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ABSTRACT. Exact expressions in infinite series are given for the small deflections,
moments and shears in a thin isotropic circular plate subject to normal paraboloidal
loading distributed over the area of a concentric ellipse and supported at the four
corners of a concentric rectangle whose sides are parallel to the axes of the ellipse.
Limiting cases are investigated. Numerical results are presented in the form of tables
and graphs illustrating the variation of the deflection, moments and shears along
various radii in the first quadrant of the plate.

1. Introduction

Thin circular plates supported along their edges or along concentric circles or at a
discrete number of points and subject to various distributions of normal pressures
either over the entire plate or part of it have been extensively studied by many
investigators. Symmetrically loaded thin circular plates supported at equally spaced
points on a concentric circle have been studied by Kirstein et al. (1966), Kirstein
and Woolley (1967, 1968) and their experimental results compare favorably with
Bassali’s theory (1957). Circular plates on multipoint supports were also analysed
by Yu and Pan (1966), Vaughan (1970), and Williams and Birnson (1974). The
deflection surface of a thin circular annulus supported at equispaced points along a
concentric circle and subject to symmetrical loading distributed either over its
entire surface or over the area of a concentric circular annulus was obtained by one
of the authors (Bassali 1984, 1986a). Two recent papers (Bassali 1986 b,c) deal with
the two cases of uniform or uniformly varying normal loadings over the area of an
ellipse concentric with the circular plate which is supported at the four vertices of a
concentric rectangle whose sides are parallel to the axes of the ellipse, the
boundary of the plate being free. Taking the conditions for a free boundary in the
complex form used by Bassali (1957, 1958), Adeboye and Nassif (1979) found the
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complex potentials for a concentrically supported circular plate parabolically
loaded over a concentric ellipse. It is worthy of mentioning here that the method of
complex potentials was applied by Frischbier and Lucht (1970) to deal with the case
of a clamped circular plate subject to uniform normal loading over a concentric
regular polygon.

The problem considered in the present paper is a continuation of the two
previous problems (Bassali 1986 b, ¢) but with paraboloidal loading over the area
of the concentric ellipse. The limiting cases in which the radius of the plate — « or
the eccentricity of the ellipse — 0 or its minor axis — 0 are discussed. Numerical
results and curves are presented for two representative special problems.

2. Mathematical Formulation of the Problem
Let C denote the boundary of a thin circular plate of constant thickness, centre
0, radius c and flexural rigidity D. We assume that z = x + iy = re'® is the complex
variable of any point N in the mid-plane of the plate and that I' denotes the
boundary of the ellipse
xa? + y¥b2 =1 (0 <b=<a <o) 1)

Let the indices 1 and 2 refer to the region inside I' and that between I' and C,
respectively. It is assumed that:

(a) The intensities of the normal loading on the plate are given by

P1 = por’, p2 = 0 (po constant), @)

(b) The plate is supported at the four points P, (z, = se'™, n = 1,2,3,4), where
Osss<sc,u=sslc, Yi=¥, Y2=7—Y, Y3=Y—7, Y4s= —Y, 0=<y=<m/2. SeeFig. 1.

(c) The boundary C of the plate is free.

If w is the small deflection, measured positively downwards, at the point N it is
required to determine w; and w, which satisfy the following conditions:

(i) V4w, =por¥/D, Viw, =0, (3a)
where
2 2 2 ,
g2 & L& _ 8 pyiged? d=2

ax? dy? 920z or ’
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; 3
(ii) the continuity requirements
dw |? *w | Pw TP
o= 5 - - R
I T Ml -7 Nl e )
at any point on [,
(iii) the two conditions for C to be free (Bassali 1986b, p. 163):
[{d?> + vr™id + vr™2d'?} wy)=c = O, (5a)

[{d® + r7d® — r72d + -v)r'2dd? + (v=3)r3d"*} wy],—c = 0, (5b)
where v is Poisson’s ratio for the material of the plate,

(iv) the appropriate singular behaviour near the support points and the
vanishing of the deflection at these points.

