On Theorems of Walsh and Laguerre Concerning Zeros of Polynomials

Abdallah M. Al-Rashed and Neyamat Zaheer
Department of Mathematics, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia

Abstract

We obtain a general theorem on the location of null-sets of certain types of abstract polynomials in vector spaces of arbitrary dimension (finite, or otherwise). This theorem generalizes Walsh's two-circle theorem concerning the critical points of rational functions of the form f / g, where f and g are complex-valued polynomials of the same degree; and it offers an extension of Laguerre's theorem on polarderivatives.

1. Introduction

Let \mathbf{C} represent the field of complex numbers, identified as complex plane, and let $D(\mathbf{C})$ denote the family of all classical circular regions (briefly, c. r.) in \mathbf{C}, i.e., all open (or closed) connected subsets of the complex plane whose boundary is a circle or a straight line (including the empty set ϕ and the whole plane C). We denote by $\pi_{n}(\mathbf{C})$ the class of all polynomials $f: \mathbf{C} \boldsymbol{C}$ of degree n and by $Z(f)$ the set of all zeros of $f \varepsilon \pi_{n}(\mathbf{C})$. Given $\zeta \varepsilon \mathbf{C}$ and a polynomial $f \varepsilon \pi_{n}(\mathbf{C})$, we define, Marden (1966), the polar-derivative $f(\zeta,$.$) of \mathrm{f}$ with pole ζ to be the polynomial

$$
\begin{equation*}
f_{1}(z) \equiv f_{1}(\zeta, z)=n f(z)-(z-\zeta) f^{\prime}(z) \tag{1.1}
\end{equation*}
$$

The present paper rallies around the following two wellknown results of Walsh (1921) and Laguerre (1898) stated as Theorems $(20,1)$ and $(13,1)$ in Marden (1966).

Theorem 1.1
Let $\mathrm{B}_{\mathrm{i}} \equiv \mathrm{B}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}\right)$ denote the closed disk with center c_{i} and radius $\mathrm{r}_{\mathrm{i}}, \mathrm{i}=1$, 2. If $\mathrm{f} \varepsilon \pi_{\mathrm{n}}(\mathbf{C})$ and $\mathrm{g} \varepsilon \pi_{\mathrm{m}}(\mathbf{C})$ such that $\mathrm{Z}(\mathrm{f}) \subseteq \mathrm{B}_{1}$ and $\mathrm{Z}(\mathrm{g}) \subseteq \mathrm{B}_{2}$, then all finite zeros of
the derivative of f / g lie in the set:
(a) $\mathrm{B}_{\mathrm{o}} \cup \mathrm{B}_{1} \cup \mathrm{~B}_{2}$, where $\mathrm{B}_{\mathrm{o}} \equiv \mathrm{B}(\mathrm{c}, \mathrm{r})$ and

$$
\mathrm{c}=\left(\mathrm{mc}_{1}-\mathrm{nc}_{2}\right) /(\mathrm{m}-\mathrm{n}), \mathrm{r}=\left(\mathrm{mr}_{1}+\mathrm{nr}_{2}\right) /(\mathrm{m}-\mathrm{n}),
$$

provided $\mathrm{m} \neq \mathrm{n}$;
(b) $\mathrm{B}_{1} \cup \mathrm{~B}_{2}$, provided $\mathrm{m}=\mathrm{n}$.

Theorem 1.2
If $\mathrm{f} \varepsilon \pi_{\mathrm{n}}(\mathbf{C})$ and $\mathrm{C} \varepsilon D(\mathbf{C})$ such that $Z(f) \subseteq C$, then $Z\left(\mathrm{f}_{1}\right) \subseteq \mathbf{C}$ for all $\zeta \not \equiv \mathbf{C}$, where $f_{1}(z) \equiv f_{1}(\zeta, z)$ is the polar-derivative of f defined by (1.1).

Section 2 contains the most relevant details about generalized circular regions, abstract polynomials and their pseudo-derivatives in the set up of vector spaces of arbitrary dimension. These concepts are utilized in Section 3 to obtain a general result, whose complex plane versions yield Walsh's Theorem (1.1) (b) and a new result that extends Laguerre's Theorem 1.2 to a more general type of polar-derivatives. The corresponding generalization of Theorem 1.1 (a) is in Zaheer and Khan (1980).

