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ABSTRACT. Consistent measurements have shown that the service and interarrival 
time distributions for most computer resources are not exponential. The immediate 
consequence of this finding is that the popular Markovian models such as the MIMI1 , 
MIMIC .... etc. do not accurately represent the underlying computer resources and 
therefore may not be totally reliable in the performance analysis of computer 
systems. Computer resources may be more appropriately represented by non· 
exponential models where both the service and interarrival times may be of a general 
type . Although this seems to be a natural resort, in practice analysts refrain from the 
use of non·exponential models because they are hard to solve and may not lead to 
useful solutions. 

This paper is an attempt to remove some of the difficulties associated with the 
analysis of non-exponential computer models. It is shown that the spectral solution 
of Lindley's integral equation with the help of Rouche 's theorem may easily be used 
to obtain exact solutions for the non-exponential models of computer performance 
analysis. Several examples are used to illustrate the method. These include the 
E,IH,II , the H,IH,II and the E,lE,II models for which exact performance measures 
are given for the first time , to the best of our knowledge. 

1. Introduction 

One of the basic models in the performance evaluation of computer systems is the 
single resource queueing model with infinite capacity and FCFS queueing 
discipline. Basic performance parameters of interest in this case are the mean 
waiting time, the expected number of jobs in the system and the probability 
distribution for the number of jobs in the system. In Markovian queueing theory, 
the determination of these parameters strongly depends on the characteristics of 
the interarrival and service time distributions. The analysis is easiest when both 
these distributions are of the exponential type, where in this case the performance 
metrics can be obtained using the weU-known MlMI1 model (Kleinrock 1975). 
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However, in practice it has been shown that the exponential assumption is 
unrealistic and the MIMI1 may not truly resmelbe the actual system. In order to 
obtain better estimates for the performance metrics resort is made to more general 
models like the MlGIl, the G/Ml1 or even the G/GIl (for definitions, see reference 
(Kleinrock 1975). Unfortunately, the price paid for the generality in these models 
is a considerable mathematical complexity that is gravest in the case of the G/GIl 
system. For this system, even the mean waiting time cannot be obtained 
analytically and approximations have to be used. To quote Kleinrock "We find 
ourselves in a difficult terrain when we enter the foothills of the G/GIl. Not even 
the average waiting time is known for this queue." 

In this paper, it is shown that the G/GIl problem can be largely overcome if 
the spectral solution of Lindley's integral equation (Smith 1953) is complemented 
by the power of Rouche's theorem (Levinson 1970). The spectral solution is 
originally due to Smith (Smith 1953) and gives the waiting time distribution in 
terms of a polynomial factorisation , that is very difficult to obtain. 

In Section 2 the fundamental queueing theory results relating to Lindley's 
integral equation and its spectral solution are described. Analysis of the G/GIl 
with rational Laplace transforms is considered in Section 3. Examples and 
applications are given in Section 4. Concluding remarks are given in Section 5. 
Throughout the study , the following notation will be adopted: 

A(t) the PDF of interarrival times 

aCt) the pdf of interarrival times 

A*(8) the Laplace transform of a( t) 

3 the first moment of aCt) 

32 the second moment of aCt)

C; the coefficient of variation of interarrival times 

C~ the coefficient of variation of service times 

Ek Erlangk distribution 

E(x) expected value of the random variable x 

F(t) the PDF of service times 

f(t) the pdf of service times 

F*(8) the Laplace transform of f(t) 

f the first moment of f(t) 

f' the second moment of f(t) 

FCFS first-come, first-served 

H2 hyperexponential2 distribution 

1*(8) the Laplace transform of the idle time distribution 

1 the first moment of the idle time distribution 
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I the second moment of the idle time distribution 

<2> the average number of jobs in the system 

PDF probability distribution function 

pdf probability density function 

W(t) the PDF of the waiting time distribution 

w(t) the pdf of the waiting time distribution 

W*(8) the Laplace transform of w(t) 

