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ABSTRACT. The vanishing of the differentials of the Atiyah-Ilirzehruch spectral 

scljuencc on the Thorn class is the necessary and sufficient condition for O(n)·hundlc 

to he oricntahlc with respect 10 a cohomolog theory h*. It is shown here that the 

third Stiefel-Whitney class is the first uhstruction for an oriented spherical fioTation 

to he orientahle with respect 10 mod 2 K·thcory K* ( ;Z/2). By killing the third 

differential of the Atiyah-Iiirzehruch spectral sCljuencc. we will find the second 

ohstruction for an oriented real vector hundle to he oricnttlhlc with respect 10 K'" 

( ;Z/2) by calculating the fifth differential in the Atiyah-llirLehruch spectral 

sequence. 

Given a multiplicative cohomolog theory with unit h*, a finite dimensional 
CW-complex X, and an O(n)-bundle 1; over X, we consider the question of 
when 1; is orientable in the sense of Oold (1962) for h*. 

By this we mean if we consider the total space (0(1;), S(1;» of the disc 
bundle associated to 1;, and if we consider the map ix: (On, sn-I) -+ (0(1;), S(1;» 
which is the inclusion of the fibre over XEX, r~: hn (0(1;), S(1;» -+ hn (on, sn-I) 
is onto for each XEX (one x in each component suffices). 

Our chief tool will be the Atiyah-Hirzebruch spectral sequence (AHSS). 
This is a spectral sequence with Ef,q(X) == HP(X; hq(pt» and which converges to 

+ qhq (X). 

Consider the AHSS for (0(1;), S(1;» = (T(1;), pt). Let n be the dimension of 
the fibre of T(1;). Then EJ'-i ,q (T(1;» = 0 for all i > 0, so E~'o (T(1;» ~ E2"o 
(T(1;», and hn(O(1;), S(1;» -+ E~'o (T(1;» is onto. 
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If we compute hn(Dn, sn-l), we find that the AHSS collapses, and one can 

see that the map i~ : hn(D(!;), S(!;» _ hn(Dn, sn-l) is 

Hence!; is h * -orientable if and only if ~ and bx are onto. bx is onto if and 
only if either w\(!;IXx) = 0, where Xx is the component of X containing x, or 
hO(pt) is a Z/2-vector space . 

If wt(!;IXx) = 0, or hO(pt) is a Z/2-vector space, Ez'o (T(!;» = Hn(D(!;), S(!;); 

hO(pt» == Hom (Z, hO(pt». Define the Thorn class dl; E Ez'o (T(!;» to be the 
homomorphism Z _ hO (pt) taking 1 E Z to the identity in hO (pt). Then ~ is onto 
if and only if all differentials vanish on dl;' 

The map :n: : D(!;) _ X induces a pairing of the AHSS's E: '*(X) ® E: '* 
(T(!;» - E:'* (T(!;». Define <1>2: E:'* (X) _ E2"+n .* (T(!;» by <1>2 (0:) = :n:*(o:) 

X dl;' Since wt(!;IXx) = 0 or hO(pt) is Z/2-vector space, the Thorn isomorphism 
theorem for ordinary cohomology says <1>2 is an isomorphism. 

If d2(dl;) = 0, we can define <1>3 : Ej"* (X) - Ej'+n.* (T(!;» from <1>2 since 

d2<1>2(0:) = <l>2d2(0:) +(_l)deg(Oi) :n:*(o:) x d2(dl;) = <l>2d2(0:). Since <1>2 is an 
isomorphism, so is <1>3' 

We can inductively construct <l>r : E;t' ·*(X) - E;t'+n.* (T(!;» provided dr- i 

(dl;) = 0 for i > O. (Since E~'o (T(!;» ~ Ez·o(T(!;», dl; actually sits in E~'o if d r - i 

vanish on it). 