2. Preliminaries

Throughout the paper we let $K=K_{o}(i)=\left\{z: z=a+i b ; a, b \varepsilon K_{o}\right\},-i^{2}=1$, represent an (arbitrary) algebraically closed field of characteristic zero, with K_{o} as a maximal ordered subfield of K (see Bourbaki 1952, Hörmander 1954 and Waerden 1964), so that $K_{o}=\mathbf{R}$, the field of reals, when $K=C$. We write K_{o+} for the set of all non-negative elements of K_{0}. The definition of $z, \operatorname{Re} z, \operatorname{Im} z$ and $|z|$ for elements $z \in K$ and the notion of K_{0}-convexity for subsets of K automatically come from the corresponding notions in \mathbf{C} (by replacing the role of \mathbf{R} by K_{o}). Similarly, the idea of homographic transformations of the projective field $\mathbf{K}_{\infty} \equiv$ $\mathrm{K} \cup\{\infty\}$, where ∞ has the properties of scalar infinity, is an immediate extension of that of linear fractional transformations of \mathbf{C}_{∞}. We denote by $\mathrm{D}\left(\mathrm{K}_{\infty}\right)$ the family of all generalized circular regions (briefly, g. c. r.) of K_{∞}, a concept originally due to Zervos (see Zervos 1960), built upon the concepts of homographic transformations and K_{o} - convexity (see Zaheer and Alam 1980). The sets $\phi, \mathrm{K}, \mathrm{K}_{\infty},\{\mathrm{x}\}$ and $\mathrm{K}_{\infty}-\{\mathrm{x}\}$, for $\mathrm{x} \varepsilon \mathrm{K}$, are trivial members of $\mathrm{D}\left(\mathrm{K}_{\infty}\right)$.

The following results are due to Zervos (see Zervos 1960 and Zaheer and Alam 1980).

Proposition 2.1

Every nontrivial member of $\mathrm{D}\left(\mathbf{C}_{\infty}\right)$ is the open interior (or exterior) of a circle or an open half-plane, adjoined with a connected subset (possibly empty) of its boundary. So that the open or closed member of $\mathrm{D}\left(\mathbf{C}_{\infty}\right)$, restricted to \mathbf{C}, form the family $D(\mathbf{C})$ of c.r.'s in C .

Proposition 2.2

Every homographic transformation permutes $\mathrm{D}\left(\mathrm{K}_{\infty}\right)$.
For full details about K and $\mathrm{D}\left(\mathrm{K}_{\infty}\right)$ the reader may consult Zaheer and Alam (1980).

In the sequel, we let E denote a vector space over K of arbitrary dimension and write $\mathrm{E}_{\omega} \equiv \mathrm{E} \cup\{\omega\}$, where ω has the properties of vector infinity. Also we denote by $\mathrm{D}^{*}\left(\mathrm{E}_{\omega}\right)$ the family of all supergeneralized circular regions of E_{ω} as defined below, a concept introduced by Zaheer (1988).

Definition 2.3
Given $S \subseteq E_{\omega}$, we write

$$
\begin{equation*}
\mathrm{G}_{\mathrm{S}}(\mathrm{x}, \mathrm{y})=\left\{\rho \varepsilon \mathrm{K}_{\infty}: \mathrm{x}+\rho \mathrm{y} \varepsilon \mathrm{~S}\right\} \quad \forall \mathrm{x}, \mathrm{y} \varepsilon \mathrm{E} . \tag{2.1}
\end{equation*}
$$

We say that $S \varepsilon D^{*}\left(E_{\omega}\right)$ if $G_{S}(x, y) \varepsilon D\left(K_{\infty}\right)$ for all $x, y \varepsilon E$.
Clearly, $\phi, \mathrm{E}, \mathrm{E}_{\omega}$, singletons $\{\mathrm{x}\}$ (and their complements in E_{ω}) are trivial members of $D^{*}\left(E_{\omega}\right)$. Since $G_{S}(x, 0)$ is K or ϕ according as $x \varepsilon S$ or $x \notin S$ (cf. properties of ω and ∞), we have

```
\(\infty \varepsilon \mathrm{G}_{\mathrm{S}}(\mathrm{x}, 0) \varepsilon \mathrm{D}\left(\mathrm{K}_{\infty}\right) \quad \forall \mathrm{x} \varepsilon \mathrm{E}\)
```

and

$$
\begin{equation*}
\infty \varepsilon \mathrm{G}_{\mathbf{S}}(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in \mathrm{E}, \mathrm{y} \varepsilon \mathrm{E}-\{0\} \Leftrightarrow \omega \in \mathrm{S} . \tag{2.2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\mathrm{S} \varepsilon \mathrm{D}^{*}\left(\mathrm{E}_{\omega}\right) \Leftrightarrow \mathrm{G}_{\mathrm{S}}(\mathrm{x}, \mathrm{y}) \in \mathrm{D}\left(\mathrm{~K}_{\infty}\right) \quad \forall \mathrm{x} \varepsilon \mathrm{E}, \mathrm{y} \varepsilon \mathrm{E}-\{0\} \tag{2.3}
\end{equation*}
$$

Remark 2.4

(I) In case $E=K$, we may use ω and ∞ interchangeably. (II) Some interesting properties and examples of nontrivial members of $\mathrm{D}^{*}\left(\mathrm{E}_{\omega}\right)$ have already been discussed in Zaheer (1988).

Proposition 2.5

If $\mathrm{S} \varepsilon \mathrm{D}\left(\mathrm{K}_{\omega}\right)$ then $\mathrm{S} \varepsilon \mathrm{D}^{*}\left(\mathrm{~K}_{\omega}\right)$.
Proof. Here $\mathrm{E}=\mathrm{K}$ and we write $\omega \equiv \infty$. If $\mathrm{S} \varepsilon \mathrm{D}\left(\mathrm{K}_{\omega}\right)$ then $\mathrm{G}_{\mathrm{S}}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{S}) \varepsilon$ $D\left(K_{\infty}\right)$ for all $x, y \varepsilon E(y \neq 0)$, where $f(\sigma)=(\sigma-x) / y\left(\right.$ for $\left.\sigma \varepsilon K_{\infty}\right)$ is a homographic transformation of K_{∞}. Hence $\mathrm{S} \varepsilon \mathrm{D}^{*}\left(\mathrm{~K}_{\omega}\right)$ by (2.3).

