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ABSTRACT. It is shown that the condition ||xy|| < « |{yx|| for all x and y, & being a
positive constant, does not imply commutativity in nonunital complex Banach
Algebras. Other results, concerning the structure of certain Banach algebras
satisfying this condition are obtained.

1. Introduction

In this paper, we go further in the study - initiated in the second author’s papers
(Oudadess 1983) and (Oudadess 1984) - of complex Banach algebras satisfying the
condition

lixyll < o [lyx[l ©

for all x,y in the algebra, where « is a positive constant. We show that condition (C)
does not imply commutativity in nonunital complex Banach algebras - A
counterexmple of this fact is given in Section 4.

If E is a complex Banach algebra satisfying (C), we know that E> = {xy|x,y
€ E} is contained in the centre of E (Oudadess 1983). As corollaries, the theorems
of Le Page (1967) and Duncan and Tullo (1974) follow from this. Here, we extend
the result of the latter to algebras with (not necessarily bounded) approximate
identity and we show that if E is semi-simple or an integral domain, then E is
commutative. We prove also that if E is not commutative, then any element of E is
a divisor of zero.
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Furthermore, we examine the case of simple and topologically simple complex
Banach algebras satisfying (C). We obtain, in particular, a result of Gelfand -
Mazur type.

Finally, we study finite dimensional Banach algebras satisfying (C). It is an
algebra of this type which gives the counter-example of Section 4.

The formulation of theorem 2.3 is more general than the one in the first
version.

2. General Case

We give some general properties of complex Banach algebras satisfying the
condition (C).

Theorem 2.1.
Let E be a complex Banach algebra satisfying (C). Then

(i) E* = {xy |x,yeE} is contained in the centre of E.
(i1) If E admits a left (resp. right) approximate identity, then E is commutative.

Proof

(1) This result was obtained in (Oudadess 1983). It follows from Liouville’s
theorem since condition (C) implies that the holomorphic vector valued function

f(A) = exp (Az).xy. exp (—Az)
where AeC and x, y, z €E, is bounded.
(i1) Let (e;);er be an approximate identity of E. By (i), we have, forallx,ye E
(xe)y = y(xe) (iel)

Whence xy = yx(J

Remarks

1. By (i) of the previous theorem, we have for any integer n > 0 and all x, y
e E

(xy)n = x° yn
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Thus, the spectral radius is submultiplicative on E and hence the set of
quasi-nilpotent elements of E coincides with the radical of E (Oudadess 1983).

2. For any x, y € E, we have
(xy — y0)? =0

Whence xy—yx ¢ Rad E. Thus if E is semi-simple, E is commutative.

3. One could think that complex Banach algebras without approximate
identity and satisfying (C) are either semi-simple or radical (Oudadess 1983). As
the following example shows, this is not the case. Let B and D be complex Banach
algebras, B commutative and non-radical. On the vector space A = B x D consider
the product given by (by, d;) (by, d3) = (b;b,, 0) and the norm || (b,d) || = || b || +
[d -

Since the projection on D of the product of any pair of elements of A is zero,
A does not admit an approximate identity. Moreover pa ((b,d)) . pp(b), where p4
and pg are spectral radius in A and B respectively; and (0, d)* = 0 for any d € D.

Thus A is a commutative complex Banach algebra (hence verifies (C)) without
approximate identity which is neither semi-simple nor radical. J

Here is an interesting result on the structure of non commutative Banach
algebras satisfying (C).

Theorem 2.2.

Let E be a complex Banach algebra satisfying (C). If E is not commutative,
then any element of E is a two-sided divisor of zero.

Proof

Suppose that E is not commutative and note that condition (C) implies that
any left (right) divisor of zero in E is two-sided. Let C (E) be the centre of E. We
first show that if an element x of E is not a zero divisor, then x lies in C (E).
Consider z = xy — yx where y is any element of E. We have

xz = x (xy — yx) = 0 Whence xy = yx for any y € E

i.e. x € C(E).

