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ABSTRACT. We obtain a general thecorem on the location of null-sets of certain typcs
of abstract polynomials in vector spaces of arbitrary dimension (finite, or otherwise).
This theorem generalizes Walsh’s two-circle theorem concerning the critical points of
rational functions of the form f/g, where f and g are complex-valued polynomials of

the same degree; and it offers an extension of Laguerre’s theorem on polar-
derivatives.

1. Introduction

Let C represent the field of complex numbers, identified as complex plane, and
let D(C) denote the family of all classical circular regions (briefly, c. r.) in C, i.e.,
all open (or closed) connected subsets of the complex plane whose boundary is a
circle or a straight line (including the empty set ¢ and the whole plane C). We
denote by m, (C) the class of all polynomials f: C — C of degree n and by Z(f) the
set of all zeros of f € i, (C). Given { € C and a polynomial f € &, (C), we define,
Marden (1966), the polar-derivative {(g,.) of f with pole L to be the polynomial

(1.1) i = fi€2) = nf(x) - (z - ) ().

The present paper rallies around the following two wellknown results of

Walsh (1921) and Laguerre (1898) stated as Theorems (20,1) and (13,1) in
Marden (1966).

Theorem 1.1

Let B, = B(c;, r;) denote the closed disk with center c; and radius r;, i=1,2. If
femn, (C) and g e n,(C) such that Z(f) C B, and Z(g) C B,, then all finite zeros of
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the derivative of f/g lie in the set:
(a) B, U B; U B,, where B, = B(c,r) and
¢ = (mc; — ncy)/ (m—n), r = (mr; + nrp) / (m—n),
provided m # n;

(b) B; U B,, provided m = n.

Theorem 1.2

If f € m,(C) and C € D(C) such that Z(f) C C, then Z(f,) C C for allL { C,
where f,(z) = ,(C,z) is the polar-derivative of f defined by (1.1).

Section 2 contains the most relevant details about generalized circular
regions, abstract polynomials and their pseudo-derivatives in the set up of vector
spaces of arbitrary dimension. These concepts are utilized in Section 3 to obtain a
general result, whose complex plane versions yield Walsh’s Theorem (1.1) (b)
and a new result that extends Laguerre’s Theorem 1.2 to a more general type of
polar-derivatives. The corresponding generalization of Theorem 1.1 (a) is in
Zaheer and Khan (1980).

2. Preliminaries

Throughout the paper we let K = Ky(i) = {zzz=a + ib;a,be K}, —i*= 1,
represent an (arbitrary) algebraically closed field of characteristic zero, with K, as
a maximal ordered subfield of K (see Bourbaki 1952, H6rmander 1954 and
Waerden 1964), so that K, = R, the field of reals, when K = C. We write K, for
the set of all non-negative elements of K,. The definition of z, Re z, Im z and |z|
for elements z £ K and the notion of K,-convexity for subsets of K automatically
come from the corresponding notions in C (by replacing the role of R by K,).
Similarly, the idea of homographic transformations of the projective field K., =
KU({x}, where « has the properties of scalar infinity, is an immediate extension
of that of linear fractional transformations of C.. We denote by D(K..) the family
of all generalized circular regions (briefly, g. c. r.) of K., a concept originally due
to Zervos (see Zervos 1960), built upon the concepts of homographic transforma-
tions and K,- convexity (see Zaheer and Alam 1980). The sets ¢, K, K., {x} and
K.— {x}, for x & K, are trivial members of D(K..).

The following results are due to Zervos (see Zervos 1960 and Zaheer and
Alam 1980).
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Proposition 2.1

Every nontrivial member of D(C.) is the open interior (or exterior) of a
circle or an open half-plane, adjoined with a connected subset (possibly empty) of
its boundary. So that the open or closed member of D(C..), restricted to C, form
the family D(C) of c.r.’s in C.

Proposition 2.2
Every homographic transformation permutes D(K..).

For full details about K and D(K..) the reader may consult Zaheer and Alam
(1980).

In the sequel, we let E denote a vector space over K of arbitrary dimension
and write E,, = EU{w}, where w has the properties of vector infinity. Also we

denote by D*(E,,) the family of all supergeneralized circular regions of E,, as
defined below, a concept introduced by Zaheer (1988).

Definition 2.3

Given SCE,,, we write
(2.1) Gs(x,y) = {p € Kt x + py € S} vV x,y ¢ E.

We say that S € D* (E,) if Gg(x,y) € D(K..) for all x,y € E.