Fig. 1.
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Moments and shears at any point can then be computed by applying standard
formulae either in polar coordinates (r,8) or in complex variables (z,z).
(Timoshenko and Woinowsky-Krieger 1959, p. 283).

3. Method and Solution

The general solutions of (3) are
w, = 2 Re [2Q2,(z) + w,(z)] + Wy(z,2) (n = 1,2), 6)

where
Wi(z,2) = poz’ 2’/ 576D, Wy(z,z) = 0, (7

and Q,(z), w,(z) are four functions of z which are analytic in their domains. The
reaction, measured positively upwards, at any point of support equals L/4 where L
is the total load which is given by

1
L = zmpoabg’, g?=a”+b’ (8)

Symmetry considerations show that it is sufficient to take z in the positive quadrant
of the plate. Following the same procedure of Bassali and Nassif (1959), p. 104 and
Bassali (1959), p. 112 it can be shown that the transition conditions (4) along I" are
satisfied by

2 _ a_bz _ i 2 2g4 = f4 4) z+7Z
— 15 (16 ~ 782 + 6592, (%)

1,2 3f—4g* 47
2kmz2=2b(—+_4 —36) s
[0(@)]7 ab |3 3E+45a2b2g +0f21na+b

+ 2z (0 — 08 — 0)Z, (9b)
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where
<
k=8“D,E=—Z—,f2=a2—b2,Z= ZZ_F,(;;:M__, (90)
T f &
I P _22h—13\7! eIt g
ozo—zg(‘”»)\.), 0= > %2 = 30 ’)‘_-fT’ (9d)

and the branch of Z taken is that which is positive when z is real and z* > f2. The
singular parts of the complex potentials ©,(z) and w,(z) near point forces are
provided by equations (2.18), p. 732 of Bassali (1957) or by equations (25), p. 269
of Bassali (1958). Taking this into consideration we assume that

® 4
%Q) = ¢ § Culelef™* - % Y Z, 1n(Z.Jc)
1

_abz 4o, 28—
g 738 gww ) (102)

@ o l 4
2kw, = c? 201 A,(zlc)™ + 7 L ZZ, In(Z,c)
1

~ 1, 2.4, 3f-4g 6)
2ab Z+§E +4532b2E 5 (IOb)

© 4
K = ¢ § C@™ - 3 T Zy In(Z4fo)
0 1
z+7Z 1
+zInZEE - (16 - 7€ + 65YZ, (11a)

2kw, = c? f;; A (zlc)™ + % f; Zo Zy 1n(Z/c)

+
+ of? In % + 2 (0E* — &% — 0)Z, (11b)




32 W.A. Bassali and M.N.Y. Anwar

where, to ensure the uniformity of the complex potentials, the terms containing Z
appear in Q,, w,, Z, =z — z, (n = 1,2,3,4) and A,, C, (n = 0,1,2,...) are real
dimensionless constants to be determined from the conditions (5a,b) and the
vanishing of the deflection at the support points. Substitution from (10a,b), (11a,b)
and (7) in (6) leads to

kw % 4 2 1
—_—t = zoj (A +Cop?)p*"cos 2n8—S+1;t, % (A cos 26—cos 48) %— - -%2— -3
+ 90t = [S+9(1—2A%) cos 40+4A(4)*=3) cos 66], (12a)
kwa - 2y 20 NP |z+2]
= = ZO: (Ap+Chp*)p*"cos 208—S+(p*+ot®) 1n T
+ %Re 2oE — 0 — o) — 122 (16-TE246EY(Z,  (12b)
where
p =1/, t=1flc, t;=alc, t, =blc, v=glc, A= vIt? (13)
and
1 4
S=73 21] (R2/c*) 1n(R,/c), R, = |Z,)). (14)
It is easily shown that
— (n24n2 2, w 1 ¢ u? u |*®
S = (p*+u)ln p+u’+ 22: 5= (—215)—1 - —2n+1) (F) cos 2ny cos 2n6 (15)

if p = u and we interchange p and u if p < u. After extensive algebraic
manipulation it is found that the expression involving Z in (12b) has the following
expansions in terms of biharmonic functions of (p,08):