The family $\pi_{n}(\mathrm{E}, \mathrm{K})$ of all abstract polynomials (briefly, a.p.) of degree n, n $\geqslant 1$, from E to K is defined (see Zaheer 1982, Taylor 1938, Hille and Phillips 1957) in the following way: We say that $P \varepsilon \pi_{n}(E, K)$ if $P: E \rightarrow K$ such that, for each $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{E}$,

$$
\begin{equation*}
P(x+\rho y)=\sum_{k=0}^{n} A_{k}(x, y) \rho^{k} \quad \forall \rho \varepsilon K \tag{2.4}
\end{equation*}
$$

where $A_{k}(x, y) \varepsilon K$ are independent of ρ and $A_{n}(x, y) \not \equiv 0$. We then define the null-set and the faithful-set of P respectively by

$$
Z(P)=\{x \in E: P(x)=0\}
$$

and

$$
F(P)=\left\{h \varepsilon E: h \neq 0 ; A_{n}(0, h) \neq 0\right\}
$$

Next, given an a.p. $\mathrm{P} \varepsilon \pi_{\mathrm{n}}(\mathrm{E}, \mathrm{K})$ via (2.4) and an element $\mathrm{h} \varepsilon \mathrm{F}(\mathrm{P})[\mathrm{F}(\mathrm{P}) \neq \phi$ as shown in Zaheer 1982, Relation (2.3)], we define the kth pseudo-derivative $\mathrm{P}_{\mathrm{h}}^{(\mathrm{k})}$ of P (relative to h) to be the mapping $\mathrm{P}_{\mathrm{h}}^{(\mathrm{k})}: \mathrm{E} \rightarrow \mathrm{K}$ given by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{h}}^{(\mathrm{k})}(\mathrm{x})=(\mathrm{k}!) \mathrm{A}_{\mathrm{k}}(\mathrm{x}, \mathrm{~h}) \quad \forall \mathrm{x} \in \mathrm{E} . \tag{2.5}
\end{equation*}
$$

First few members are denoted by $P_{h}^{\prime}, P_{h}^{\prime \prime}$, etc. If $P \varepsilon \pi_{n}(E, K)$ is given by (2.4) and $h \in F(P)$, we know (see Zaheer 1982, Proposition 2.3 and Remark 2.4) that $P_{h}^{(k)} \varepsilon$ $\pi_{n-k}(E, K)$, that

$$
\begin{equation*}
\mathrm{h} \varepsilon \mathrm{~F}\left(\mathrm{P}_{\mathrm{h}}^{(\mathrm{k})}\right) \text { and }\left(\mathrm{P}_{\mathrm{h}}^{(\mathrm{k})}\right)_{\mathrm{h}}^{\prime}=\mathrm{P}_{\mathrm{h}}^{(\mathrm{k}+1)} \quad \forall \mathrm{k} \tag{2.6}
\end{equation*}
$$

and (see Zaheer 1982, equation (2.7)) that

$$
\begin{equation*}
P_{h}^{(k)}(x+\rho h)=\sum_{j=k}^{n} j(j-1) \cdots(j-k+1) A_{j}(x, h) \rho^{j-k} \tag{2.7}
\end{equation*}
$$

Further details (including precise references) about the above material on a.p.'s can be found in Zaheer 1982, Section 2.

The following theorem will be needed in the sequel. It simultaneously generalizes Lucas' theorem (see Marden 1966, theorem (6.1)'), Zervos' theorem (see Zervos 1960, theorem 4, p. 360) and a result due to Zaheer (see Zaheer 1982, theorem 3.4).

Theorem 2.6

(Zaheer 1988, Theorem 3.3). If $\mathrm{P} \varepsilon \pi_{\mathrm{n}}(\mathrm{E}, \mathrm{K})$ and $\mathrm{S} \varepsilon \mathrm{D}^{*}\left(\mathrm{E}_{\omega}\right)$ such that $\omega \notin \mathrm{S}$ and $\mathrm{Z}(\mathrm{P}) \subseteq \mathrm{S}$, then $\mathrm{Z}\left(\mathrm{P}_{\mathrm{h}}^{(\mathrm{k})}\right) \subseteq \mathrm{S} \forall \mathrm{h} \varepsilon \mathrm{F}(\mathrm{P}), \mathrm{k}=1,2, \ldots, \mathrm{n}-1$.

