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ASSTRACf. The frequency responses of the all three-dimensional second derivative 
coefficient sets derived by Rao el al.(1970), along with that of their simple formula 
and the theoretical re sponse of the second de rivative operation. using an infinite 
number of points average approach, are presented . The frequency responses of the 
coefficient sets reveal : (a) the superiority of the coefficient se ts derived following 
Peters' approach over those sets derived following Elkins' approach. (b) the 
superiority of the coefficient sets derived with a weight age of 1Ir" to all circles over 
those derived with a weightage of IIr' or without any weight age to all circle s. (c) that 
many coeficient sets derived following Peters' approach give more accurate results 
than the simple formula. and also (d) the coefficient se ts derived with preference to 
central point give better results than those derived with no preference to the central 

point. 

However. for the calculation of lhe second derivative . two new weight 
coefficient sets which use the least possible number of circles for obtaining average 
values and at the same time yield good results are developed b)' making use of 
Richardson's improvement formula of the derivati ve . We also present a comparative 
picture of Ihe frequency responses of the derived se ts . along with that of the besl sel 
de rived by Rao el aJ. 

The second derivative method of interpreting gravity data, although its use is 
justifable only data of high accuracy , offers a simple routine method of locating 
some types of geologic anomalies of importance in oil and mineral exploration. 
The analytical method of calculation of the second vertical derivative involves 
summation of a number of products of the average gravity values over circles of 
different radii with their corresponding weight coefficients. Weight coefficient sets 
have been proposed by Peters (1949) , Henderson and Zietz (1949), Elkins (1951) , 
Baranov (1953), Rosenbach (1953) , and Rao et al. (1970). In all the methods, the 
average gravity value g(r) over a circle of radius r is expressed in terms of an 
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infinite series as 

(1) 

where 
4 
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For calculation of the second derivative, the infinite series is truncated after a 
certain number of terms and the resulting expression is solved either by a 
least-squares technique or by evaluation of simultaneous equations in terms of the 
averages of gravity values over circles of different radii . 

The grid systems used in the investigation carried out by Rao et al. (1970) 
consist of circles as defined by Peters (1949). They differ from one another in the 
number of circles and their radii. The number of ring systems used in their 
investigation is 5. Six sets of coefficients are obtained for a given ring system under 
Peters' approach. Similar sets of coefficients derived by Elkins' approach are also 
obtained by Rao et al. for a given ring system. Thus in total 60 sets of coefficients 
are obtained . They also derived a simple formula which utilizes the average of the 
anomalies around a single circle and the anomaly at the central point. In all cases , 
except in the case of the simple formula, the coefficients are derived by a 
least-squares technique . The numerical values of the derived sets of coefficients 
are given in Table 1 and 2 in Rao et al. (1970). 

The relative accuracy of the coefficient sets thus obtained was examined by 
Rao et al. (1970) as follows: 

The gravity anomalies of two spheres of depth 4 units and 8 units, 
respectively , are calculated. The coefficient sets are then applied to the anomalies 
thus calculated at four different points , one immediately above the center of the 
body and the other at distances of 4 ,8, and 12 units from the origin . The 
percentage errors are then obtained from the theoretical and the calculated second 
derivative values at the above mentioned points. It is evident that Rao et al. 
technique is highly subjective because the results depend only on a few points of 
the plane of observation and on specific types of bodies with limiting depths. 

The second derivative operation on gravity or magnetic data acts as a 
numerical filter. Therefore, frequency analysis makes it possible to judge the 
accuracy of a coefficient set by matching its amplitude response with the 
theoretical amplitude response. 

The purpose of this paper is to judge the accuracy of all three-dimensional 
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second derivative coefficient sets derived by Rao et a1. (1970) (in total 60 sets of 
coefficients) using the method of frequency analysis; and to develop, for the 
calculation of the second derivative, weight coefficient sets which use the least 
possible number of circles for obtaining average gravity values and at the same 
time yield good results. We have found suitable weight sets by making use of 
Richardson's formula (Maron 1982). We also present a compartive picture of the 
frequency responses of the derived sets, along with those of the existing coefficient 
sets . 

