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ABSTRACT. Exact expressions in infinite series are given for the smaU deflections , 
moments and shears in a thin isotropic circular plate subject to normal paraboloidal 
loading distributed over the area of a conCentric ellipse and supported at the four 
comers of a concentric rectangle whose sides are parallel to the axes of the ellipse. 
Limiting cases are investigated . Numerical results are presented in the form of tables 
and graphs illustrating the variation of the deflection, moments and shears along 
various radii in the first quadrant of the plate. 

1. Introduction 

Thin circular plates supported along their edges or along concentric circles or at a 
discrete number of points and subject to various distributions of normal pressures 
either over the entire plate or part of it have been extensively studied by many 
investigators. Symmetrically loaded thin circular plates supported at equally spaced 
points on a concentric circle have been studied by Kirstein et al. (1966), Kirstein 
and Woolley (1967, 1968) and their experimental results compare favorably with 
Bassali's theory (1957). Circular plates on multipoint supports were also analysed 
by Yu and Pan (1966), Vaughan (1970), and Williams and Birnson (1974). The 
deflection surface of a thin circular annulus supported at equispaced points along a 
concentric circle and subject to symmetrical loading distributed either over its 
entire surface or over the area of a concentric circular annulus was obtained by one 
of the authors (BassaJi 1984, 1986a). Two recent papers (Bassali 1986 b,c) deal with 
the two cases of uniform or uniformly varying normal loadings over the area of an 
ellipse concentric with the circular plate which is supported at the four vertices of a 
concentric rectangle whose sides are parallel to the axes of the ellipse, the 
boundary of the plate being free. Taking the conditions for a free boundary in the 
complex form used by Bassali (1957, 1958), Adeboye and Nassif (1979) found the 
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complex potentials for a concentrically supported circular plate parabolically 
loaded over a concentric ellipse. It is worthy of mentioning here that the method of 
complex potentials was applied by Frischbier and Lucht (1970) to deal with the case 
of a clamped circular plate subject to uniform normal loading over a concentric 
regular polygon . 

The problem considered in the present paper is a continuation of the two 
previous problems (Bassali 1986 b , c) but with paraboloidal loading over the area 
of the concentric ellipse. The limiting cases in which the radius of the plate _ 00 or 
the eccentricity of the ellipse _ 0 or its minor axis _ 0 are discussed . Numerical 
results and curves are presented for two representative special problems . 

2. Mathematical Formulation of the Problem 

Let C denote the boundary of a thin circular plate of constant thickness , centre 
0, radius c and flexural rigidity D . We assume that z = x + iy = rei8 is the complex 
variable of any point N in the mid-plane of the plate and that r denotes the 
boundary of the ellipse 

(1) 

Let the indices 1 and 2 refer to the region inside r and that between rand C, 
respectively. It is assumed that : 

(a) The intensities of the normal loading on the plate are given by 

PI = p~, P2 = 0 (Po constant), (2) 

iYn(b) The plate is supported at the four points Pn(zn = se , n = 1,2,3 ,4), where 
0:,,-;; s:,,-;; c, u=s/c , YI = Y, Y2 = rr-y, Y3 = y-rr, Y4 = -Y, 0:,,-;; y:,,-;; rr/2 . See Fig. 1. 

(c) The boundary C of the plate is free. 

If w is the small deflection, measured positively downwards, at the point N it is 
required to determine WI and W2 which satisfy the following conditions: 

(3a) 

where 
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d' a (3b)=ae ' 
(ii) the continuity requirements 

[wJi = [~]2 = [ a~ ]21 (4)az 1 azai 

at any point on r, 

(iii) the two conditions for C to be free (Bassali 1986b, p. 163): 

(Sa) 

0, (Sb) 

where v is Poisson's ratio for the material of the plate, 

(iv) the appropriate singular behaviour near the support points and the 
vanishing of the deflection at these points . 

.......___ a--~t---f----+j 

Fig. I. 
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Moments and shears at any point can then be computed by applying standard 
formulae either in polar coordinates (r ,8) or in complex variables (z,z) . 
(Timoshenko and Woinowsky-Krieger 1959, p. 283). 