1 2 11 5 2
(p2+§ v+ = 2)ln & -ft + 3¢ v2+ q*— TP +( p

2 1

2q) cosZB
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2 2

2 P p°
+(3q p) oos46+ (4v )300566

5 (Up)"8n  [2n+1 , _ 2(n+1)v’+q?
= nn+D)(@m+2) 2n—1° T T 2(m+3)

cos 2n@ (p =t),

(p2+ v +— )ln +% (2.8 p% + 2v2 + qz)%sin G
5 (12p%—2v? 7q2) [ sin 36 + 4= (4v - 2) sm 56

(2n—1)v?*—g*> _ np
2n-5 n+1

o (p/t)2n+l 6n
*8 22: (4n*—1) (2n-3)

Zn) _1.3.5...(2n—-1)

s 42 —A—2n
where . q—lecg—tlv, 9,=2 (n T 7246...(2n) -

Introducing (15) and (16a) in (12b) we obtain the expansion

kwy/c? = 201 L.(p) cos 2n6,

where p = the greater of t and u,

Lo(p) = Aj+Bj In p+Co p*,  La(p)
= Ap™+Bop M+ Crp M+ Dp? (n = 1),

, b 1
Ay = Ag + Evz + %q2 - u+ %(2v2+q2)1n

ti+t,’

12 12 2 r — __5_ —2
Bo—gv +6 —U,CO'-C() 4+lnt1+12’

33

(16a)

] sin (2n+1)8 (p<t), (16b)

(17)

(18)

(19)

(20a)

(20b)
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G2 —2v? 4(4vi—q?)

A=A - A=A, + . AL = As + ,
1 1 V2 2 2 30 3 3 450 (20c)
Ci=C+2 G=C - =, (20d)
3t 5t
Al — A [ 1 n+2 an
n=A,(n=4), B, = 3277 08 2ny — (n=1), (20e)
. . 1 2(2n+1)t23,, -
G=Ge=I DT meh [ @y e
where B = 1 (2V + 9’ ) (21)
n n+3 n+1

Inserting (18) in (5a,b), equating the coefficients of cos 2n6 (n=0,1,2,...) in the two
identities to zero and solving the resulting systems of linear equations we get

C 1
, 1 2n+1 5, 20,
Al = o u?(u?~a,) cos 2ny+ ) 2" 9, (m — Bn)] (n=1), (22b)
1 zn(l ’) "8, 1__1
G = < (v |55 — 3p3g) cos 20y + ——3- B — = “axg)| (=D, (220)
where g = e O . - s =l 23)
1+v°’ 1V W T 2n(2n—1) °

The values of the constants A, and C, (n=0,1,2,...) are thus completely
determined except Ao. Substituting for A, A, Aj, C;, C, from (20 c,d) in (12a,b)
and introducing the notation
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= (a=b)/ (a+b), (24)

we find

kw © , 2
-CT‘ = AgtCop> + T (AL+Ch p?) p™cos2n8 — S — tit, (% + -21-)
1

+ 0 (l 22 si 2) cos 20+m?p? (l e cos 40+ p* (5+4m? cos 66)]
g -3 me 3" Toug S0.E
(25a)
kw
c_z = Ao+ Cop® + Z: (Ai+G, p7) p™ cos 2005+ (pP+5 v+ q¥) In E:%,

1 2 p? 2 2 1 , p° 4 2 P2
4 (7 qZ_§ pZ) t_z cos 46 +(—5- p2+§ v2-§ q )t—4 cos 46 + 4—5(q2—'4V ) t_6 cos 66

4 2
+ % Re |(oz?— % ) ZF + (% r—oz?%) 22 - (15 +az?)| V (1- %) (25b)