Richardson's Improvement Formula 

Richardson's formula can be used to produce an improved estimate from two 
known estimates. This important formula is described in Maron (1982); it is 
applied to the approximations of derivatives and integrals as well as to the solution 
of differential equations . Here, we show how to use it to obtain an improved 
approximation of the second derivative of the gravity field from two known 
approximations of the field. 

Suppose that gzzCh) is an O(hn) approximation of the exact second derivative 
of gravity gzz and we use it to get two approximations gzzCh) and gzzChlarger)' where 
h is the grid spacing. Then an improved approximation of the exact second 
derivative (gzz) is given by Richardson's formula as 

qn gzz (h) - gzz(hlarger) 
(gzzCh) ) 1 = (2)

qn _ 1 

where 

hlarger 
q = 

h 

Since gzzCh) is an O(hn) approximation of gzz, then gzzChL is mth order, that 
IS, 

(3) 

In this case we can use (2) to get still higher-order approximations (Maron 1982), 

(gzz(h»)2 = qm(gzz(h»)l - (gzz(hlarger»)I (4) 
qm - 1 

Thus , knowing gzz(h), q, n, and m, one can obtain improved approximations 
of the exact second derivative gzz by making use of Richardson 's improvement 
formula. Note that Richardson's formula can be used whenever we know n, even if 
we do not know m (Maron 1982). In this important formula, n depends only on the 
approximating formula gzzCh), where q depends on the two stepsizes used. 
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Notation 

Following Rao et al. (1970), the following notation has been used throughout: 

Elkins' type: The coefficient sets derived by Rao et al. representing the 
average radial gravity g(r), as 

(5) 

Peters' type: The coefficient sets representing the average radial gravity: 

(6) 

P: Preference to central point: The coefficients derived by replacing a byo 
g(O) in equations (5) and (6). 

N : No preference to central point. 

11r2:The coefficients derived where the average radial gravity for each circle 
is given a weightage of 11r2 except in the case of g(O), the anomaly at the origin, 
which is given a weightage of unity. 

11r4: The coefficients derived where the average radial gravity for each,circle 
is given a weightage of 11r4 except ... etc. 

I : The coefficients derived without any weightage to any circle. 


S or S O(h2): Coefficients derived utilizing the average of the anomalies 

around a single circle and the anomaly at the central point. 

S O(h4): The first improved coefficients derived using Richardson's formula. 

S O(h6) : The second improved coefficients derived using Richardson's 
formula. 

O(hn): The power of terms neglected In the approximation. 

h : The spacing between stations. 


gzz: Exact second vertical derivative of gravity. 


gzz(h): Approximate second vertical derivative of gravity. 


ul2 and vl2: The frequencies in cycles per unit of length in the x and y directions 
2 + v2respectively, where A2 = u . 
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Frequency Analysis of Previously Proposed Set of 

Weights with new Improvements 


The general expression derived by Rao et ai. (1970) for calculating the second 
vertical derivative of gravity gzz(h) from the observed Bouguer gravity data using 
Peters' approach and Elkins' approach, can be written as 

with 

(7) 

0=0 

For the sake of comparison, we must calculate the amplitude response 
functions of equation (7). To calculate the Fourier transform of the average 
gravity value g(r) over a circle of radius r, two different approaches are in use: (a) 
an infinite number of points (Mesko 1965) and (b) a finite number of points 
(Swartz 1954). Because of technical difficulties, we will use in this work the infinite 
number of points average approach, as described by Mesko (1965). 

The amplitude responses of the derived coefficient sets proposed previously 
by Rao et ai. (1970) and their simple formula coefficient set are computed and the 
corresponding amplitude responses, along with the theoretical response of the 
second derivative operation are shown in Figures 1-5. 