W the mean waiting time 

A mean arrival rate 

I! mean service rate 

p All! the utilisation factor 

oi variance of interarrival times 

01 variance of service times 

2. Basic Queueing Theory Results 

Consider a stationary GIGl1 queueing system. Let tn+1 be the time between 
the nth and the (n+1)th arrivals in this queue, where tn+1 is drawn from the PDF 
A(t) and E(tn+1) = 1IA. Let Sn be the service time of the nth customer, where Sn is 
drawn from the PDF F(t) and E(Sn) = 1I1!. Define Un = Sn - tn+1 and let C(t) be 
the PDF of Un. Then, if W n is the waiting time (in queue) of the nth customer with 
PDF W(t), we get 

(1) 

(Lindley 1952) has shown that the PDF for the random variable Wn+1 is given by 

W(t) = f W(t-u) d(C(u)) t ~ 0 (2) 

which is valid for All! < 1. 

A direct solution of (2) may not be feasible, but using spectrum factorisation 
(Kleinrock 1975) the following results can be obtained from (2). The Laplace 
transform of the waiting time pdf is given by: 

W*(8) = 8 <1>+(8) (3) 

where 
<1>+(8) = KI'\jI+(8) (4) 

and '\jI+(8) is obtainable from the factorisation 

A *( -8)F*(8) - 1 = '\jI+(8)/'\jI_(8) (5) 
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the factorisation is carried out such that 'IjI+(8), 'IjI_(8) satisfy the following 
conditions: 

(i) 'IjI+(8) is an analytic function of 8 with no zeros in the half-plane Re(8) > 
O. 

(ii) 'IjI+(8) is an analytic function of 8 with no zeros in the half-plane Re(8) > 
D where D is a constant (D > 0) . 

Furthermore, if A *( -8), F*(8) are not to include any discontinuities and to 
be of finite moments , then (Kleinrock 1975) added the following two properties: 

lim(iii) For Re(8) > 0, = 1/6/--+ 00 

(6) 
(iv) For Re(8) > 0, -1 

The constant K is given by 

(7) 

It has also been shown (Marshall 1968) that K is actually the equilibrium 
probability that an arbitrary arrival finds an empty system. Denoting this 
probability as ITo, we can write 

ITo = K (8) 

(Marshall 1968) used the above results to generalise the Pollaczek-Khinchin 
(P- K) transform to give: 

W*(8) = ITo(1-I* (-8»/(l-A*(-8)F*(8» (9) 

Furthermore , it has been shown by [Kleinrock 1975] that the average waiting 
time in the G/G/l is given by 

<?. + 07 + (a)2 (1- P)2
W (10)

2a (1-p) 21 

3. Analysis of the GIGII Queueing System 
with Rational Laplace Transforms 

Although the results of section 2 have been available in the literature for some 
time now, analysts have so far refrained from applying them, mainly because of 
the difficulties arising in obtaining the factorisation (5) . In this section it is 
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illustrated how these difficulties can be overcome by the effective use of Rouche's 
theorem, which can be stated as: 

Rouche's Theorem 

"If h(8) and g(8) are analytic functions of 8 inside and on a closed contour C, 
and if Ig(8)1<1 h(8)1 on C , then h(8) and h(8)+g(8) have the same number of 
zeroes inside C ." 

The system to be considered is a G/G/1 with arbitrary i.i .d. interarrival and 
service time distributions both assumed to have rational Laplace transforms. In 
this case, both A * (8) and F*(8) can be expressed as: 

A *(8) = 	 NA*(8) F*(8) = NF*(8) 
DA*(8) DF*(8) 

where in each case the numerator and denominator are polynomials of the 

L 


8n
form I: bn where {bn } is a set of real coefficients and L is a positive integer. 
n=O 

3.1 The average number of jobs in the system 

An explicit formula for the average number of jobs in the G/G/1 system 
described above can be obtained by employing the following theorems : 

Theorem 1 

For any G/G/1 model the ratio ·J2121 can be expressed as 

12 	 1P~(O) 
(11) 

21 	 1P-(O) 

where 1P~(O) = d1P_(8)/d8Io=0 and 

1P-(8) is given by (5). 