3. Method and Solution 

The general solutions of (3) are 

wn = 2 Re [zQn(z) + wn(z)] + Wn(z,z) (n = 1,2), (6) 

where 

0, (7) 

and Qn(z), wn(z) are four functions of Z which are analytic in their domains . The 
reaction, measured positively upwards, at any point of support equals U4 where L 
is the total load which is given by 

(8) 

Symmetry considerations show that it is sufficient to take Z in the positive quadrant 
of the plate. Following the same procedure of Bassali and Nassif (1959), p . 104 and 
Bassali (1959) , p. 112 it can be shown that the transition conditions (4) along rare 
satisfied by 

Z+z
Z 1n-

a+b 

(9a) 

(9b) 
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where 
2A+A- 1 

(9c)
6 

(9d) 

and the branch of Z taken is that which is positive when Z is real and Z2 > f . The 
singular parts of the complex potentials Qn(z) and wn(z) near point forces are 
provided by equations (2.18), p . 732 of Bassali (1957) or by equations (25), p. 269 
of Bassali (1958). Taking this into consideration we assume that 

(lOa) 

4 
-2ab (.!. + ~ ;4 + 3f-4g \:6) (lOb)

4 3 45 a2 b2 '" , 

(lla) 

(lIb) 
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where, to ensure the uniformity of the complex potentials, the terms containing Z 
appear in Q2, (1)2, Zn = Z - Zn (0 = 1,2,3,4) and An, en (n = 0 ,1,2, ... ) are real 
dimensionless constants to be determined from the conditions (5a ,b) and the 
vanishing of the deflection at the support points. Substitution from (10a ,b), (lla,b) 
and (7) in (6) leads to 

(12b) 

where 

p rIc, t = fic, t1 = alc , t2 = b/c, v = gtc, A = v 2/t2 (13) 

and 

(14) 

It is easily shown that 

if p ~ u and we interchange p and u if p ~ u. After extensive algebraic 
manipulation it is found that the expression involving Z in (12b) has the following 
expansions in terms of biharmonic functions of (p,8): 

(p2+l. V2 1 2) 2p 5 2 11 2 5 2 (2 2 1 2) p2
3 +"6 q In t1 +t2 + 36 v + 72 q -"4 p + "3 p -"2 q f cos 28 
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2n
(tip ) 6n [2n+ 1 2 2(n + 1 )y2+ q2 ]00 (16a)+ E n(n+ 1)(n+2) 2n-l p - 2(n+3) cos 2n8 (p ~ t), 

00 (p/t)2n+16n [(2n-l)y2- q2 P2]
+8 E - nn+

1 
sin(2n+l)8(p~t) , (16b) 

2 (4n2-1) (2n-3) 2n-5 


_&/ _ 2/ so. -2-2n (2n) _ 1.3 .5 ... (2n-l) 
 (17)where q - L cg - t y, un - - 2 4 6 (2) .n . . . .. n 

Introducing (15) and (16a) in (12b) we obtain the expansion 

kW2/C2 
00 

(18)= E Ln(P) cos 2n8, 
o 

where p ~ the greater of t and u, 

(19) 

A~ = A . + 2.. 2 +!.!. 2 (20a)""{) H{) 36 y 72 q 

B ' 1 2 1 2 2 r~ r . 5 1 2 (20b)o :=3 y + '6 q - u , YJ = YJ - "4 + n t1+t2' 
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t2 q2-2v2 4(4v2-q2)
Ai Al Ai A2 + , Aj A3 + (20c)- 2v2' 3t4 45t6 

2 2q (20d)Ci CI + -2' = ~ - 5t4 '3t 

2 t2non~n1 [U2n 
+A/ · n An (n ~ 4), B~ = 2n 2n + 1 cos 2ny - ](n~I), (20e)

n+2 

2n
1 [ 2(2n + 1 )t on 2 ]

C~ Cn (n ~ 3), D~ = 2n(2n-l) (n+l) (n+2) - un COS 2ny (n ~(i6b 

_ 1 (2 q2 ) (21)where ~n - n + 3 2v + n + 1 

Inserting (18) in (5a,b) , equating the coefficients of cos 2nS (n=0,1,2, ... ) in the two 
identities to zero and solving the resulting systems of linear equations we get 

(22a) 

/ 1 [2 2 2n + 1 2 ( 2ex )]A = -- u n(u -tV) cos 2ny+ -- t no __n - A (n ~ 1) (22b)n 2nK --n n + 2 n n + 1 I-'n , 

2nC~ = ! [u Un - 2::1) cos 2ny + ~:o2 (~n - ~ - n!I)] (n ~ 1), (22c) 

I-v 3+v 4n2+K2-1
where K=- (23)~ = l+v ' I-v' !Xn = 2n(2n-l) 