The frequency responses of the coefficient sets (Figs. 1-5) reveal: 

(1) 	The superiority of the coefficient sets derived following Peters' approach 
over those sets derived following Elkins' approach when using the same 
ring system. 

(2) 	The superiority of the coefficient sets derived with a weightage of lIr4 to 
all circles over those derived with a weightage of l/r2 or without any 
weightage to all circles. 

(3) 	That many coefficient sets derived following Peters' approach give more 
accurate results than the simple formula. However, the superiority of the 
coefficient set derived in the simple formula over all coefficient sets 
derived following Elkins' approach is clear. 

(4) 	The coefficient sets derived with preference to central point give better 
results than those derived with no preference to the central point, when 
using the same ring system and the same weightage to the circles. 

(5) 	The coefficient sets derived using small ring system give more accurate 
results than those sets derived using large ring system when using the 
same approach and the same weightage to all circles. 



Fig. 1. Amplitude responses of previously proposed set of weights , The grid system consists of the 
central point and the circles of radii 1, V'2, and V5. 
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Fig. 2. Amplitude responses of previously proposed set of weights. The grid system consists of the 
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central point and the circles of radii 1, V2: and vs: and v'8.5. 
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Fig. 3. Amplitude responses of previously proposed set of weights. The grid system consists of (he 
central point and the circles of radii 1, V2. ~ \18"3", and v'17. 
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It thus evident that the coefficient set derived following Peters ' approach with 
a weightage of 1Ir4 to the circles, 1, vz: and \l5and with preference to the central 
point is the best among the other coefficient sets including also the coefficient set 
of the simple formul. It is also clear that Peters' method (1949) and Elkins' method 
(1951) are not completely objective because the results depend to a considerable 
degree on the operator's judgement in deciding which weightages to the cirlces to 
use. 

However, for the calculation of the second derivative, new weight coefficient 
sets which use the least possible number of circles for obtaining average values and 
at the same time yield good results can be developed by making use of 
Richardson 's improvement formula of the derivatives (Maron 1982). 

Let the plane of observation be horizontal and the gravity anomaly g(x,y,z) be 
continuous and infinitely differentiable at all the points of the free space z = 0. 
Let g(x,y,z) satisfy Laplace's equation 

gxx + gyy + gzz = 0, (8) 
or 

(9) 

which provides a simple criterion to calculate the second vertical derivative of a 
three-dimensional feature from the observed gravity data. 

Let P(x ,y) be the point at which the second vertical derivative is to be 
computed . Let us cover the whole area with a mesh of square grids of spacing h, 
with P(x,y) as one of the corners of the map over a three-dimensional body . Let 
g(x,y+h), g(x,y-h), g(x+h,y), g(x-h ,y) , and g(x,y) be the anomalies at five 
points over the body (Fig. 6). Then using Laplace 's equation and by making use of 

g(x ­ g(x+ h,y) 

g(x,y+h) 

h,Y) g(x ,y) 

g(x,y-h) 

Fig. 6. A square grid with spacing h . g(x ,y+h), g(x+h,y), g(x,y-h), g(x-h,y), and g(x ,y) a re the 
gravity anomalies at five points. 
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Taylor's formula, we can prove that 

(10) 

or 

(11) 

Since (gzz(h)Lis an O(h2) approximation of the exact second derivative gzz, 
we use it to get two approximations gzz(h)o and gzz(hlarger)' Then an improved 
approximation of gzz is given by Richardson's formula as 

q2(gzz(h»)0 - (gzz(hlarger) )0 
(12)q2 _ 1 

where 

The (gzz(h»)1 is now an O(h4) approximation of the exact second derivative 
gzz. that is 

(13) 

In this case we can use again Richardson's formula to get still higher-order 
approximation which is more accurate than those given in (10) and (12), 

q4(gzz(h»), - (gzzChlarger»)' 
(14)

q4 _ 1 

where again 

and so on. 