The expression containing the square root in (25b) has the expansion (16a) if r = {
(p = t) and the expansion (16b) if r < f (p < t). Substituting from (16a) in (25b)
yields

kw = .
—Z = Ag+Cop> + T (A4+Ci p?) p™cos2n8 — S + 3—56V2
1
11 - 5 5 1 .z 2 2p
= +(P+3V+6q)1nt1+t2
» t/ 2n6 2 2
UP)™8: [2n+1 , _ 2n+1)v’+g cos 2n6 (p = t). (25¢)

213 nn+1)(n+2) [2n-1° ~ 7 2(m+3)

Introducing (16b) in (25b) gives the expansion of kw,/c? at points of region 2 where
r < f. It is easily seen that such points exist only if the eccentricity of the ellipse
=1/\/ 2. Whether r = f or r < f the deflection w, is furnished by (12b) where
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|z+Z| = [P+T?+ V2 r | (T2 + 2 — £ cos 20)]}, (26a)
Re(z°Z) = T [cos n® | (T2+1% cos 20—f%) — sin n6 | (T>+f*—r* cos 26)],

J2 (26b)

n=0, +1, +2, ..., T = r* + * — 22 r* cos 26. (26¢)

Setting b = a (t,=t;), m=0in (25a) and evaluating the limit of (25b) or (25c) as f —
0 we arrive at the following equations for the deflection surface of the circular plate
corresponding to normal loading of intensity por® over a concentric circle of radius
a and four supports at the corners of a concentric rectangle:

kw, _ 1., [3 1 1 o o* ] 5
+_1_m 1 _ w? 2+_1_[2_1__1__.7K2 }]x
K ; 2n 2n+1)° 2n u 2n  2n(2n—1)
(pu)®" cos 2ny cos 2nH, (27a)
kw o 1 1 (5 p).2_
1 1 u2 2 1 [ 2 _ 1 _ K2 }] X
R (ﬁ - _2n+1‘) P m Y T T T ZaeeD)

(pu)®™ cos 2ny cos 2nH, (27b)

It is worthy of mentioning here that the general problems of a thin circular plate
supported at several interior or boundary points and acted upon by two types of
normal loadings over the area of an eccentric circle were studied by one of the
authors (Bassali 1957, 1958). Letting t; tend to zero in (27b) yields the solution
corresponding to the four supports and a concentrated central load L. It is verified
that equations (27a,b) agree with the expressions obtained by putting m=4, n=4,
n’'=6, P;=P,=P;=P, = —L/4, Py=L in equations (40a,b), p. 735 of Bassali (1957)
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on noting the difference in notation and making some expansions of the
logarithmic functions.

We have now to determine the remaining constant Ay. This depends on the
positions of the support points which lie either in region 1 or in region 2 according
as s cos?y/a® + s sin*y/b® < 1 or = 1. In the first case A, is found by equating to
zero the expression obtained by putting 6=y and p=u in (25a). In the second case
eithers = fors < f. If s = f equation (18) can be used to determine Ag and then A,
is given by (20a). Whether s = f or s < f equations (25b) and (26a,b,c) can be used
to determine A, but the expansions (16a) or (16b) may be applied according as s =
f or s < f, respectively. In any case the deflection at the centre is given by

Wy = % (Ao— %tltz —u? 1n u). (28)

4. Moments and Shears

Substituting from (7), (10a,b) and (11a,b) in the standard formulae given by
equations (1.6), p. 730 of Bassali (1957) we obtain the following expressions for the
bending, twisting moments and shearing forces at any point z of the plate:

x; = WL g4 L tn(vvs) 5 B(1- ‘;—z) 2+(*—u®) i + vih)}
—Co — flf {(2n+1) (1£nB)C, + sz“z—ll An} 0 cos 2n0
% - % (% + % B) —4(1xp) p;t‘:;,_ cos 20 + p? [—tSEtltz
+ % (% * B)} cos 46 £ _2l3_§1:1:;+2) p*cos 66 , (29a,b)
Mo = (l_;g:ll %uz(uz—Pz) (sinv:i LIS Sinv22 ¢2)
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2n—1
0’