3. Principal Results

In order to avoid unnecessary trivialities, we consider only a.p.'s of degree at least one. Two a.p.'s P,Q are called faithful if their faithful-sets are not disjoint, i.e.,

$$
\begin{equation*}
\mathrm{F}(\mathrm{P}, \mathrm{Q}) \equiv \mathrm{F}(\mathrm{P}) \cap \mathrm{F}(\mathrm{Q}) \neq \phi \tag{3.1}
\end{equation*}
$$

For example (cf.(2.6)) every pair from the collection $\left\{P, P_{h}^{\prime}, P_{h}^{\prime \prime}, \ldots, P_{h}^{(n-1)}\right\}$ is faithful. Other examples of such polynomials (not related to the same P) have been dealt with in Zaheer 1988. In case $\mathrm{E}=\mathrm{K}$, see Remark 3.5 (II) for another example. Given faithful a.p.'s $P \varepsilon \pi_{n}(E, K), Q \varepsilon \pi_{m}(E, K)$ and a scalar $\lambda \varepsilon K-$ $\{0\}$, we observe that $\lambda P \varepsilon \pi_{n}(E, K), P Q \varepsilon \pi_{n+m}(E, K)$ and $P \pm Q \varepsilon \pi_{N}(E, K)$, where $N \leqslant \max \{m, n\}$.

Definition. (3.1)

Given faithful a.p.'s $P \varepsilon \pi_{n}(E, K), Q \varepsilon \pi_{m}(E, K)$ and scalars $\mu, v \varepsilon K-\{0\}$, we define for each $h \in F(P, Q)$ (cf. (3.1)) an a.p. $R: E \rightarrow K$ by

$$
\begin{equation*}
\mathrm{R}=\mu \mathrm{P} \mathrm{Q}_{\mathrm{h}}^{\prime}+\nu \mathrm{Q} \mathrm{P}_{\mathrm{h}}^{\prime} \tag{3.2}
\end{equation*}
$$

Remark (3.2)
We observe that $R \varepsilon \pi_{N}(E, K)$, where $N \leqslant m+n-1$, and that $N=m+n-1$ if and only if $\mu \mathrm{m}+\boldsymbol{\mathrm { n }} \neq 0$. This is based on the following argument: Let P be
represented by (2.4) and Q by

$$
\begin{equation*}
Q(x+\rho y)=\sum_{k=0}^{m} B_{k}(x, y) \rho^{k} \quad \forall \rho \varepsilon K . \tag{3.3}
\end{equation*}
$$

Then (cf.(2.7)) for each $h \in F(P, Q)$, we have

$$
\begin{equation*}
Q_{h}^{(k)}(x+\rho h)=\sum_{j=k}^{m} j(j-1) \ldots(j-k+1) B_{j}(x, h) \rho^{j-k} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{aligned}
& R(x+\rho h)=\mu P(x+\rho h) Q_{h}^{\prime}(x+\rho h)+v Q(x+\rho h) P_{h}^{\prime}(x+\rho h) \\
& =\sum_{k=0}^{m+n-1} C_{k}(x, h) \rho^{k}, \text { say } .
\end{aligned}
$$

A simple calculation yields (cf. (2.4), (2.7), (3.3), (3.4))

$$
C_{m+n-1}(x, h)=(\mu m+\nu n) A_{n}(x, h) B_{m}(x, h) .
$$

Since $h \varepsilon F(P, Q)$, we conclude that $A_{n}(x, h) \equiv A_{n}(0, h) \neq 0$ and $B_{m}(x, h) \equiv$ $\mathrm{B}_{\mathrm{m}}(0, \mathrm{~h}) \neq 0$ for all $\mathrm{x} \varepsilon \mathrm{E}$ (see Zaheer 1982, p. 840), and that

$$
C_{m+n-1}(x, h) \equiv C_{m+n-1}(0, h) \neq 0 \Leftrightarrow \mu m+\nu n \neq 0 .
$$

Hence,

$$
\mathrm{R} \varepsilon \pi_{\mathrm{m}+\mathrm{n-1}}(\mathrm{E}, \mathrm{~K}) \Leftrightarrow \mu \mathrm{m}+v \mathrm{n} \neq 0 .
$$

We now state and prove the main theorem which tells us about the location of the null-set $Z(R)$ of the a.p. R in Definition 3.1 in the case when $\mu m+v n=0$ (i.e. when degree of R is less than $\mathrm{m}+\mathrm{n}-1$ (cf. Remark (3.2)). The analogous problem for R in case $\mu \mathrm{m}+v \mathrm{n} \neq 0$ (i.e. when $R \varepsilon \pi_{m+n-1}(E, K)$) has already been done by the authors and would appear elsewhere (see Al-Rashed and Zaheer 1989 and Zaheer and Khan 1980). The analysis and treatment therein neither apply nor carry over to the case at hand.

Theorem 3.3.
Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ be as in Definition 3.1, with $\mu \mathrm{m}+v \mathrm{n}=0$. If $\mathrm{S}_{1}, \mathrm{~S}_{2} \varepsilon \mathrm{D}^{*}\left(\mathrm{E}_{\omega}\right)$, with $\omega \notin \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ and $\mathrm{S}_{1} \cap \mathrm{~S}_{2}=\phi$, such that $\mathrm{Z}(\mathrm{P}) \subseteq \mathrm{S}_{1}$ and $\mathrm{Z}(\mathrm{Q}) \subseteq \mathrm{S}_{2}$, then $\mathrm{Z}(\mathrm{R}) \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \forall$ $\mathrm{h} \varepsilon \mathrm{F}(\mathrm{P}, \mathrm{Q})$.