Then for practical use , (12) and (14) with q 2 , and hlarger 2h, give 

h2(gzz(h»)1 = 5.00000000 g(O) 

-5.33333333 g(h) 

+0.33333333 g(2h) (15) 
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and 

5.25000000 g(O) 

-5.68888889 g(h) 

+0.44444444 g(2h) 

-0.00555555 g( 4h) (16) 

for the first and the second improvements of the second derivative of gravity 
operation, respectively. The amplitude responses of equations (10, (15), and (16) 
along with that of the best set derived by Rao et a1. (1970) are shown in Fig. 7, 
using an infinite number of points average approach. 

Discussion of the Results 

It can be seen that the amplitude responses of the coefficient sets developed 
by the help of Taylor series and Richardson's improvement formula (S O(h4) and 
S O(h6), Fig. 7) are close to the theoretical amplitude response of the second 
derivative operation. It is clear that the amplitude response of the first improved 
approximation set (S O(h4)) is better than the amplitude response of the 
coefficient set derived from the simple formula (S O(h2)), and the amplitude 
response of the second improved approximation set (S O(h6)) is the best among 
them. This indicates that further applications of Richardson's formula can be used 
to obtain more accurate large filters, if required. It is also established that, in spite 
of the use of the same number of rings, the Richardson's approximation coefficient 
sets estimate the second derivative more accurately than do Rao et a1. 
approximation sets. 

Conclusion 

The present paper confirms the basic idea of several authors on the usefulness 
of frequency analysis in judging the coefficient sets of the second derivative of 
gravity. The second derivative coefficient sets, developed by using Taylor series 
and Richardson's improvement formula and those sets given by Rao et a1. (1970), 
are analyzed in the frequency domain. Frequency analysis clearly reveals that 
Richardson's approximation sets provide an improvement, in the sense of their 
close fit to the theoretical second derivative response, over the previously 
proposed coefficient sets. Thus, it has been established that, in spite of the use of 
the same number of rings, the Richardson's approximation coefficient sets 
estimate the second derivative more accurately than do Rao et a1. approximation 
sets. It is also emphasized that no rigorous calculations are used in deriving our 
new coefficient sets. This illustrates the desirability of the present approach 
compared to the other approaches (Peters 1949, Elkins 1951, Rao et a1. 1970) 
which use tedious techniques while computing second derivative coefficient sets. 



48 	 E.M . Abdelrahman el al. 

10 

··theoretical9 

8 

.. 80(h6 )7 
· 80(h4

)
/'. 1 

y p-­
w 6 '/ r" 

v0 
::J 

f ­ 5:J 
Cl. 
~ 
<{ 4 

3 

2 

o~~--~----~----~----~--
It/4 It/2 J ~/4 

Fig, 7, 	 A comparative picture of the frequency responses of present derived se ts of weights along with 
the best of those of previously proposed set of weight~ . 

References 

Baranov, v, (1953) Calcul du gradient vertical du champ de gravite on du champ magnetique. Mesure a 
la surface du sol: Geophys. Prosp. , 1: 171-19l. 

Elkins, T.A . (1951) The second derivative method of gravity interpretation: Geophysics, 16: 29-50. 

Henderson, R.G., and Zietz, 1. (1949) The computation of second vertical derivatives of geomagnetic 
fields: Geophysics. 14: 508-516. 

Maron, M.J. (1982) Numerical analysis , A practical approach: Macmilla n Publishing Co ., Inc. , New 
York, pp. 273-290. 

Mesko, A. (1965) Some notes concerning the frequency analysis for gravity interpretation: Geophysc. 
Prosp. 13: 475-488. 