Proof 

Using Marshall's generalisation of the P- K transform (9) it can be easily 
deduced that: 

1*( -8) = 1 + 8/1P_(8) 	 (12) 

Since I is 	 the first moment of the idle time distribution , it clearly satisfies 

T = dl*( -8)/d 81e=0 



6 M.A. EI-Affendi 

Similarly, 12, the second moment, satisfies 12 O. 

Therefore, using (12) we get 

12 'IjI~(0)
- = Q.E .D.

'IjI_(0)21 

In vIew of this theorem, equation (10) becomes: 

o~ + o~ + (a)2(1-p? 'IjI~(0)
W + 

2a(1-p) 'IjI_(0) 

c 2 c~ 
Using the substitutions a = 1IA, <r. = A:' o~ and knowing that 

2 ' 
f..I. 

<n> = AW+p (Little's formula) we get: 

<n> = (13) 

where Ya = (C~-1)/2, Ys = (C;-1)/2. Moreover, since F*(8) is rational, then the 
LHS of the factorisation (5) can be rewritten as: 

A *( -8)F*(8)-1 = NF*(8)A*( -8)-DF*(8) (14)
DF*(8) 

Theorem 2 

For any GIG/I with rational Laplace transforms, if the condition 

IDF*(8) 1>1 NF*(8)A*( -8) I 

is satisfied on the closed semicircular contour that surrounds the left half of the 
8 -plane as shown in Fig. 1, then the average number of jobs in the system is given 
by: 

DA *'(0) 

DA*(0) k~~+2 8k +B }


+A-~~- (15)<n> { 
n 8k 

k=i+2 

where 

1 m=i+2 

B { 
m m 

n ee m>i+2 
k=i+2 t=i+2,t:;t:k 
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m is the total number of zeros for the polynomial 

NF*(8)A *( -8)-DF*(8) = 0 (16) 

i is the total numer of zeros for the polynomial {DF*(8)} and 8i+2, Si+3 , . .. ... , Sm 
are all in Re(S) > O. 

Proof 

By definition {DF*(S)} and {-NF*(S)A*( -S)} are analytic on and inside 
the closed contour of Fig . (1). Therefore, if IDF*(S)I>I NF*(S)A *( -S)I then by 
Rouche's theorem DF*(S) and {NF*(S)A *( -S)-DF*(S)} will have the same 
number of zeros inside C. Since S=O is always a zero, and DF*(S) has no zeros in 
Re(S»O, (F(t)=O, t<O), then the polynomial (16) will have only m-i-l zeros in 
Re(S»O, where i and m are as defined above . Denoting these zeros Si+2, S;+3, 
... . , Sm , the polynomial (16) can be factorised as follows: 

_ {NF*(S)NA*( -S) - DF*(S)DA *(-8)} { (8-8;+2) " ,(S-Sm) } 
- DF*(S) (8-8;+2) · .. (8-8m) DA *( -S) 

or, if all the roots are determined : 

8(S)+S) · · · ·(S;+8) 
(17)= { } { DF*(S) 

This gives 

DA *(-8) 

Differentiating and using (13) one gets (15). Q .E.D. 