Thus, when all the differentials vanish on dl;, we get a natural isomorphism 
of AHSS's <l>r : E;t'·* (X) - E;t'+n.* (T(!;». This induces a Thorn isomorphism <I> : 

h*(X) _ h*+n (D(!;), S(!;», given by <1>(0:) = :n:*(o:) x dl;, where dl;E hn(D(!;), 

S(!;» maps onto dI;EE:!,'o (T(!;» by the natural map . 

The purpose of this paper is to establish the first and the second obstructions 
of O(n)-bundles to be orientable with respect to mod 2 K-theory. 

In §l we recall the definition and some basic facts about the AHSS's for mod 
p K-theory, where p is a prime. In §2 we will see that the first obstruction to K* 
( ; Z/2)-orientability is the third Stiefel-Whitney class. The second obstruction for 
oriented real vector bundle is established in §3. 
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§l: 

Let p be any integer and h* be a cohomology theory. If X is a finite 
CW-complex with base point, we then define h* (X; ZIp) as follows. 

2Let Mp denote the 'co-Moore' space SlU re , where f: Sl ~ SI is a base point 
preserving map of degree p; Mp is a space of type (Z/p,2). Now form the reduced 
product XI\Mp (another finite CW-complex), and define hO (X; ZIp) = 110 +2 

(XI\Mp), where 11 denotes reduced cohomology (Maunder 1967). 

Let p be a prime, and X a finite CW-complex, then there is a spectral 

sequence {(E~,t(X); ZIp)} (r ~ 2, s ~ 0) with differentials dr: E~ , t ~ E~+t ,t-s+l 

such that 

G s Ks + t (X; ZIp) 

K~+t (X; ZIp) / K~!~ (X; ZIp) 

KOWhere K~ (X; ZIp) = Ker [(KO (X; ZIp) ~ (XS
-

I; ZIp)] 

XS
-

1 being the (s-1) - skeleton of X. Since Kt (SO; ZIp) = 0 or ZIp according to t 
being odd or even, and E~,t = 0 whenever t is odd, then d r vanishes for r even. 
Moreover dr = 0 for 2,,;;; r";;; 2p-2, so that for 2,,;;; r";;; 2p-1 {(Er(X); ZIp)} can 
be identified with H S (X; ZIp), with this identifications d2p- 1 is equal (up to a 
multiplication by a non-zero element of ZIp) to Milnor's stable cohomology 
operation 0 1 = pl~_~pl (for p = 2 setting pi = Sq2, ~ = Sql) (Atiyah and 
Hirzebruch 1961). 

§2: 

Let; = (E, 3t, F, X) be a spherical fibration over a CW-complex X. Let T(;) 
be the Thorn space of ; and ~!; be the Thorn class in ordinary cohomology . Let 
{(Er(X); Z/2)} be the AHSS of §1. 

Lemma 2.1: 

With; as above, the first obstruction to K*( ; Z/2) - orientability is d3(~!;) = 
(wt + WI . W2 + W3)' ~!;, where Wi the ith Stiefel-Whitney class. 
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Proof: 


By Atiyah, Hirzebruch (1961), in {(Er(T(1;); ZI2)} , d3 is given by 


Where Sqi is the mod 2 Steenrod operation (Epstein, Steenrod 1962). 

Here we used the equalities SqO = identity, wi(1;) = <l>H"1 Sqi (ilt;); and the Cartan 
formula. 

Corollary 2.2.: 

If 1; is an .oriented spherical fibration, then the third Stiefel-Whitney class 

w3(1;)eH3(X; Z/2) is the first obstruction. 

Proof: 

Immediate from the lemma, since wl(1;) O. 

§3: 

As in §1, in the AHSS {(Er; Z/2)} all even differentials vanish and the first 
non-zero differential is d3, so the next possibly non-vanishing differential is ds . 
We will compute ds(ilt;), and thus the second obstruction to K* ( ; ZI2) ­
orientability, when 1; is an oriented real vector bundle and d3(ilt;) = O. 

