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On a Commutativity Question 
in Banach Algebras 
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ABSTRACf. II is shown that the condit ion II xy li '" (I' li yxll [or all x and y, (I' being a 
positive constant, does not imply commutativity in nonunital complex Banach 
Algebras. Other results, concerning the structure o[ certain Banach a lgebras 
satisfying this condition are obtained. 

1. Introduction 

In this paper , we go further in the study - initiated in the second author's papers 
(Oudadess 1983) and (Oudadess 1984) - of complex Banach algebras satisfying the 
condition 

Ilxyll ~ IIYXII (C)<X 

for all x,y in the algebra, where <X is a positive constant. We show that condition (C) 
does not imply commutativity in nonunital complex Banach algebras - A 
counterexmple of this fact is given in Section 4. 

If E is a complex Banach algebra satisfying (C) , we know that E2 = {xylx,y 
E E} is contained in the centre of E (Oudadess 1983). As corollaries, the theorems 
of Le Page (1967) and Duncan and Tullo (1974) follow from this . Here, we extend 
the result of the latter to algebras with (not necessarily bounded) approximate 
identity and we show that if E is semi-simple or an integral domain , then E is 
commutative . We prove also that if E is not commutative, then any element of E is 
a divisor of zero . 
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Furthermore, we examine the case of simple and topologically simple complex 
Banach algebras satisfying (C). We obtain, in particular, a result of Gelfand -
Mazur type . 

Finally, we study finite dimensional Banach algebras satisfying (C) . It is an 
algebra of this type which gives the counter-example of Section 4. 

The formulation of theorem 2.3 is more general than the one in the first 
version . 

2. General Case 

We give some general properties of complex Banach algebras satisfying the 
condition (C). 

Theorem 2.1. 

Let E be a complex Banach algebra satisfying (C). Then 
(i) E2 = {xy IX ,YEE} is contained in the centre of E. 

(ii) If E admits a left (resp. right) approximate identity , then E is commutative. 

Proof 

(i) This result was obtained in (Oudadess 1983). It follows from Liouville 's 
theorem since condition (C) implies that the holomorphic vector valued function 

f(A) = exp (Az).xy. exp (-Az) 

where AE ([ and x, y, Z EE, is bounded. 

(ii) Let (eJ iE[ be an approximate identity of E. By (i) , we have , for all x, y E E 

(xej)Y = y(xei) (i E 1) 

Whence xy yxO 

Remarks 

1. By (i) of the previous theorem, we have for any integer n > 0 and all x, y 
EE 

(xyt XO yO 
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Thus, the spectral radius is submultiplicative on E and hence the set of 
quasi-nilpotent elements of E coincides with the radical of E (Oudadess 1983). 

2. For any x, y E E, we have 

(xy - yxl 0 

Whence xy-yx E Rad E. Thus if E is semi-simple, E is commutative . 

3. One could think that complex Banach algebras without approximate 
identity and satisfying (C) are either semi-simple or radical (Oudadess 1983). As 
the following example shows, this is not the case. Let Band D be complex Banach 
algebras , B commutative and non-radical. On the vector space A = B x D consider 
the product given by (bb d1) (b2 , d2) = (b 1b2 , 0) and the norm II (b,d) 1/ = 1/ b 1/ + 
1/ d 1/. 

Since the projection on D of the product of any pair of elements of A is zero, 
A does not admit an approximate identity. Moreover PA «b,d)) . PB(b), where PA 
and PB are spectral radius in A and B respectively; and (0, df = 0 for any d E D. 

Thus A is a commutative complex Banach algebra (hence verifies (C)) without 
approximate identity which is neither semi-simple nor radical. 0 

Here is an interesting result on the structure of non commutative Banach 
algebras satisfying (C). 

Theorem 2.2. 

Let E be a complex Banach algebra satisfying (C). If E is not commutative, 
then any element of E is a two-sided divisor of zero. 

Proof 

Suppose that E is not commutative and note that condition (C) implies that 
any left (right) divisor of zero in E is two-sided. Let C (E) be the centre of E. We 
first show that if an element x of E is not a zero divisor, then x lies in C (E) . 
Consider z = xy - yx where y is any element of E. We have 

xz = x (xy - yx) o Whence xy yx for any y E E 

i.e. x E C(E). 