Theorem 3 

For any stable GIGII with rational Laplace transforms, if the polynomial 
{NF*(S)} is of degree less than {DF*(S)} then the inequality : 

IDF*(S)I> I NF*(S)A *( -8)1 (18) 

is satisfied in the closed, infinite radius semicircular contour C that encircles the 
left half of the S-plane as shown in Fig. 1. 
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IM(S) 

o Re(S) 

Fig. 1. The contour C 

IM(S) = w 

S-plane 

- I-' Re(S) = ao 

Fig. 2. The excursion around the origin 
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Proof 

Let Re(8) = 0 and Im(8) = w, in which case 8 can be expressed as: 

8 o+jw , where j = VT 

Clearly , for any point on C , 0<0, eat < 1 (t > 0), and from complex analysis 
(Kleinrock 1975) leiwi = 1. Consequently , for any point 8 on C , 

IA *( - 8)1 I J~- eet dA(t)1 

iwt~ I J;- e dA(t)1 

~ I J;- dA(t)1 = 1 

where 0- 0-£ 

Therefore to prove the inequality : 

IDF*(8)1>1 NF*(8)A *( -8)1 on C 

it is enough to prove that 

IDF*(8)1>1 NF*(8)1 on C 

This last inequality will hold if 

NF*(8) I = IF*(8)1 < 1 
DF*(8)I 

i.e . to prove the inequality (18), we need only show that 1F*(8)1 < 1 for any point 
on C. 

First consider the case where 0 < 0, which on C corresponds to the case where 
the radius R = 181 is infinite (the semicircular curve) . Taking the limit as 181 -> 00 

we get 

0<1 

NF*(8) Iwhich means that for 181 very large DF*(8) < 1, or DF*(8)1>1 NF*(8)1
Ion the portion of C where 0 < O. 
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Secondly , consider the case where 0 = 0, which corresponds to the vertical 
line overlapping with the imaginary axis. In this case: 

IF*(8) I < s~- Ie-ell I dF(t) I 

s~- I dF(t) I 

1 

But, by definition the Laplace transform F*(8) is equal to one only if 8=0. 
Therefore , 

I F*(8) I < 1 

and the inequality (18) holds for 8 "* 0, Re(8) 0_ 

At 8 = 0, apparently: 

I DF*(O) I = I NF*(O)A *(0) I 

which contradicts (18) _However , this problem can be overcome if the point 8 = 0 
is replaced by the point 8 = 0-, where 

0- = 0-£, £ being a very small positive real number. At the point 8=0-,0=£, 
00=0, and 

I s~- eEl dF(t)1 

£2t2 
I s~- (1+£t+ 2"I + ··· ·)dF(t) I 

= I s;- (1+£t+ 0(£2))dF(t) I 

I S;- dF(t) + Etdf(t)+0(£2) I 

(1 + ~) + O(£2), 
f..l 

1 .
since the first moment of f(t) - I.e. at 8=0

f..l 

NF*(O-) I - £ 
DF*(O) = (1 + Il)I 

or 
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Similarly, it can be shown that 

I S~- e- Et dA(t)1 

- (1- ~ + O( E2» 

since the first moment of a(t) = 1IA 

In view of this inequality (18) becomes: 

IDF*(O-)I 	> I DF*(O-)I (1+ ~) (1- ~) 


= I DF*(O-)I (1- E(Il-A) + 0 (E2»

A 

= I DF*(O-)I (1- E(I-p) + 0 (E2»
A 

which is satisfied for any stable G/G/1 (p < 1). 

This inequality is even stronger if Im(8) =w =E. Therefore inequality (18) is 
satisfied on all points of the contour C. 

Remarks 

1. The motivation behind considering the left half of the 8-plane is the 
knowledge that F*(8) has no poles in Re(8) > 0, and consequently all the zeros of 
{DF*(8)} are in Re(8) < O. 

2. A development similar to theorem 3 has been conducted in (Kleinrock 
1975) for the particular case of the G/M/l system. 

For examples and applications, see Section 4. 

3.2 The Waiting Time Distribution 

For the G/G/1 system described in theorem 3, the waiting time distribution 
can now easily be obtained using (3), (4), (7) and (17). 

By (3) and (4) 


w*(8) = __K-,-;8".,--

'IjJ+(8) 
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where by (7) and (17) 

n 8e 
K= e=1 

DF*(O) 

Therefore, using (17): 

DF*(8) n8e 
W*(8) = 

( =1 (19)
i 

DF*(8) n (8e+8)
(= 1 

For any particular system this formula can be inverted using partial fraction 
expansion to give the waiting time distribution . 