- f] n [(2n+1) C, + A,,} p*" sin 2n6
1

2
p” (2A%-1 , . duty )
+ = (£t~ 52 -
) ( xR p~ sin 46 z sin 20
207 (4t —42 .
+ 5 (%22 in 46 + % p? sin 69)] : (29¢)
1

Q= % [% + % (p*-u®) (vi' + vz

- $ n(2n+1) C, p*" cos 2n@

+ $—§ (2ﬁ_;1 p? cos 46 — 4““? : 29) - tlf:vz} , (30a)
Ql = ;Lr‘ %pzuz(sinqu)l N sinvjq)z)

+ Z‘; n(2n+1) C, p*" sin 2n6

- 3—2 (2’5; L o sind0 - —‘“‘tzfi“ 2 )] ; (30b)
M: (1+v)L |, /1 1o, u? 44y go-1 4 o1
M3 =2 |1tz In(vyvp) * 3 (1 ?) {2+(p"—u) (vi” + v2 )}

o

-Co — ? [(2n+1) (1xnp)C, + B—n(?z_—l) An} 02 cos 206 — 1n lf,:.%'




Thin Circular Plate Under Normal Paraboloidal... 39

2 (I—V)L
Mro = 4n

1 502 (sin2¢1 sin2¢2)
4U(U p) Vi + Va

= 21: n {(2n+1) C, + 2[:);1 A"l p?" sin 2n@

zZ oy P 2

i Im. = {1+(A—x 1)3—r2+ (A"1—4)) ;7” (lc)
@=L Lo Lt + vi) + 4 Re @2t
T nr |4 8 1 2 € (Z )

= ¥ n(2n+1) C, p* cos 2n6
1

, (32a)
, _ L1, 2(sin 20, sin 2¢, 3
Q = [4pu = + v —4Im(zZ/f‘)
+ Y n(2n+1) C, p* sin 2n6] , (32b)
1
where ¢r1=0—-vy, ¢,=0+y, (33)
v = p* + u* — 2u%p? cos 2y, v, = p* + u* — 2u%p? cos 2¢,, (34)

|z+Z|, Re(z"Z) are given by (26a,b,c) and

Bl

Im(z"Z) = V2

[cosn6 { (T?—r?cos 26 + 2) + sinn@ J(T?+12 cos 26—12)]. (35)

At the centre of the plate we have (Q;)y = (Qg)o = O,
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(Mn)o (A+v)L [tz 1 15 1 5 1,
Moo = dm [w 37 2R3V D)
1 o t* 1
+ E B cos 26 {cos 2‘Y - v—z' + T (K2+3—2u2) + 4—K (V2+Z qz—K2—3) 5
(36a,b)
M) = T oo 2y — £+ 2 (243-202)
r6/0 8 Y V2 2K
2 .5.1 5 .5 )
Foge (v +7 9K —3)| sin 26. (36¢)

5. Limiting Cases

Results concerning the deflections, moments and shears in the three following
limiting cases can be derived from the foregoing formulae:

(i) Allowing c to tend to « yields the appropriate solutions for an infinitely
large plate subject to paraboloidal loading over the area of an ellipse and supported
at the four corners of a rectangle concentric with the ellipse and having its sides
parallel to the axes of the ellipse.

(if) The case in which b—a, f—0 leads to the problem of a circular plate acted
upon by the loading p=por® over a concentric circle and supported at the four
vertices of a concentric rectangle. In this case the deflections are given by (27a,b)
where Ay is determined by equating to zero the expressions obtained by setting
p=u and 6=y in (27a) or (27b) according as the point supports lie in the loaded or
unloaded region, respectively. Moments and shears at any point can either be
found by limiting processes from equations (20)—(36) or as special cases of the
general formulae (2.44)—(2.46), p. 736 of Bassali (1957).