Let 1; be an oriented real vector bundle over B(WI = 0) and f: B - BSO be 
its classifying map. Realize W3 € H3 (BSO; ZI2) as a map W3 : BSO - K (Z/2, 3), 
we then have a principal fibration. 

K (ZI2,2) ~ X ~ BSO -4 K (Z/2, 3) induced from W3' Consider the 
following diagram 
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K (Z/2, 2) -----... X 

l' p 

f 
B ----~ BSO---:~ K(Z/2,3) 

Since w3·f is null homotopic and p is the fibre of w3, we then h~ve a lifting 7: B --+ 

X such that p·7 = f. Also we have d5(d!;) = 7* (d5(d~», where 1; is the bundle over 
X induced by p. So in order to compute d5(d!;), we need to calculate the 
cohomology mod 2 of the space X in the fibration K(Z/2, 2) ~ X 4 BSO 
~ K (Z/2, 3), we do that by using the Serre spectral sequence. 

Recall if 1; = (E, :rr, F, B) is a fibre space over B with fibre F, and if Band F 
are arcwise connected and G is a ring, then there is a spectral sequence {(Eo dr)} 

(Mosher and Tangora 1968) with the ~ term is given by Ei·1 = HS(B; H'(F;G» 
converging to H* (E;G), where H' (F;G) is the local coefficients. If Band Fare 
(s-l) and (t-1) - connected respectively, we then have the Serre exact sequence 
which terminates as follows: 

1 1 1--+ HS+I (F;G) ~ HS+ 1- (B;G) ~ HS+ 1- (E;G) L HS+ 1- (F;G) 

where i:F --+ E, and "t is the cohomology transgression. 

Theorem 3.1: 

For n ..; 5, H" (X; Z/2) is generated by W2, A 3, w~, W4, W2. A3 and Sq2 A3· 

(W2i = P*W2i and A3 is as defined in the proof). 

Proof: 

H*(BSO; Z/2) == Z/2 [W2' W3, w~, W4, ... ] and 
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The figure below is the diagram of the E~, t term of the spectral sequence of 
the fibration. K(Z/2,2) -4 X ...E. BSO in the relevant dimensions. 

t 

3 6 

S 

W2 W3 W4 Ws W6 

w~ W2W3 wi 

W5 

W2W4 

Only terms of total degree of at most 5 needs to be considered for our 
purposes. Since p:X _ BSO is induced from W3, we have 

d3(i2) 't(i2) W3 d3(Sq l(i2)) 0 

d 3(ii) 0 d3(i2· W2) W2· W3 

d3(i2· Sql(h)) W3Sq l(i2) d3(Sq2Sqli2) 0 

d3(i2" W3) w~ and d3(w2 Sq 1i 2 ) 0 
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leaving W2, Sqli2' w~, W4, W2 Sqli2 and Sq2Sqli2 in E4 = Es, for d4 of aU these 
elements is zero: 

dS(11) = W2W3 + Ws, but d3 (i2'W2) = W2' W3, so this means that HS(BSO; Z/2) 
is killed, Also we have 

o 

Also in dimension 8; d3(w2' Sq3Sq li2) = 0, Thus, the following elements of total 
degree ~ 5 survive to Eoo of this spectral sequence. 

W2, Sqlj2' w~, W4, W2 ' Sqlj2' Sq2Sqli2 and the element W2' Sq3 Sqli2 in 
dimension 8. The groups Est for which s+t=n form a composition series for 
Hn(x; Z/2). Therefore, for 0 ~ 5 we can write a basis for Hn(x; ZI2). Denote the 
elements of these basis by, W2, A3, w~, W2' A3, and Sq2A3' Since 

o for r ~ 2 

H(E~'O) = quotient module of ~.o , therefore we get an epimorphism ~.o = 
H S (BSO; Z/2) _ E!'o _ W(X; Z/2) which is just p*, since W2i comes from the 