The mean waiting time can now be obtained using the relation: 

dW*(8)
W 

d8 

which gives 

DF'*(O) 
DF*(O) n8e-DW = ___--'-'--_e_=_1___ (20) 

n8e 
e= 1 

where 

1 if i=2 
D { 

(21) 
E n 8f if i> 1 

k = 1 e=I,e,'k 

and 8, 8 i are all in Re(8) > O. 

3.3 Another Formula for <n> 

Using Little's formula, <n> = AT = AT = AW+p, one can now easily obtain 
another expression for the average number of jobs in the system as: 

i 

A {(DF'*(O) n 8e - DF*(O)D} + pDF*(O) n 8e e= 1 (= 1 
<n> = (22)i 

DF*(O) n 8e
1=1 
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where D is given by (21). 

This formula is equivalent to (15) and can be used if the number of zeros in 
Re(8) < 0 is less than that in Re(8) > O. (Evaluating less zeros saves effort) . 

Remarks 

For the special case of the MlGIl it is known that the idle time distribution is 
exponential and 'J2I2I = VA. Therefore (13) reduces to the famous P-K mean 
formula: 

<n> = 

which appJies for any G-type service type distribution, rational or not. 

In general, theorem 3 applies for any G-type inter-arrival time distribution 
and there is no need to impose the rationality condition on A *(8). However to 
obtain a numerical value for <n> one needs an explicit form for the polynomial 
(16). 

4. Applications and Examples 

To illustrate the methodology developed above, some examples are consi
dered in this section: 

1) The Average Number of Jobs in the E21H211 

For the E2/H21l, the interarrival time distribution is an Erlang-2 and the 
service time distribution is a hyperexponential-2. Therefore, 

A*(8) = ( 2A ? (23)
2A+8

and 

F*(8) + 

!!lJ..1.2 + (aWl + <X2J..1.2)8 
(24)

82!!1J..1.2 + (!!l +J..I.2)8 + 

From this 

NF*(8) !!1J..1.2 + (<XI!!l + <X2J..1.2)8 

!!1J..1.2 8
!!lJ..1.2 + (!!I+J..I.2)8 - -!!- (25) 
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and 

(26) 

which is of degree higher than NF*(8), implying that theorem 3 applies . In view of 
this, the polynomial (16) becomes: 

(!l1!l2+(!l1 +1-L2)8+82) - (!l11-L2+(!l1 +1-L2)8 - !l11-L2 8)A*( -8) = 0
!l 

or, using (23) 

(!l11-L2+(!l1 +1-L2)8+82) - (!l11-L2+(!l1 +1-L2)8 - !l:2 8) ((2~8) = 0 (27) 

Clearly, this polynomial has a total of 4 zeros, one of which is 8=0. Since 
{DF*(8)} has two zeros in Re(8) < 0, it is implied that two of the remaining 3 
zeros for (27) lie in Re(8) < 0, and only one zero, 84 , say, is in Re(8) > O. 

Applying equation (15), we get : 

DA' *(O) 
1+Ya + P 2ys} { DA* (0) 84 +1} 

<n> = { 1 + 1..----'--'----- - P 
84 

But from (23) 

DA'*(O) 1 

DA*(O) - T 


Therefore 

1+Ya + P 2ys\ 
(28)<n> = { 1 - p J + 

Equation (28) gives the exact value for the average number of jobs in the 
~/H2/1 if 84 is determined. 84 can easily be determined by applying the 
Newton-Raphson method to the polynomial: 

which is obtained by manipulating (27). 