Proof. On the contrary, suppose that $\mathrm{R}(\mathrm{x})=0$ for some $\mathrm{x} \not \equiv \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ and for some $h \in F(P, Q)$. Then

$$
\mu \mathrm{P}(\mathrm{x}) \mathrm{Q}_{\mathrm{h}}^{\prime}(\mathrm{x})+\nu \mathrm{Q}(\mathrm{x}) \mathrm{P}_{\mathrm{h}}^{\prime}(\mathrm{x})=0
$$

Observe that $\mathrm{P}(\mathrm{x}) \mathrm{Q}(\mathrm{x}) \neq 0$ by choice of x and that $\mathrm{P}_{\mathrm{h}}^{\prime}(\mathrm{x}) \mathrm{Q}_{\mathrm{h}}^{\prime}(\mathrm{x}) \neq 0$ due to the fact that $\mathrm{Z}\left(\mathrm{P}_{\mathrm{h}}^{\prime}\right) \subseteq \mathrm{S}_{1}$ and $\mathrm{Z}\left(\mathrm{Q}_{\mathrm{h}}^{\prime}\right) \subseteq \mathrm{S}_{2}$ by Theorem 2.6. Therefore

$$
\begin{equation*}
\mu \mathrm{Q}_{\mathrm{h}}^{\prime}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})+\nu \mathrm{P}_{\mathrm{h}}^{\prime}(\mathrm{x}) / \mathrm{P}(\mathrm{x})=0 . \tag{3.5}
\end{equation*}
$$

If P and Q are given by (2.4) and (3.3) then (since K is algebraically closed) we may write

$$
\begin{aligned}
& P(x+\rho h)=\sum_{k=0}^{n} A_{k} \rho^{k}=A_{n} \prod_{j=1}^{n}\left(\rho-\rho_{j}\right) \quad \forall \rho \varepsilon K, \\
& Q(x+\rho h)=\sum_{k=0}^{m} B_{k} \rho^{k}=B_{m} \prod_{j=1}^{m}\left(\rho-\sigma_{j}\right) \quad \forall \rho \varepsilon K,
\end{aligned}
$$

where $A_{k} \equiv A_{k}(x, h), B_{k} \equiv B_{k}(x, h), \rho_{j} \equiv \rho_{j}(x, h), \sigma_{j} \equiv \sigma_{j}(x, h)$ and (as noticed in Remark 3.2) $A_{n} \equiv A_{n}(x, h)=A_{n}(0, h) \neq 0$ and $B_{m} \equiv B_{m}(x, h)=B_{m}(0, h) \neq 0$. Put $G_{i}=G_{S_{i}}(x, h)$ for $i=1,2$ (cf. Definition 2.3). Since $P\left(x+\rho_{j} h\right)=0=Q\left(x+\sigma_{j} h\right)$, the hypotheses on P, Q and S_{i} imply that $\rho_{\mathrm{j}}, \mathrm{o}_{\mathrm{j}} \neq 0, \infty$ (since $\mathrm{x}, \omega \notin \mathrm{S}_{1} \cup \mathrm{~S}_{2}$) and that $0, \infty \notin G_{i} \varepsilon D\left(K_{\infty}\right)$ for $i=1,2$. Obviously, $\rho_{j} \varepsilon G_{1}$ and $\sigma_{j} \varepsilon G_{2}$. It is known (see Zaheer 1982, Equation (3.1), p. 844) that

$$
P_{h}^{\prime}(x) / P(x)=-\sum_{j=1}^{n} 1 / \rho_{j}, Q_{h}^{\prime}(x) / Q(x)=-\sum_{j=1}^{m} 1 / \sigma_{j} .
$$

Hence (3.5) gives

$$
\begin{equation*}
\mu \sum_{j=1}^{\mathrm{m}} 1 / \sigma_{\mathrm{j}}+v \sum_{\mathrm{j}=1}^{\mathrm{m}} 1 / \rho_{\mathrm{j}}=0 . \tag{3.6}
\end{equation*}
$$

Since $0 \notin G_{i} \in D\left(K_{\infty}\right)$, the definition of $D\left(K_{\infty}\right)$ says that $\theta_{0}\left(G_{i}\right)$ is a $K_{0}-$ convex subset of $K(i=1,2)$, where $\theta_{0}(\rho) \neq 1 / \rho$ for $\rho \varepsilon K_{\infty}$. Since $\theta_{0}\left(\rho_{j}\right)=1 / \rho_{j} \varepsilon \theta_{0}\left(G_{1}\right)$ and $\theta_{0}\left(\sigma_{j}\right)=1 / \sigma_{j} \varepsilon \theta_{0}\left(G_{2}\right)$, this fact yields the following:
$(1 / n) \sum_{j=1}^{n} 1 / \rho_{j}=1 / \rho \varepsilon \theta_{0}\left(G_{1}\right)$ for some $\rho \varepsilon G_{1}$,
$(1 / \mathrm{m}) \sum_{\mathrm{j}=1}^{\mathrm{m}} 1 / \sigma_{\mathrm{j}}=1 / \sigma \varepsilon \theta_{0}\left(\mathrm{G}_{2}\right)$ for some $\sigma \varepsilon \mathrm{G}_{2}$.