We now show that any element of C(E) is divisor of zero. Let z € C(E). Since
E is not commutative, there exist x, y € E such that xy — yx # 0. Then z (xy — yx) =
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ZXy — zyx = zxy — xzy = zxy — zxy = 0. Thus any element of E is a divisor of
zero. [J

Remark

In a complex Banach algebra E satisfying (C), the centre of E cannot be a
maximal ideal. Note that C (E) is an ideal by (i) of theorem 2.1. Let x, €E — C(E).
The subalgebra B of E generated by x, and C(E) is a commutative subalgebra of E
which is an ideal containing C(E) strictly. Hence C(E) is not maximal.

As a corollary of theorem 2.1 we have the following result which is an
improvement of proposition II.3 in (Oudadess 1984).

Theorem 2.3.

Let E be a complex Banach algebra satisfying (C) and such that the subspace
linearly spanned by {x.y: x,yeE} is dens in E. Then E is commutative.

3. Simple and Topologically Simple Algebras

We first deal with simple algebras.

Theorem 3.1.

Let E be a non trivial simple complex Banach algebra satisfying (C). Then E is
isomorphic to C .

Proof

E, = {x € E | xE = (0)} is a two-sided ideal of E. Since E is simple and non
trivial, E, = (0) i.e. for every x € E, x # 0, we have xE # (0). But foreveryx € E,
the set xE is a two-sided ideal of E. Whence xE = E for all non zero x€E.This
shows that E is commutative. To see that E is unital, let xeE, x # 0.

There exists 1, € E such that x1, = x. Then E, = {y ¢ E | yl, = y} is a two
sided ideal of E which is not reduced to (0). Hence E, = E and E is unital. Since xE
= E for all non zero xe€E, the algebra E is a division algebra. The theorem follows
from the classical Gelfand-Mazur Theorem. [J

For topologically simple algebras, we have.

Theorem 3.2.

Let E be a non trivial topoligcally simple complex Banach algebra satisfying
(C). Then E is a commutative integral domain.
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Proof

The centre C (E) of E is a closed two-sided ideal of E such that E> C C (E).
Since E is not trivial and is topologically simple, we have C (E) = E, so E is
commutative.

For any x € E consider E, = {y € E | xy = 0}. Since E, is a closed ideal of E,
we have either E, = E or E, = (0). If E was not an integral domain, the set J of
elements x such that E, = E would be a closed two-sided ideal of E. But then J =
E, i.e. E is trivial. This contradicts our assumption. [J

4. Finite Dimensional Algebras

We now investigate the implications of condition (C) on the commutativity of
finite dimensional algebras.

Theorem 4.1.

Let E be a finite dimensional complex Banach algebra satisfying (C). Then E
is commutative if, and only if, Rad E is a commutative subalgebra of E.

Proof

By Wedderburn’s theorem (Shilov 1977), we have E = F @ Rad E (as vector
spaces) where F is semi-simple subalgebra of E. Since F is semi-simple and finite
dimensional, it admits a unit (Shilov 1977). Theorem 2.1. (ii) implies that F is
commutative. Let u € F and r € Rad E. We have x r = (xe)r = r(xe) = rx. Thus,
any element of F commutes with all the elements of Rad E.

Consequently, E is commutative iff Rad E is a commutative subalgebra of E.
O

In fact condition (C) does not imply commutativity in all complex Banach
algebras as is shown by the following example:

Example 4.2.

Let e; and e, be two symbols verifying the relations e3 = €3 = 0 and e;eje; = 0
(i, j = 1, 2) consider the complex algebra E generated by e, and e, subject to these
relations. The algebra E is nothing else than the 4-dimensional vector space for

which is a-base is {e;, e,, €.e5, €¢;}. )

For x = x5e; + X2, + Xj3e1€; + Xu€2€q, put ”XII = Z IXiI. Then E is
T
a non commutative radical Banach algebra satisfying ||xy|| = ||yx|| for all x, y € E.

Finally, we note that the counter example given in page 44 (Aupetit 1979) — in
order to show that condition (C) does not imply commutativity in nonunital
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Banach algebras - is not suitable since the subspace of M; (M, (C)) considered
there is not stable under product.
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