In the fibre space K(Z/2,2) ~ X ~ BSO, we have W2EH2 (BSO; Z/2) 
and i2EH2 (K(Z/2,2);Z/2) is transgressive, i.e., f3IW2 = Sq1W2 = W3 = 't(i2)' Thus, 
applying the Bockstein lemma (Mosher and Tangora 1968, pp. 106) to the above 
fibration we have i*f32p*w2 is defined, where 131 and 132 are the Bockstein 
differentials, and i*132p*w2 = i*f32w2 = 131i2 = Sq 1i2 = i* A 3, but i*: H3(X;Z/2)_ 
H3(K(Z/2,2); Z/2) is a monomorphism. Hence, A3 = 132w2. 

Now we return to the computation of ds(a~). 

Lemma 3.2: 

In the AHSS {Er(X); Z/2)} of the space X. 
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Proof: 

(i) d3(W2 . Ihw2) 

Lemma 3.3: 

In {(E,(X); Z/2)} and {(E,(T(l;); Z/2)} we have 

(i) E~ 'o (X) = Ker d3 = Z/2· {Sq2!hw2} 

(ii) E~'o (T(~)) = Z/2. {.:l~q2fl2W2} 

Proof: 

(i) 1m d3 C H 5 (X; Z/2) and d3(W2) = 0; so 1m d3 = 0; so by lemma (3.2) 

Kerd3 = Sq2~2W2' 

Let B = K(Z/4,1)(4) and ACB be the 4-skeleton and the 2-skeleton of 
K(Z/4,1) respectively. 
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Lemma 3.4: 

With B and A as above, there is an oriented vector bundle over S(B), the 
suspension of B, which is not orientable for KO and K-theories. 

Proof: 

Let u and u be the generators of Hl(B; Z/2) and Hl(A; Z/2). The following 
diagram represents AHSS, 

}:Is (B, KOt (point» => KO*(B) 

0 1 2 3 4 
s 

Z 0 Z/40 

-1 Z/2 Z/2 Z/2 

-2 Z/2 Z/2 Z/2 

-3 0 0 0 

-4 Z 0 Z/4 

0 0 0 

0 0 0 

t 

We need to find [B:SO] KO­

0 

Z/2 

Z/2 

0 

0 

0 

0 

Z/4 0 0 0 0 

Z/2 0 0 0 0 

Z/2 0 0 0 0 

0 0 0 0 0 

Z/4 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 (B). Now 

o. Hence (no other differentials). 
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Ej·-2 = Ea!,,-2 = ZI2, and no other bits of total degree -1. So, [B;SO] = KO- I 

(B) = ZI2 and restriction to A is an isomorphism 

Ej·-2 = Ea!,,-2 = ZI2, and no other bits of total degree -1. So, [B;SO] = KO- I 

(B) = Z/2 and restriction to A is an isomorphism 

Call generators of [A;SO] ; ii, of [B; SO]; Ct, define bundles 

E" ~E", 

~ ~ 
S(A) ~ S(B) 

E", = (C+BxRn) U",(C-B x R n), S(B) = C+BUC-B, where C+B = [0, !] 
X B/(O}XB, C-B =[!, 1] x B/{l} XB' B = C+B n C-B. We have [A;SO] = Z/2 
corresponding to the class u in HI (A; Z/2), so W2 (E,,) = 0 (u) *- 0 in H2(S(A); 
Z/2) , 0 is the suspension isomorphism. Let v and vbe the generators of H2 (B; Z) 
and H2 (A; Z) respectively. 

Write H*(B; Z) = Z[V]/(4v,vJ) and the exact sequence associated with 

O~Z ~Z 24Z/2~0 

o(u) = 2v; o(u) = 2v, so o(w2(E,,» = o(o(u» = o(2v) *- O. So E" is not 
orientable for KO or K-theories, and hence E", is not. 