Note that here $\rho, \sigma \neq 0, \infty$. Now (3.6) gives $\mu \mathrm{m} / \sigma+v n / \rho=0$. But $m, n \geqslant 1$ and μ, v $\neq 0$ with $\mu \mathrm{m}+v \mathrm{n}=0$. Hence $\mu \mathrm{m}(\rho-\sigma)=0$. That is, $\rho=\sigma \varepsilon \mathrm{G}_{1} \cap \mathrm{G}_{2}$ and so $\mathrm{x}+$ $\rho h=x+\sigma h \varepsilon S_{1} \cap S_{2}$. This contradicts the hypothesis that $S_{1} \cap S_{2}=\phi$. The proof is now complete.

Given faithful a.p.'s $P \varepsilon \pi_{n}(E, K)$ and $Q \varepsilon \pi_{m}(E, K)$, we define the formal pseudo-derivative (relative to h) of the quotient P / Q by

$$
(\mathrm{P} / \mathrm{Q})_{\mathrm{h}}^{\prime}=\left(\mathrm{QP}_{\mathrm{h}}^{\prime}-\mathrm{PQ}_{\mathrm{h}}^{\prime}\right) / \mathrm{Q}^{2} \quad \forall \mathrm{~h} \varepsilon \mathrm{~F}(\mathrm{P}, \mathrm{Q})
$$

The domain of P / Q being $\mathrm{E}-\mathrm{Z}(\mathrm{Q})$. The zeros of $\mathrm{QP}_{\mathrm{h}}^{\prime}-\mathrm{PQ}_{\mathrm{h}}^{\prime}$ which are not the zeros of Q will be termed as the finite zeros of $(\mathrm{P} / \mathrm{Q})_{\mathrm{h}}^{\prime}$. In Theorem 3.3 if we take $-\mu=v=1$ and $m=n$, then $R=Q P_{h}^{\prime}-\mathrm{PQ}_{\mathrm{h}}^{\prime}$ and we get the following result.

Corollary 3.4

Let $\mathrm{P}, \mathrm{Q}, \pi_{\mathrm{n}}(\mathrm{E}, \mathrm{K})$ be faithful. If $\mathrm{S}_{1}, \mathrm{~S}_{2} \varepsilon \mathrm{D}^{*}\left(\mathrm{E}_{\omega}\right)$, with $\omega \notin \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ and $\mathrm{S}_{1} \cap \mathrm{~S}_{2}=$ ϕ, such that $\mathrm{Z}(\mathrm{P}) \subseteq \mathrm{S}_{1}$ and $\mathrm{Z}(\mathrm{Q}) \subseteq \mathrm{S}_{2}$, then the finite zeros of the formal pseudo-derivative of the quotient P / Q (relative to h) lie in $\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ for all $\mathrm{h} \varepsilon$ $\mathrm{F}(\mathrm{P}, \mathrm{Q})$.

In order to obtain the field-analogues of the above results, we explain some notations and terminology. Let $\pi_{n}(K), n \geqslant 1$, be the class of all nth degree polynomials $f: K \rightarrow K$, given by

$$
\mathrm{f}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \quad \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}, \mathrm{a}_{\mathrm{k}} \varepsilon K \text { and } \mathrm{a}_{\mathrm{n}} \neq 0
$$

and denote by f^{\prime} the formal derivative of f (see Zaheer 1982, p. 842). Given $f \varepsilon$ $\pi_{\mathrm{n}}(\mathrm{K})$ and $\mathrm{g} \varepsilon \pi_{\mathrm{m}}(\mathrm{K})$, define the type-m polar-derivative f_{g} of f (relative to g) by

$$
\begin{equation*}
f_{g}(z)=n f(z) g^{\prime}(z)-m g(z) f^{\prime}(z) \tag{3.7}
\end{equation*}
$$

Note that the polar-derivative $f_{1}(\zeta, z)$ of f (cf. (1.1)) is essentially a type-1 polar-derivative of f when $g(z)=z-\zeta$.

Remark 3.5

When $\mathrm{E}=\mathrm{K}$, we record the following facts:
(I) As discussed in Zaheer 1982, Remark 2.4 (III), we see that $\pi_{n}(\mathrm{~K})=$ $\pi_{n}(K, K)$ for $n \geqslant 1$, that $F(f)=K-\{0\}$ for all $f \varepsilon \pi_{n}(K)$, and that $f_{h}^{\prime}(z)=h f^{\prime}(z)$ for
all $z \varepsilon K, h \varepsilon K-\{0\}$ and $f \varepsilon \pi_{n}(K)$. That is, when $h=1$, the pseudo-derivative f_{h}^{\prime} becomes the formal derivative f^{\prime}. Furthermore, when $K=C$, it coincides with the familiar derivative in calculus.
(II) By the above remark