Clearly, ¢, E, E,,, singletons {x} (and their complements in E,,) are trivial
members of D* (E,,). Since Gg(x,0) is K or ¢ according as x € S or x ¢ S (cf.
properties of w and «), we have

o & Gg(x,0) € D(K.) VxeE

and

2.2) o & Gg(x,y) VxeE yeE — {0} + e S.

Consequently,

2.3) S e D*(E,) < Gs(x,y) € D(K.) VxeE, ye E - {0}
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Remark 2.4

(I) In case E = K, we may use w and « interchangeably. (II) Some
interesting properties and examples of nontrivial members of D*(E,) have
already been discussed in Zaheer (1988).

Proposition 2.5
If S € D(K,) then S ¢ D*(K,).

Proof. Here E = K and we write w = «. If S ¢ D(K,,) then Gs(x,y) = f(S) &
D(K..) for all x,y € E (y#0), where f(c) = (o6—x)/y (for o € K..) is a homographic
transformation of K.. Hence S ¢ D*(K,) by (2.3).

The family n,(E,K) of all abstract polynomials (briefly, a.p.) of degree n, n
= 1, from E to K is defined (see Zaheer 1982, Taylor 1938, Hille and Phillips
1957) in the following way: We say that P € n,(E,K) if P: E — K such that, for
each x,y ¢ E,

24  Px+py) =% Ar(x,y)p* VpeKk,

where Ay(x,y) € K are independent of p and A,(x,y) # 0. We then define the
null-set and the faithful-set of P respectively by

Z(P)

{x ¢ E: P(x) = 0}

and

F(P) = {h € E: h # 0; A,(0,h) # 0}.

Next, given an a.p. P & n,(E,K) via (2.4) and an element h € F(P) [F(P) # ¢ as
shown in Zaheer 1982, Relation (2.3)], we define the kth pseudo-derivative P{*
of P (relative to h) to be the mapping P{¥: E — K given by

(2.5 P (x) = (k!) Ag(x,h) V x ¢ E.
First few members are denoted by Py, P, etc. If P e n (E,K) is given by (2.4) and

h & F(P), we know (see Zaheer 1982, Proposition 2.3 and Remark 2.4) that P{¥) ¢
m,-x (E,K), that

(2.6) h e F(P{) and (PW)n = P+ vk




On Theorems of Walsh and Laguerre Concerning... 5

and (see Zaheer 1982, equation (2.7)) that

n

@7 PP &+ph)=%X jG-1- G- k+ 1) Ahp~

i=

Further details (including precise references) about the above material on
a.p.’s can be found in Zaheer 1982, Section 2.

The following theorem will be needed in the sequel. It simultaneously
generalizes Lucas’ theorem (see Marden 1966, theorem (6.1)"), Zervos’ theorem
(see Zervos 1960, theorem 4, p. 360) and a result due to Zaheer (see Zaheer 1982,
theorem 3.4).

Theorem 2.6

(Zaheer 1988, Theorem 3.3). If P € n,(E,K) and S e D*(E,,) such that w ¢ S
and Z(P) C S, then Z(P¥) C SV h ¢ F(P), k = 1,2,..., n—1.

3. Principal Results

In order to avoid unnecessary trivialities, we consider only a.p.’s of degree at
least one. Two a.p.’s P,Q are called faithful if their faithful-sets are not disjoint,
ie.,

(3.1)  F(P,Q) = F(P)NF(Q) # ¢.

For example (cf.(2.6)) every pair from the collection {P, Py, P}, ..., P{""D} is
faithful. Other examples of such polynomials (not related to the same P) have
been dealt with in Zaheer 1988. In case E = K, see Remark 3.5 (II) for another
example. Given faithful a.p.’s P € n,(E,K), Q € n,(E,K) and a scalar A e K —
{0}, we observe that A P € n,(E,K), PQ € n,.,(E,K) and P = Q & nn(E,K),
where N < max {m,n}.

Definition . (3.1)

Given faithful a.p.’s P € n,(E,K), Q € n,(E,K) and scalars n, ve K — {0},
we define for each h ¢ F(P,Q) (cf. (3.1)) an a.p. R: E —» K by

(32) R=uPQ,+vAQP,

Remark (3.2)

We observe that R € nn(E,K), where N <m + n—1, and that N = m+n—1 if
and only if um + vn # 0. This is based on the following argument: Let P be
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represented by (2.4) and Q by

(33)  Qx + py) = ¥ Bu(xy)p* VpeK.