By the lemma 

so d3(~E(\') = 0, d3(~E") = O. In case of E", d3 is enough, so E" is orientable for K * 
( ; Z/2). So the question is whether E", is orientable for K*( ; Z/2) or not. 

CtE[B;SO] induces a map, denoted again by Ct, 

(Bxon; Bxsn-l) ~ (Bxon; BxSn- 1) 

Theorem 3.5: 

E", is orientable for K* and K * ( ;Z/2) if and only if Ct*(Yn) = Yn, where Yn 
corresponds to 1 ® u in K*(B) ® K*(on, sn-l), U is the generator of 
K*(on,sn-I). 



On Obstructions to K* ( ; Z/2)-Orientability 11 

Proof: 

Put M = (on , sn-1) , the theorem follows from the commutativity of the 
following diagram in which the rows are the Mayer-Vietoris exact sequences 

~ 
-Kn(TE",) ~ f Kn(C+Bx(M)) El1 Kn(C-Bx(M)) ~ Kn(Bx(M)) ~ 

j j~ 
1 

Now K~(B x on; B x sn-l) = Yn - K*(B) , so ~*(Yn) = Yn-go<, go< E KO(B) actually 
E 1 + KO(B). By lemma (3.4) and theorem (3.5) go< * 1. Let P2(go<) = the g", for 
K-theory mod 2, say g",. So E", is K*( ;Z/2) - orientable if and only if go< = 1. 
Naturality gives i*(go<) = g" for i : A ~ B . For g" and g" by lemma (3.4) we have 

(i) g" * 1 because E" is not orientable for K*, 

(ii) g" = 1 because E" is K* ( ; Z/2) - orientable. 

Lemma 3.6: 

Eo< is not orientable for K* ( Z/2). 

Proof-

K*(A) = Z .1 El1 Z/4.lj; lj2 = 0 because its induced from A ~ S2. K*(B) is a 
quotient of Z[1]] because K *(K(Z/4, 1)) is up to completion (Hodgkin and 
~nderson 1968), so K*(B) = Z- 1 EB Z/4. 1] EB Z/4- 1]2, and KO(A) = Z/4-lj; 
KO(B) = Z/4- 1] + Z/4- 1]2. So g" = 1 + Alj, AE Z/4. Since A * 0 and A == 0 mod 2, 
we must have A == 2 mod 4. So , g" = 1 + 2lj 

Now, go< = 1 + A'1] + J..L'1]2, but i*(1]2) = rj2 so i*(go<) = g" = 1 + A'lj. So A' = 2 and 
g", = 1 + 21] + J..L'1]2 
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To determine IJ.' we use Adams operations 'ljJk (Adams 1962). 'ljJk(g",) g"" 
because 'ljJk(Yn) = knYn, so 

kna:*knYn = a:*(Yn) 

kn g",' Yn = g",'ljJk(Yn) 

'ljJk (g",' Yn) = 'ljJk(g",)'ljJk(Yn) 

Now 1 + 'Y) is a line bundle , by definition, so (1 + 'Y)4 = 1, hence reducing mod 4, 
'Y)4 = 2'Y)2. But if ~3 = AI'Y) + A2'Y)2, 'Y)4 = AI'Y)2 + A2'Y)3 = AI A2'Y) + (AI + A~)'Y)2. Hence 
AIA2 = 0, A) + A~ = 2. This gives Al = 2, A2 = 0 or 2 . 'Y)5 = 'Y)4 .'Y) = 2'Y)3 = O. 