$$
\mathrm{F}(\mathrm{f}, \mathrm{~g})=\mathrm{F}(\mathrm{f}) \cap \mathrm{F}(\mathrm{~g})=\mathrm{K}-\{0\} \neq \phi
$$

for all $f \varepsilon \pi_{n}(K)$ and $g \varepsilon \pi_{m}(K)$. That is, every pair of polynomials from K to K is faithful.
(III) If $\mu=\mathrm{n}, v=-\mathrm{m}, \mathrm{f} \varepsilon \pi_{\mathrm{n}}(\mathrm{K})$ and $\mathrm{g} \varepsilon \pi_{\mathrm{m}}(\mathrm{K})$, we see (cf. Remarks (I) and (II)) that the polynomial R of Theorem 3.3, with $P=f, Q=g$ and $h=1$, is given by

$$
\mathrm{R}=\mathrm{nfg}^{\prime}-\mathrm{mgf}^{\prime}=\mathrm{f}_{\mathrm{g}}
$$

That is, R becomes a type-m polar-derivative of f. Furthermore, when $g(z)=z-$ $\zeta(\zeta \varepsilon \mathrm{K}$), R becomes the polar-derivative of f.
(IV) Similarly, if $\mathrm{f}, \mathrm{g} \varepsilon \pi_{\mathrm{n}}(\mathrm{K})$, the formal pseudo-derivative of P / Q (with $\mathrm{P}=$ $\mathrm{f}, \mathrm{Q}=\mathrm{g}$ and $\mathrm{h}=1$) in corollary 3.4 is given by

$$
(\mathrm{P} / \mathrm{Q})_{\mathrm{h}}^{\prime}=\left(\mathrm{gf}^{\prime}-\mathrm{fg}^{\prime}\right) / \mathrm{g}^{2}=(\mathrm{f} / \mathrm{g})^{\prime}
$$

That is, it coincides with the formal derivative of f / g and, for $\mathrm{K}=\mathbf{C}$, it reduces to the usual derivative of f / g via calculus.
(V) Let $\mathrm{B} \equiv \mathrm{B}(\mathrm{c}, \mathrm{r})$ denote the closed ball in K with center $\mathrm{c} \varepsilon \mathrm{K}$ and radius r εK_{0+}. Obviously, $\infty \notin \mathrm{B}$. It is known (see Zaheer and Alam 1980, p. 116) that B ε $\mathrm{D}\left(\mathrm{K}_{\infty}\right)$. Consequently, $\mathrm{B} \varepsilon \mathrm{D}^{*}\left(\mathrm{~K}_{\omega}\right), \omega \notin \mathrm{B}$, by Remark 2.4(I) and Proposition 2.5.

In view of the above remarks, we deduce the following results.

Theorem 3.6

Let $\mathrm{f}, \mathrm{g} \in \pi_{\mathrm{n}}(\mathrm{K})$ and $\mathrm{C}_{1}, \mathrm{C}_{2} \varepsilon \mathrm{D}\left(\mathrm{K}_{\omega}\right)$ such that $\omega \notin \mathrm{C}_{1} \cup \mathrm{C}_{2}$ and $\mathrm{C}_{1} \cap \mathrm{C}_{2}=\phi$. If $\mathrm{Z}(\mathrm{f}) \subseteq \mathrm{C}_{1}$ and $\mathrm{Z}(\mathrm{g}) \subseteq \mathrm{C}_{2}$, then the finite zeros of the formal derivative of f / g lie in $\mathrm{C}_{1} \cup \mathrm{C}_{2}$. In particular, C_{1} and C_{2} may be taken as closed balls in K .

Proof. The proof follows from Proposition 2.5, Corollary 3.4 and Remarks 3.5 (I), (IV) and (V).

For $\mathrm{K}=\mathbf{C}$, the above theorem furnishes an improved form of Walsh's Theorem 1.1 (b), in the sense that closed disks form a proper subfamily of $\mathrm{D}\left(\mathbf{C}_{\omega}\right)$ as seen in Proposition 2.1.

Theorem 3.7
Given $\mathrm{f} \varepsilon \pi_{\mathrm{n}}(\mathrm{K}), \mathrm{g} \varepsilon \pi_{\mathrm{m}}(\mathrm{K})$, let $\mathrm{f}_{\mathrm{g}}(\mathrm{z})$ be the type-m polar-derivative of f relative to g defined by (3.7). If $\mathrm{C}_{1}, \mathrm{C}_{2} \varepsilon \mathrm{D}\left(\mathrm{K}_{\omega}\right)$, with $\omega \notin \mathrm{C}_{1} \cup \mathrm{C}_{2}$ and $\mathrm{C}_{1} \cap \mathrm{C}_{2}=\phi$, such that $\mathrm{Z}(\mathrm{f}) \subseteq \mathrm{C}_{1}$ and $\mathrm{Z}(\mathrm{g}) \subseteq \mathrm{C}_{2}$, then

$$
\mathrm{Z}\left(\mathrm{f}_{\mathrm{g}}\right) \subseteq \mathrm{C}_{1} \cup \mathrm{C}_{2}
$$

Proof. Theorem 3.3, Proposition 2.5 and Remark 3.5 (III) combine to yield the desired result.