Peters, L.J. (1949) The direct approach to magnetic interpreta tion and its practical applications : 
Geophysics, 14: 290-319, 

Rao, B.S.R., Murthy, R.I.V., and Reddy, S.J. (1970) A simple formula for the second derivative 
method of interpre tation: Pure and Applied Geophysics , 80:(3): 5-26. 

Rosenbach, O . (1953) A contribution to the computation of the second derivative from gravity data: 
Geophysics, 18: 894-912. 

Swartz, C.A. (1954) Some geometrical properties of regiooal maps: Geophysics, 19: 46-70 . 

(Received 1711011987; 
in revised form 1011211988) 



49 A Comp arative Study of the Freque ncy Responses .. 

~~w ~U\ ~~~\~ ~)~ LI)~ 


~~\ J;' \1~4 ~~i ;S~\ ~\~ ~WI ;;;~ :.t\ 


o~~ ~uL.;,l ~ ~~~j'J1 


pi .j L,?.:l.:l.;.J1 j.;k.:J1 J.;--k il~1 LSj~ LS..l.o ~~I I~ J.5~ 

. j.jl:::J1 J~ d..:.•...i~1 ~L:JI ~~ ~U-I ..:,.,~Wl ..:,.,~~ ;ij.:l ~ 

4,;")LJ1 ..:,.,b ~L:.l1 ~I ..:,.,~W 6,A.,UI ..:,.,~ . _t I :.- t ~ LA.,. -.::...i .b- . .r-:- v---:- .J j 

~Iy' ~I -.fl ~ Jl ;ijL..:;)'~ ~.:l.:ljJl ~~I .i......1.J.:l il~~ .:l~\ 

J~ :L.....1.J..Ll1 ~jl l-S . 0.J--".:l.J~.J U~j fiL; !.\~ il..G...:;.....\ 

~I -.fl ..:,.,~L..l1 ~ ~ ~~~~~ ~):> il~~ ~I -.fl ..:,.,~W\ 

01 ' 1 I..G...:;.....L ~I -II ;;....,,;L:JI ~I ..:,.,~L.v. , ; ~ ~~ "<::'II~~ 6,A., L . .Jj i . '-? - V..T -j.r-""' - f"'"'. 
\ 

~I ..:,.,~L..l1 ~ ,,~ )lj..Ll1 )a.9 ~ j-:.f .J ~ "-I ~)~ 

~I ..:,.,~WI u~ 01 ~I ~ l:5 0..\.:>-)1 jl -:- ~)~ 0ljj\ ~I 
- J 

-.fl ~ J> ~I <t~ ~ ~j5)1 .i.hA:JI 4-i~1 ~ .J~ '}I J ..:,.,..i.>-I 
. ~j5)1 .i.hA:J1 4-i~1 ~ .J~ '}I .j .b:-t; t 

..:,.,~~ ~pi L,?.:l.:l.;.J1 j.;k.:J\ J.;--k il~~ ~\ -.!..\.b ~j 

!.\ <::': - A.k-..I ~I 1.l:::JI J~ ~L:JI ~I .:l~L ~U-I ..:,.,~WI~ y. j c..r . - .- . 

~~J~ ":"'~~I oD 01 ~I .bj 0.J--".:l.J~.J ~b~j fiL; 
..:,.,~WI o~ 01j ~~jj LSj.J ~Iy' ~ ~I -.flj ~UI ..:,.,~WI 

. .C' I :'.1 .~ L_7 
~u-- ~ ..r-­

..:,.,~~ JU:..;I .j 0.J-".:l.J~.J ~.bL.v. il~1 0\ ~I ~l J.AJj 

J):JI .j ~ Y" l-S o..u- ~l-..>. J):> il~1 i~~ ~L:JI ~I 

http:L,?.:l.:l.;.J1
http:L,?.:l.:l.;.J1


50 E .M . Abdelrahman el a/ . 

..:...~w ~~..L:>:- ~~~I I~ J 0~jll ~i D) . ~L.JI 

. jjl::J1 J~ ~L:JI ~I 