The values of the constants An and Cn (n=0,1,2, ... ) are thus completely 
determined except Ao. Substituting for AI, A2, A3, CI, ~ from (20 c,d) in (12 a ,b) 
and introducing the notation 
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m = (a-b) / (a+b) , (24) 

we find 

p2 {(1 2 2 2) 2 2 (1 p2) p4 ( 3 )}+ 7 "2 t -'3 mp cos 28+m p '3 - 1Ot t cos 48+ 90t t 5+4m cos 68 , 
1 2 1 2 

(25a) 

( 1 2 2 2) p2 (2 2 2 2 1 2) p4 8 4 (2 2) p6+ - q -- p - cos 48 + - P +- v -- q - cos 4 + - q -4v - cos 68 
t2 t4 t62 3 5 3 3 45 

The expression containing the square root in t25b) has the expansion (16a) if r ~ f 
(p ~ t) and the expansion (16b) if r ~ f (p ~ t)., Substituting from (16a) in (25b) 
yields 

., (tlp?non [2n+1 2 2(n+1)v2+ q2 ] 
+ E n(n+1)(n+2) 2n-1 p - 2(n+3) cos 2n8 (p ~ t). (25c) 

Introducing (16b) in (25b) gives the expansion of kW2/C2 at points of region 2 where 
r ~ f. It is easily seen that such points exist only if the eccentricity of the ellipse 
~1I V 2. Whether r ~ f or r ~ f the deflection W2 is furnished by (12b) where 
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Iz+zl (26a) 

Re(zOZ) = ;2 [cos n8 J(T2+~ cos 28-f) sin n8 J(T2+f-~ cos 28)], 
(26b) 

n = 0, ±1, ±2, ... , r r4 + r - 2f ~ cos 28. (26c) 

Setting b = a (t2=t l ), m=O in (25a) and evaluating the limit of (25b) or (25c) as f
owe arrive at the following equations for the deflection surface of the circular plate 
corresponding to normal loading of intensity par over a concentric circle of radius 
a and four supports at the comers of a concentric rectangle: 

kWI 1 2 [3 A( 1 2 1 2) p4] 2 S- = Ao - - tl + - +In t1+", - tl - - U + -- p 2 2 4 3 2 36t1 

+ ~ f [(1- -~) p2 + 1- {u2 _ 1 _ 1- _ K2 }] X 
K 1 2n 2n+ 1 2n 2n 2n(2n-1) 

(pU)2n cos 2ny cos 2n8, (27a) 

2 
+ 1- f u ) 2 1 {2 1 1 K2}] x 

K 1 
[(2n

1 
- 2n+1 p + 2n u - - 2n - 2n(2n-1) 

(pU)20 cos 2ny cos 2n8, (27b) 

It is worthy of mentioning here that the general problems of a thin circular plate 
supported at several interior or boundary points and acted upon by two types of 
normal loadings over the area of an eccentric circle were studied by one of the 
authors (Bassali 1957, 1958). Letting tl tend to zero in (27b) yields the solution 
corresponding to the four supports and a concentrated central load L. It is verified 
that equations (27a,b) agree with the expressions obtained by putting m=4, n=4, 
n'=6, P1=P2=P3 =P4 = -U4, Po=L in equations (40a,b), p . 735 of Bassali (1957) 
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on noting the difference in notation and making some expansions of the 
logarithmic functions. 

We have now to determine the remaining constant Ao. This depends on the 
positions of the support points which lie either in region 1 or in region 2 according 
as S2 cos2y/a2 + S2 sin2y/b2 ~ 1 or ~ 1. In the first case Ao is found by equating to 
zero the expression obtained by putting S=y and p=u in (25a). In the second case 
either s ~ for s ~ f. If s ~ f equation (18) can be used to determine AQ and then Ao 
is given by (20a). Whether s ~ for s ~ f equations (25b) and (26a,b,c) can be used 
to determine Ao but the expansions (16a) or (16b) may be applied according as s ~ 
f or s ~ f, respectively. In any case the deflection at the centre is given by 

(28) 

4. Moments and Shears 

Substituting from (7), (10a,b) and (lla,b) in the standard formulae given by 
equations (1.6), p. 730 of Bassali (1957) we obtain the following expressions for the 
bending, twisting moments and shearing forces at any point z of the plate: 

M~ 

~n(2n-l) An} p2n cos 2nS 
p2 

2~(3-4A2) 
(29a,b)