The last theorem provides a new result on the zeros of type-m polarderivatives of polynomials $f \varepsilon \pi_{n}(K)$ for $m \geqslant 1$, whereas Laguerre's Theorem 1.2 as well as its generalization to the field K (see Zervos 1960, Corollary 2.8) deals with type-1 polar-derivatives only.

References

Al-Rashed, A.M. and Zaheer, N. (1989) Certain composition of abstract polynomials and their pseudo-derivatives, J. Math. Anal. \& Appl., to appear.
Bourbaki, N. (1952) Elément de mathématique. XIV. Livre II: Algèbre, Chap. VI: Groups et corps ordonnés. Actualités Sci. Indust. 1179, Hermann, Paris.
Hille, E. and Phillips, R.S. (1957) Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31: rev. ed., Amer. Math. Soc., Providence, R.I.
Hörmander, L. (1954) On a theorem of Grace, Math. Scand. 2: 55-64.
Laguerre, E. (1898) Oeuvres de Laguerre. Tome I: Algèbre. Calcul intégral, Gauthier Villars, Paris.
Marden, M. (1966) Geometry of polynomials, 2nd. ed., Math. Surveys, no. 3: Amer. Math. Soc., Providence, R.I.
Taylor, A.E. (1938) Additions to the theory of polynomials in normed linear spaces, Tôhoku Math. J. 44: 302-318.
Van der Waerden, B.L. (1964) Algebra, Vol. I, 6th ed., Springer-Verlag, Berlin and New York; (1970) English transl., Ungar, New York.

Walsh, J.L. (1921) On the location of the roots of the Jacobian of two binary forms, and of the derivative of a rational function, Trans. Amer. Math. Soc. 22: 101-116.
Zaheer, N. (1982) On Lucas-sets for vector-valued abstract polynomials in K-inner product spaces, Canad. J. Math. 34(4): 832-852.
Zaheer, N. (1988) A generalization of Lucas theorem to vector spaces, Internat. J. Math. and Math. Sciences, to appear.
Zaheer, N. and Alam, M. (1980) Zeros of polar-composite polynomials in algebraically closed fields, Proc. London Math. Soc. 40(3): 527-552.
Zaheer, N. and Khan, A.A. (1980) Cross-ratio theorem on generalized polars of abstract homogeneous polynomials, Annali di Mathematica Pura ed Applicata, 126: 363-377.
Zervos, S.P. (1960) Aspects modernes de la localisation des zéros des polynômes d'une variable, Ann. Sci. Ecole Norm. Sup. 77(3): 303-410.
(Received 06/02/1989; in revised form 14/06/1989)

عن نظر يتين لوالش ولاقير بخصوص أصفار كثيرات اللدوود

عبد الش عحمد الراشد و نعمت ظهير
قسم الرياضيات ـ كلية العلوم ـ جامعة الملك سعود

نرمز - في هذا البحث ـ بـ C لـقل الأعداد المركبـة وبـ D (C D لعائلة المنـاطق الـدائريـة التقليديـة وهي تلك المجموعـات الملزئيـة من المستوى C (بــا

 لصف جميـع كثــيرات الــدود f: C \quad من الــدرجــة n ، وبــ الصفرية للدَّالة

|لـددود التالية :

$$
\mathrm{f}_{1}(\mathrm{z}) \equiv \mathrm{f}_{1}(\zeta, \mathrm{z})=\mathrm{nf}(\mathrm{z})-(\mathrm{z}-\zeta) \mathrm{f}^{\prime}(\mathrm{z})
$$

يعنى بحثنــا بتعميم النظريتــين التـاليتــين : الأولى وهي نـظريـة الــدائـرتــــين
 حــود مركبتـين من نفس اللدرجـة ـ الثانيـة وهي نـظريـة لاقـير المشهـورة وتهتم بالمشتقات القطبية .
النظرية الأولى (والش) :

ليكن
 . $\mathrm{B}_{1} \cup$ B $_{2}$ جميع الاصفار المنتهية لمشتقة الدَّالة f/g تنتمى للمـجموع

النظر ية الثانية (لاقيـر) :

 f f f f $(z) \equiv f_{1}(\zeta, z)$ (حسب التعريف المعطى سابقاً .

تــدرس النتيجة الـرئيسة مـوضوع المجمـوعات الصفـرية لأنـواع معينـة من كثيرات الحدود التجريدية في الفضاءات المتجهة ذات الأبعاد الاختيــيـارية (منتهيـة

 المدود التجريديتين نعرّف، من أجل كل h h في المجموعـة المتميزة F(P,Q) كثيـرة حــدود تجـريديـة : على النحو التالي : E \rightarrow K

$$
\mathrm{R}=\mu \mathrm{P} \mathrm{Q}_{\mathrm{h}}^{\prime}+v \mathrm{Q} \mathrm{P}_{\mathrm{h}}^{\prime}
$$

إذا كان $\mu m+v n=0$ وكان S_{2} ينتميان لمجموعة المناطق الدائرية الفائقــة