=0

»”x

Then (cf.(2.7)) for each h € F(P,Q), we have

m

(4) Q¥ (x + ph) = ¥ j(-1) ... (j—k + 1) By(x,h)p*

i=k

and

R(x + ph) = uP(x + ph) Qi (x + ph) + v Q(x + ph) P}, (x+ph)

m+n—1

= Y Cu(x,h) p*, say.

k=0
A simple calculation yields (cf. (2.4), (2.7), (3.3), (3.4))

Cm+n—1(x,h) = (“’m + Vn) An(xvh) Bm(xvh)'

Since h & F(P,Q), we conclude that A,(x,h) = A, (0,h) # 0 and B,,(x,h) =
B..(0,h) # O for all x € E (see Zaheer 1982, p. 840), and that

Ch+n—1(x,h) = C4n-1(0,h) # 0 < pm + vn # 0.

Hence,
R & tnin_1(E,K) < pm + vn # 0.

We now state and prove the main theorem which tells us about the location
of the null-set Z(R) of the a.p. R in Definition 3.1 in the case when um + vn = 0
(i.e. when degree of R is less than m+n—1 (cf. Remark (3.2)). The analogous
problem for R in case um + vn # 0 (i.e. when R € 5., 1(E,K)) has already been
done by the authors and would appear elsewhere (see Al-Rashed and Zaheer
1989 and Zaheer and Khan 1980). The analysis and treatment therein neither
apply nor carry over to the case at hand.

Theorem 3.3.

Let P,Q,R be as in Definition 3.1, with um + vn = 0. IfS,, S, e D*(E,,), with
w £ S,US, and S;NS, = ¢, such that Z(P)CS; and Z(Q)CS,, then Z(R)CS,US, V
h ¢ F(P,Q).
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Proof. On the contrary, suppose that R(x) = 0 for some x ¢ S;US, and for
some h & F(P,Q). Then

uP(x) Qn(x) + vQ(x)Pp(x) = 0.

Observe that P(x)Q(x) # 0 by choice of x and that P;(x) Qp(x) # 0 due to the fact
that Z(Py) C S; and Z(Qy) C S, by Theorem 2.6. Therefore

3.5) pQL(x) / Q(x) + VvPu(x) / P(x) = 0.

If P and Q are given by (2.4) and (3.3) then (since K is algebraically closed) we
may write

P(X + ph) = ZO Akpk An
k=

U=

(P — pp) VpeKkK,

Q(x + ph) = ¥ Bup* = B [ (p—0)  VpeK,
k=0

=F

where Ay = Ay(x,h), By = By(x,h), p; = pj(x,h), o; = oj(x,h) and (as noticed in
Remark 3.2) A, = A,(x,h) = A,(0,h) # 0 and B,, = B,,(x,h) = B,,(0,h) # 0. Put
G; = Gg(x,h) for i = 1,2 (cf. Definition 2.3). Since P(x + pjh) = 0 = Q (x + o;h),
the hypotheses on P,Q and S; imply that p;, o; # 0, = (since x,w £ $;US,) and that
0, © £ G; € D(K.) for i = 1,2. Obviously, p; € G; and o; € G,. It is known (see
Zaheer 1982, Equation (3.1), p. 844) that

Ph(x) /P(x) = — ¥ 1/p;, Qu(x)/ Q(x) = — ¥ 1o
i=1 i=1
Hence (3.5) gives

36 w¥ Vo +vy 1/ = 0.
j=1

=1

Since 0 £ G; € D(K.), the definition of D(K..) says that 8o(G;) is a Ko—convex
subset of K (i = 1,2), where 8y(p) # 1/p for p € K... Since 8y(p;) = 1/p; € 6¢(G,)
and 8o(0j) = 1/0; & 89(G2), this fact yields the following:

(I/n) 5 1/p; = 1/p € 84(G,) for some p & Gy,
j=1

(I/m) ¥ 1o; = 1o € 8¢(G;) for some o & G,.
j=1
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Note that here p,o # 0,00. Now (3.6) gives pm/o + vi/p = 0. Butm,n = 1 and p, v
# 0 with um + vn = 0. Hence um (p—o0) = 0. That is, p = 06 €G;NG; and so x +
ph = x + oh € $;NS,. This contradicts the hypothesis that S;NS, = ¢. The proof
is now complete.

Given faithful a.p.’s P € n,(E,K) and Q ex,(E,K), we define the formal
pseudo-derivative (relative to h) of the quotient P/Q by

(P/Q)y, = (QP;, — PQ})/Q? Y h € F(P,Q).