3t1t2t2 

(l-v)L [1 2 2 2 (sin 2 <1>1 sin 2 <1>2 )M~ 43t 4" u (u -p ) VI + --V-2
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- ~ n {(2n + 1) Cn + 2np~ 1 
An} p2n sin 2n8 

(29c) 

Q I L[1 1(4 4) ( - I -I)= - - + - p -u VI + V2 
r 3U 4 8 

00 

- L n(2n+1) Cn p2n cos 2n8 
1 

(30a) 

+ L 
00 

n(2n+1)Cn p
2n sin2n8 

1 

- ~ (2A,z-1 2 . 4tlt2sin 28 )]. 
2 t t p Sin 48 - 2 ' (30b) 

V I 2 t 

M~ 
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(1-v)L [1 2 2 2 (sin 2 4>1 sin 2 4>2)
M;e = 4Jt 4" U (u -p ) VI + V2 

~ { 2n-1}- 'r n (2n+ 1) en + ~ An p2n sin 2ne 

(31c) 

- ~ n(2n+1) en p2n cos 2nej , (32a) 

2 L [1 2 2 (sin 24>1 sin 24>2) 3 £4Qe = - - p u + - 4 1m (z ZiI)
Jtr 4 VI V2 

+ ~ n(2n+ 1) en p2n sin 2nej , (32b) 

where 4>1 = e - y, 4>2 = e + y , (33) 

(34) 

Iz+ZI, Re(znZ) are given by (26a,b,c) and 

At the centre of the plate we have (Qr)O = (Qe)o = 0, 



40 W.A. Bassa li and M.N,Y, Anwar 

2 2 2 

1 { t U 2 2 t 2 1 2 2 }]
± - ~ COS 28 cos 2y - - + - (K +3-2u ) + - (v +- q -K -3)

v2 

(36a,b) 
2 2K 4K 4 ' 

2 

t (2 1 2 2 )].
+ 4K V +4 q -K -3 SIn 28. (36c) 

5. Limiting Cases 

Results concerning the deflections, moments and shears in the three following 
limiting cases can be derived from the foregoing formulae: 

(i) Allowing c to tend to 00 yields the appropriate solutions for an infinitely 
large plate subject to paraboloidal loading over the area of an ellipse and supported 
at the four comers of a rectangle concentric with the ellipse and having its sides 
parallel to the axes of the ellipse. 

(ii) The case in which b-H, f--.O leads to the problem of a circular plate acted 
upon by the loading p=por over a concentric circle and supported at the four 
vertices of a concentric rectangle. In this case the deflections are given by (27a,b) 
where Ao is determined by equating to zero the expressions obtained by setting 
p=u and 8=y in (27a) or (27b) according as the point supports lie in the loaded or 
unloaded region, respectively. Moments and shears at any point can either be 
found by limiting processes from equations (20)-(36) or as special cas~s of the 
general formulae (2.44)-(2.46), p. 736 of Bassali (1957). 

(iii) In the limiting case in which the minor axis of the ellipse --.0 the loaded 
patch reduces to a line loading extending along the x-axis from x= -a to x=a. 
Assuming that b --. 0 and Po --. 00 such that 2bpo --. PI we see that the intensity p of 
this line loading at a point distant x from the centre is given by 

(37) 


Deflections, moments and shears corresponding to this line loading along the 
x-axis and four supports at the comers of a concentric rectangle whose sides are 
parallel to the coordinate axes are derived by putting b=O, f=g=a and L=§l'tPla3 in 
the established formulae. 

http:2.44)-(2.46
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6. Numerical Results 

In this section we give the numerical and graphical representation of the 
deflections, moments and shears at various points in the first quadrant of the 
circular plate corresponding to specified dimensions of the loaded elliptic patch. It 
is assumed that t1 = 0.6, t2 = 0.45, v=0.3 . Two different distributions of the point 
supports in the unloaded region are considered. In the first case we take u=0.8, 
y=30° while in the second case we take u=l, y=30° so that the point supports lie 
on the boundary of the circular plate. 