(iii) In the limiting case in which the minor axis of the ellipse —0 the loaded
patch reduces to a line loading extending along the x-axis from x=—a to x=a.
Assuming that b— 0 and p, — o such that 2bp, — p; we see that the intensity p of
this line loading at a point distant x from the centre is given by

p = p1 ¥ V1-—x7a. (37

Deflections, moments and shears corresponding to this line loading along the
x-axis and four supports at the corners of a concentric rectangle whose sides are
parallel to the coordinate axes are derived by putting b=0, f=g=a and L=gnp,a’ in
the established formulae.
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6. Numerical Results

In this section we give the numerical and graphical representation of the
deflections, moments and shears at various points in the first quadrant of the
circular plate corresponding to specified dimensions of the loaded elliptic patch. It
is assumed that t; = 0.6, t, = 0.45, v=0.3. Two different distributions of the point
supports in the unloaded region are considered. In the first case we take u=0.8,
y=30° while in the second case we take u=1, y=30° so that the point supports lie
on the boundary of the circular plate.

The deflection w, radial and transverse bending moments M,, Mg, twisting
moment Mg, shearing forces Q,, Qg at any point (r,0) of the first quadrant may be
put in the forms

W=°‘P006/D,Mr = ﬁlpoc", Mg = 32P004,Mre = 53P0€4,Qr = Y1P003,Qe = YzPoCs,

where «,f1,B2,83,Y1 and y, are dimensionless quantities. Numerical values for these
coefficients at points on various radii of the first quadrant are listed in Tables 1-8
and graphs showing their variation are plotted in Figs. 2-13 for both cases of point
support distributions.
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Table 1. Case of u = 8 , 8=0

P 1 2 3 4 .5 6 7 8 9 1.

o .5050 4769 .4301 .3630 .2832 .1876 .0832 .0239 —.1382 —-.2317
B, 1.2883 1.2714 1.2212 1.1081 .8974 .3363 2338 .03674 .0032 0

B2 77 7297 7425 7447 7178 6312 .5088 4073 .3337 2932
B3 0 0 0 0 0 0 0 0 0 0
Y .0022 .0298 - 1273 —.3165 —.6175 —-1.0529 ~.6736 —.3763 -.1607 —.0184
Y2 0 0 0 0 0 0 0 0 0 0

“U[eplojogeIed |BWION JOpur) 1| JENditY) uiy]




Table 2. Case of u = .8 , 8 =30°
p 1 2 3 4 .5 .6 7 8 9 1.
o .5058 .4801 .4368 3759 .2982 .2062 .1049 0 —.1003 —-.2012
B 1.1495 1.1303 1.1292 1.0497 .8565 .3052 .1022 ® 1238 0
B2 .8554 .8439 .8100 7315 .5761 3099 | — .0609 © -.3503 —~.2794
B3 .2473 .2380 2248 2110 .2013 .1944 1712 .1623 1213 .1021
Y1 —.0031 —.0486 —.1818 —.4535 —.9282 —-1.3116 | —1.8147 © 7841 0939
Y2 -.0076 —-.0192 -.0391 -.0702 —.1143 ~.0775 —.0093 .0174 .0279 .0274
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Table 3. Case of u = .8

p 1 3 3 4 5 6 i 8 9 1.
o 5075 4869 4529 4067 3510 2906 2305 1742 1239 0794
ﬁ, 8584 8318 8128 7023 4784 2570 1069 0263 | —.0019 0

B, 1.1444 11345 [ 1.1104 | 1.0601 9632 8623 7688 6857 6173 3672
B, 2549 2670 2850 3047 3193 3067 sk 2313 2005 1821
Y -0109 | -.0632 |-.1958 | -.4437 |-.6994 | —.5485 | —.3895 | —2448 | -.1333 | —.0370
Y2 -.0062 | -.0082 |-.0022 0143 0659 1808 2448 2568 2327 11933
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Table 4. Case of u = .8 6 = 90°

p 1 2 3 4 5 6 7 8 9 1.

o .5083 4905 4619 .4447 .3823 .3395 .3008 .2695 .2480 2351
By .7066 .6828 6266 .3097 3155 .1388 .0783 .0282 .0053 0

B2 1.2953 1.3015 1.2975 1.2633 1.1818 1.0908 1.0042 .9261 .8582 .8009
B3 0 0 0 0 0 0 0 0 0 0

Y1 —-.0137 —.0627 —.1844 —-.4194 .5227 -.3951 -.2897 —.2072 —.1448 —.0989
Y2 0 0 0 0 0 0 0 0 0 0
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Table 5. Case of u = 1. =0°

P 1 2 3 4 5 .6 7 8 9 1.