The domain of P/Q being E—Z(Q). The zeros of QP;, — PQy, which are not the
zeros of Q will be termed as the finite zeros of (P/Q)1,. In Theorem 3.3 if we take
—p =v =1and m = n, then R = QP;, — PQj, and we get the following result.

Corollary 3.4

Let P,Q, nt,(E,K) be faithful. IfS;, S,eD*(E,,), with w ¢ S;US; and $|NS, =
¢, such that Z(P)CS,; and Z(Q)CS,, then the finite zeros of the formal
pseudo-derivative of the quotient P/Q (relative to h) lie in S;US, for all h €
F(P,Q).

In order to obtain the field-analogues of the above results, we explain some
notations and terminology. Let m,(K), n = 1, be the class of all nth degree
polynomials f: K — K, given by

n

f(z) = ¥ az*, a, € K and a, # 0,
k=0

and denote by f’ the formal derivative of f (see Zaheer 1982, p. 842). Given f ¢
n.(K) and g € x,(K), define the type-m polar-derivative f, of f (relative to g) by

(3.7 fy(z) = n {(2) g'(z2) — mg(z) f'(2).
Note that the polar-derivative f; (C,z) of f (cf. (1.1)) is essentially a type-1

polar-derivative of f when g(z) = z—C.

Remark 3.5

When E = K, we record the following facts:

(I) As discussed in Zaheer 1982, Remark 2.4 (I1I), we see that m,(K) =
7ta(K,K) for n = 1, that F(f) = K—{0} for all f € n,(K), and that f;(z) = hf'(z) for
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all ze K, h e K—{0} and f & m,(K). That is, when h = 1, the pseudo-derivative f1
becomes the formal derivative f’. Furthermore, when K = C, it coincides with the
familiar derivative in calculus.

(II) By the above remark

F(f,g) = F()NF(g) = K—{0} # ¢

for all f € ,(K) and g € m,,(K). That is, every pair of polynomials from K to K is
faithful.

(1) Ifpw=n,v=—m,fen,(K)and g en,(K), we see (cf. Remarks (I) and
(11)) that the polynomial R of Theorem 3.3, withP = f,Q = gandh =1, is given
by

R = nfg’ — mgf" = f,

That is, R becomes a type-m polar-derivative of f. Furthermore, when g(z) =z —
¢ (€ € K), R becomes the polar-derivative of f.

(1V) Similarly, if f,g € 7t,(K), the formal pseudo-derivative of P/Q (with P =
f, Q = g and h = 1) in corollary 3.4 is given by

(PIQ), = (gf" — fg')g®> = (f/g)’

That is, it coincides with the formal derivative of f/g and, for K = C, it reduces to
the usual derivative of f/g via calculus.

(V) Let B = B(c,r) denote the closed ball in K with center ¢ € K and radius r
€ Ko4. Obviously, « ¢ B. It is known (see Zaheer and Alam 1980, p. 116) that B €
D(K.). Consequently, B e D*(K,,), w ¢ B, by Remark 2.4(1) and Proposition 2.5.

In view of the above remarks, we deduce the following results.

Theorem 3.6

Let f,g € my(K) and Cy, C; e D(K,,) such that o ¢ C,UC, and C,NC, = ¢. If
Z(f)CC, and Z(g)CC,, then the finite zeros of the formal derivative of f/g lie in
C,UC,. In particular, C, and C, may be taken as closed balls in K.

Proof. The proof follows from Proposition 2.5, Corollary 3.4 and Remarks
3.5 (), (IV) and (V).
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For K = C, the above theorem furnishes an improved form of Walsh’s
Theorem 1.1 (b), in the sense that closed disks form a proper subfamily of D(C,,)
as seen in Proposition 2.1.

Theorem 3.7

Given f € n,(K), g € n,(K), let f,(z) be the type-m polar-derivative of f
relative to g defined by (3.7). If C, C, e D(K,,), with w ¢ C;UC, and C;NC, = ¢,
such that Z(f)CC, and Z(g)CC,, then

Z(f,) C C,UC,

Proof. Theorem 3.3, Proposition 2.5 and Remark 3.5 (III) combine to yield
the desired result.

The last theorem provides a new result on the zeros of type-m polar-
derivatives of polynomials f € 7t,(K) for m = 1, whereas Laguerre’s Theorem 1.2
as well as its generalization to the field K (see Zervos 1960, Corollary 2.8) deals
with type-1 polar-derivatives only.
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