The deflection w, radial and transverse bending moments M" Me, twisting 
moment Mre , shearing forces Qf> Qe at any point (r,e) of the first quadrant may be 
put in the forms 

where o:,fh ,~,fh'Y1 and Y2 are dimensionless quantities. Numerical values for these 
coefficients at points on various radii of the first quadrant are listed in Tables 1-8 
and graphs showing their variation are plotted in Figs . 2-13 for both cases of point 
support distributions. 
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Table I. Case of u .8, e = 0 

P .1 .2 .3 .4 .5 .6 .7 .8 9 1. 

ex .5050 .4769 .4301 .3630 .2832 .1876 .0832 .0239 - .1382 -.2317 

~l 1.2883 1.2714 1.2212 1.1081 .8974 .3363 .2338 .03674 .0032 0 

~2 .7177 .7297 .7425 .7447 .7178 6312 .5088 .4073 .3337 .2932 
I 

~3 0 0 0 0 0 0 0 0 0 0 

Yl .0022 .0298 -.1273 -.3165 -.6175 -1.0529 -.6736 -.3763 - .1607 -.0184 

Y2 0 0 0 0 0 0 0 0 0 0 
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Table 2. Case of u .8 , e = 30° 

P .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 

n' .5058 .4801 .4368 .3759 .2982 .2062 .1049 0 - .1003 - .2012 

~. 1.1495 1.1303 1.1292 1.0497 .8565 .3052 .1022 00 .1238 0 

~2 .8554 .8439 .8100 .7315 .5761 .3099 - .0609 00 - .3503 -.2794 

~3 .2473 .2380 .2248 .2110 .2013 .1944 .1712 .1623 .1213 .1021 

Y. - .0031 - .0486 - . 1818 - .4535 - .9282 -1.3116 -1.8147 00 .7841 .0939 

Y2 -.0076 -.0192 - .0391 - .0702 - .1143 -.0775 -.0093 .0174 .0279 .0274 

--

~ 
» 
III 

~ 
~ ., 
" a. 

~ 
z 
-< 
» 
"~ 
'" 

I 



Table 3. Case of u .8 , 6 = 60" 

P .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 

I 

0: .5075 .4869 .4529 .4067 .3510 .2906 .2305 .1742 .1239 .0794 

~l .8584 .8318 .8128 .7023 .4784 .2570 .1069 .0263 -.0019 0 

~ 1.1444 1.1345 1.1104 1.0601 .9632 .8623 .7688 .6857 .6173 .3672 

~3 .2549 .2670 .2850 .3047 .3193 .3067 .2713 .2313 .2005 .1821 

Yl - .0109 -.0632 - .1958 -.4437 - .6994 - .5485 -.3895 - .2448 -.1333 -.0370 

Y2 -.0062 -.0082 -.0022 .0143 .0659 .1808 .2448 .2568 .2327 .1933 

-l 
::r
:;' 
n
:;' 
n 
c: 

."., ~ 
;;; 
c: 
::l 
Q. 

~ 
z 
o 
3 
2C 

~ 
OJ 
0' o 
0' 
0: 
2C 

.... 
V> 



P . 1 .2 .3 .4 .5 .6 .7 .8 .9 I. 

a: .5083 .4905 .4619 .4447 .3823 .3395 .3008 .2695 .2480 .2351 

131 .7066 .6828 .6266 .3097 .3155 .1388 .0783 .0282 .0053 0 

f32 1.2953 1.3015 1.2975 1.2633 1.1818 1.0908 1.0042 .9261 .8582 .8009 

133 0 0 0 0 0 0 0 0 0 0 

Yl -.0137 -.0627 - .1844 -.4194 .5227 -.3951 -.2897 -.2012 - .1448 -.0989 

Y2 0 0 0 0 0 0 0 0 0 0 

I 

I 

J>. 
0-, 

Table 4. Case of u .8, e = 90° 

I 

::E 
~ 

co 
'"~ 
~ 

::> '" 
0. 

3:: 
z 
-< 
» 
::> 

!:;' " 



00Table 5. Case of u 1., e = 

P 

n' 

~l 

~ 

~3 

Yl 

Yz 

.1 

1.1751 

1.8538 

.9883 

0 

0164 

0 

.2 

1.1311 

1.8444 

1.0032 

0 

-.0039 

0 

.3 

1.0579 

1.8056 

1.0198 

0 

-.0968 

0 

.4 

.9558 

1.7026 

1.0258 

0 

-.2965 

0 

.5 
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Table 6. Case of u 1, 6 = 45 
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Table 7. Case of u 1. , 6 = 60" 
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Table 8. Case of u 1, e = 90° 

P .J .2 .3 .4 .5 .6 .7 8 .9 1. 
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Fig. 12. Radial shear profiles along rays, u=l 
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