In this case: 

A *(8) = ( 41.. )2, *(8)
21..+8 F 
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Therefore NF*(8) = 4fA.2, DF*(8) = 4fA.2+4fA.8+82 and consequently polynomial 
(16) becomes: 

(29) 

Since NF*(8) is of degree less than DF*(8), theorem 3 applies. 

implying that (24) has only two zeros in Re(8) < O. Since 8=0 is always a zero and 
the total number of zeros = 4, polynomial (29) will have only one zero 84 , say, in 
Re(8) > O. It can also be shown that 

DA'*(O) 

DA*(0) 


and consequently (15) gives <n> againt as: 

1+Ya + P 2ys 
<n> = --~------ +

1 - P 

where 84 can be obtained by applying the Newton-Raphson method to the 
polynomial: 

which is obtained by manipulating (29) . 

3) The H2/H2/1 

In this case 

YIAI Y2A2 <XI fA. I <X2fA.2
A*(8) + F*(8) +

1..1 +8 1..2+8 fA. I+8 fA.2+ 8 

for which 

NF*(8) fA.lfA.2 + (fA.I + fA.2)8 -~8 
fA.2 

82DF*(8) fA. IfA.2 + (fA.I + fA.2)8 + 

and polynomial (16) becomes: 

{fA.lfA.2 + (fA.I +fA.2)8+82) - {fA.lfA.2 + (fA.I +fA.2)8 - fA.lfA.2 ) A *(-8) = 0 (30)
fA. 

Since {NF*(8)} is of degree less than {DF*(8)}, theorem 3 applies. 

implying that (25) has only two zeros in Re(8) < O. Again this leaves us with only 
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one zero , 84 in Re(8) > 0, since 8=0 is always a zero and the total number of zeros 
= 4. It can also be shown that 

DA'*(O) Al+A2 

DA*(0) AIA2 


and therefore (15) reduces to 

(1+Ya + P 2ys) A A(AI +A2)
<n> 	= + + (31)1 p 84 AIAz 

where 84 is determined as the only zero in Re(8) > 0, for the polynomial: 

83 + 82{!!1+~-AI-A2} + 8 {AIA2+!!1!!2-(Al+A2)(!!1+~) + 

!!l~AIAz 
(l-p) = 0

A 

which is obtained by manipulating (30) . 

A Numerical Example 

In Table 1, the average number of jobs in an E2/H2/l system have been 
computed using equation (28). The results are compared with some simulation 
results given in (Gelenbe 1980). It can easily be observed that the simulation 
results can be highly credible . Similar computations can be carried out for other 
systems like the E2/E2/1 and the H2/H211. 

Table I. The average number of jobs in the E,IH,I1 system compared with simulation 

c; p C', 
E,IH,/ . 

<0> 81M 
E,/H,/. 

<0> exact 

0 .5 0.75 2 3.44 ± 0 .05 3.440 
4 5.67 ± 0.12 5.684 
8 10.08 ± 0 .32 10.18 

16 19.27 ± 0.83 19.177 
32 37 .39 ± 1.92 37.176 
64 73 .02 ± 4 .73 73.175 

128 146.00 ± 14 145.175 

0 .8 2 4 .67 ± 0 .09 4.667 
4 7.83 ± 0 .22 7 .861 
8 14 .11 ± 0.43 14.257 

16 27 .24 ± 1.39 27.054 
32 52.95 ± 3.02 52.653 
64 102.4 ± 8.0 103.853 

128 203.7 ± 21.0 206.252 
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5. Conclusion 

Spectral methods and Rouche 's theorem have been combined to obtain exact 
expressions for the waiting time distribution and the average number of jobs in any 
GIG/I system with rational Laplace transforms . The methodology has been 
illustrated by considering the E2/H211, the E2/~/l and the H2/H2/1 systems. 

The analysis solves a longstanding practical problem, reduces the need for 
approximations and expensive simulations . Moreover, it allows the analyst to 
evaluate the effect of service and interarrival time distributions on the perform
ance metrics. 

The present methodology is short of providing an expression for the 
probability distribution of the number of jobs in the GIG/I system. However, this 
problem will be considered separately in a sequel paper. 
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