« 1.1751 1.1311 1.0579 .9558 .8267 .6743 .5050 3259 .1422 —.0430
By 1.8538 1.8444 1.8056 1.7026 1.4894 1.1106 6912 .3706 .1411 .0
B2 .9883 1.0032 1.0198 1.0258 1.0035 .9283 .8337 7761 7451 7261
B3 0 0 0 0 0 0 0 0 0 0

Y1 .0164 —.0039 —.0968 —.2965 —.6350 —-1.1417 —.8494 —.6101 —.3966 —.2699
Y2 0 0 0 0 0 0 0 0 0 0
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Table 6. Case of u = 1 =45

p 1 2 3 4 S .6 7 8 .9 1.

o 1.1788 1.1459 1.0909 1.0139 .9165 .8018 .6762 .5394 .4003 .2616
By 1.4225 1.4268 1.4082 1.3276 1.1299 8519 .6041 .3691 1514 0
B, 1.4135 1.3955 1.3548 1.2757 1.1371 9551 7861 .6519 5753 .5594
B3 4376 4434 .4555 4775 5132 .5509 .5823 .6107 .6161 .5826
1 -.0070 —.0562 —.1896 —.4491 —.8754 —.8433 ~.7595 —.6520 —.4622 ~.0900
Y2 -.0225 —.0448 —.0661 —.0838 —.0931 .0508 1977 .3597 .5121 .6003

lemuy "A'N' pue ljesseq V'




Table 7. Case of u = 1.

6 = 60°

p 1 2 3 4 5 6 7 8 9 1.
« 1.1807 1.1536 1.1088 1.0474 9719 8873 7985 7101 16259 5489
B, 1.1999 1.1899 1.1466 1.0306 7953 5469 3425 1817 0677 0

B, 1.6333 1.6212 1.5923 1.5351 1.4317 1.3194 1.2239 1.1463 1.0826 1.0261
Bs 3829 3987 4237 4559 4906 5061 4991 AT22 4298 3819
Y2 -.0181 | -.0768 | —.2161 | -.4746 |-.7511 | —.6354 |-.5178 | -.3993 | —.2855 | —.2400
" -.0191 | -.0359 | —.0483 | -.0541 0253 0769 1532 2035 2240 2626
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Table 8. Case of u =1 , 8 =90°

p 1 2 3 .4 .5 .6 o, .8 9 1.

a 1.1826 1.1614 1.1274 1.0828 1.0311 9777 9271 .8830 .8482 .8249
81 9729 .9386 .8627 7162 .4837 .2942 1621 7591 .2503 0
B2 1.8574 1.8621 1.8564 1.8206 1.7368 1.6411 1.5452 1.4522 1.3640 1.2845
B3 0 0 0 0 0 0 0 0 0 0

Y1 —.0287 —.0944 —.2348 —.4889 —.6083 —.4909 ~.3888 -.3033 -.2339 —.1257
Y2 0 0 0 0 0 0 0 0 0 0
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Fig. 3. Radial moment factor profiles along rays, u=.8
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Fig. 4. Transverse moment factor profiles along rays, u=.8
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Fig. 7. Transverse shear factor profiles along rays, u=.8




Thin Circular Plate Under Normal Paraboloidal... 57

6 = 90°

6 = 60°

8 = 45°

Fig. 8. Deflection profiles along rays, u=1
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Fig. 9. Radial moment profiles along rays, u=1
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Fig. 10. Transverse moment profiles along rays, u=1
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Fig. 12. Radial shear profiles along rays, u=1
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Fig. 13. Transverse shear profiles along rays, u=1
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