (3.7) and by (3 .9), respectively. 

Thus, 

Po 0.2232 

PI 0.3844 

The marginal posterior variances and covariances of 1\0 and Al are
A A 

computed from fonnulae (3.8), (3.10) and (3.11), respectively. The results are 

Var (~ 14) = 0.01478 

Var (~I 14) = 0.0037 

Cov ( ~, ~I 14) = 0.0074 

5. Conclusions 

We have given Bayes' estimators in the case of squared error loss. The results 
are given in closed form and are simple to calculate. This work can be extended to 
derive Bayes' estimators with respect to a more complicated loss functions than the 
squared-error loss. 
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