We now show that any element of C(E) is divisor of zero. Let z E C(E). Since 
E is not commutative, there exist x, y E E such that xy - yx *' O. Then z (xy - yx) = 
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z xy - z yx = zxy - xzy = zxy - zxy = O. Thus any element of E is a divisor of 
zero . 0 

Remark 

In a complex Banach algebra E satisfying (C) , the centre of E cannot be a 
maximal ideal. Note that C (E) is an ideal by (i) of theorem 2.1. Let XO EE - C(E). 
The subalgebra B of E generated by Xo and C(E) is a commutative subalgebra of E 
which is an ideal containing C(E) strictly. Hence C(E) is not maximal. 

As a corollary of theorem 2.1 we have the following result which is an 
improvement of proposition 11.3 in (Oudadess 1984) . 

Theorem 2.3. 

Let E be a complex Banach algebra satisfying (C) and such that the subspace 
linearly spanned by {x .y : x,YEE} is dens in E . Then E is commutative . 

3. Simple and Topologically Simple Algebras 

We first deal with simple algebras. 

Theorem 3.1. 

Let E be a non trivial simple complex Banach algebra satisfying (C). Then E is 
isomorphic to <r . 

Proof 

Eo = {x EEl xE = (O)} is a two-sided ideal of E. Since E is simple and non 
trivial, Eo = (0) i.e. for every x E E, x *0, we have xE * (0). But for every x E E , 
the set xE is a two-sided ideal of E. Whence xE = E for all non zero x'EE.This 
shows that E is commutative. To see that E is unital , let xEE, x * O. 

There exists Ix E E such that xI x = x. Then Ex = {y EEl y1x = y} is a two 
sided ideal of E which is not reduced to (0). Hence Ex = E and E is unital. Since xE 
= E for all non zero xEE , the algebra E is a division algebra. The theorem follows 
from the classical Gelfand-Mazur Theorem. 0 

For topologically simple algebras, we have. 

Theorem 3.2. 

Let E be a non trivial topoJigcally simple complex Banach algebra satisfying 
(C). Then E is a commutative integral domain. 
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Proof 

The centre C (E) of E is a closed two-sided ideal of E such that E2 C C (E). 
Since E is not trivial and is topologically simple , we have C (E) = E, so E is 
commutative. 

For any x E E consider Ex = {y EEl xy = O}. Since Ex is a closed ideal of E , 
we have either Ex = E or Ex = (0). If E was not an integral domain , the set J of 
elements x such that Ex = E would be a closed two-sided ideal of E. But then J = 
E, i.e. E is trivial. This contradicts our assumption . 0 

4. Finite Dimensional Algebras 

We now investigate the implications of condition (C) on the commutativity of 
finite dimensional algebras. 

Theorem 4.1. 

Let E be a finite dimensional complex Banach algebra satisfying (C) . Then E 
is commutative if, and only if, Rad E is a commutative subalgebra of E . 

Proof 

By Wedderburn 's theorem (Shilov 1977), we have E = F ffi Rad E (as vector 
spaces) where F is semi-simple subalgebra of E. Since F is semi-simple and finite 
dimensional, it admits a unit (Shilov 1977). Theorem 2.1. (ii) implies that F is 
commutative. Let u E F and r E Rad E. We have x r = (xe)r = r(xe) = rx. Thus, 
any element of F commutes with all the elements of Rad E . 

Consequently, E is commutative iff Rad E is a commutative subalgebra of E. 
o 

In fact condition (C) does not imply commutativity in all complex Banach 
algebras as is shown by the following example: 

Example 4.2. 

Let el and e2 be two symbols verifying the relations ei = e~ = 0 and ejejej = 0 
(i, j = 1,2) consider the complex algebra E generated by el and ~ subject to these 
relations. The algebra E is nothing else than the 4-dimensional vector space for 
which is a, base is {el> e2, ele2, e2ed· 

4 

For x = Xlel + X2e2 + x3ele2 + x4e2el> put IIxll = I: Ix;!' Then E is 
1 

a non commutative radical Banach algebra satisfying IlxY11 = lIyxll for all x, y E E. 

Finally, we note that the counter example given in page 44 (Aupetit 1979) - in 
order to show that condition (C) does not imply commutativity in nonunital 
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Banach algebras - is not suitable since the subspace of M3 (M2 (<I:)) considered 
there is not stable under product. 
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