(1 + 'Y)3 = 1 + 3'Y) + 3112 + 'Y)3 

1 + 3'Y) + 3'Y)2 + 2'Y) + A2'Y)2 = 1 + 'Y) + (3+A2)'Y)2 

'ljJ3('Y) = 'Y) + (3 + A2)'Y)2 


3

'IjJ ('Y) 2) 'ljJ3('Y)-1P3('Y) = ('Y) + (3 + A2)'Y)2)2 

'Y)2 + 2(3 + A2)'Y)3 + (3 + A2)2 'Y)4 

3'Y)2 (2'Y)3 = 0; any odd multiple of 'Y)4 is 2'Y)2) 

Hence, 

o so A2 does not matter. But 

Hence, IJ.' = 2 + 3IJ.' or 2IJ. ' == 2 mod 4 
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This implies, by theorem (3.5) that Ea is not orientable for K*( ;Z/2). 

Corollary 3.7: 

Proof: 

Since d3(~E) = 0 and dimension S(B) = 5; so by lemma (3 .6) we must have 
d5(~Ea) *" o. 

Proposition 3.8: 

In the Atiyah-Hirzebruch spectral sequence {(Er(T(1;) ;Z2)} of T (1;) 

d5(~J = ~~ ·Sq2~W2 . 

Proof: 

By theorem (3.2) and lemma (3 .3), 

d3(~!;) = 0 then d5(~!;) = ASq2132W' ~!; for any bundle 1;, by naturality . To prove A 
*" 0, its enough to consider an example and prove A*"O there; so by Corollary 
(3.7) A*"O in d5(~J and hence for any bundle wt'th d3(~!;) = O. 
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-~ ~l:d. u--L.j..1 ~l.A;,}1 ~~ I.!.Ll::'J ~ K· ( ; Zi2) ~J::a-; 

4...A.Ja.I1· . 
. - - UJ'.">~ 
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A Flame Spectroscopic Study of the Stability 
of Dilute Solutions of Inorganic Salts 

Abdulrahman S. Attiyat 

Chemistry Department, Yarmouk University, Irbid - jordan 

ABSTRACT. Flame spectroscopy hHS oc.;cn used to monitor nct changes in concentra­

tion of dilulC solution of thirty four cicmc.;nls al different concentrations in Pyrex. 

soft glass. and polyethylene containers for periods up 10 one year or morc. 

Dilute solutions are frequently unstable and may change in concentration over 
extended periods of time. The concentration changes are not only inconvenient 
because of the necessity of preparing fresh standard solutions, but are also 
potential serious sources of error in trace metal analysis. 

Three types of processes are primarily responsible for concentration changes 
in dilute solutions . These are adsorption, leaching, and desorption (Minczewski 
1967). Adsorption produces a loss of sample, whereas leaching of the vessel wall 
or desorption of a previously adsorbed sample produces an increase in 
concentration. These processes compete, and net change in concentration is 
determined by the extent to which each has occurred. 

The adsorption process is the most thoroughly studied because of the ease 
with which it can be observed with radioactive tracers (Haissinky 1964). The 
extent of adsorption is dependent on the pH, the composition of the wall (soft 
glass, borosilicate glass, plastic, etc.), the temperature, the contact time, the 
solvent, and the composition of the solution (Mizuike 1965). Starik (1956) has 
written a comprehensive monograph on the adsorption of radioactive isotopes . 
The trace element composition of different containers and the leaching of trace 
elements in acid or basic solution have been described (Minczewski 1967, Mizuike 
1965, Thiers 1957b, Eicholz et aJ. 1965, Thiers 1957a). 

While adsorption losses are undoubtedly among the most important 
contributions to solution instability, net changes in concentration are of p rime 

17 
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concern to the anlyst. Flame spectroscopy (emission and adsorption) offers a 
convenient means of monitoring net concentration changes in dilute solutions. The 
present study was undertaken to determine net changes in several inorganic 
solutions at different concentrations , in various containers, and for different 
periods of time up to one year or more. 

Experimental 

Stock solutions of approximately 100 ppm of the elements to be studied were 
prepared as previously described (Christain 1968) from reagent grade chemicals. 
Niobium pentoxide fused with potassium carbonate and then dissolved in water. 
The rare earth solutions were prepared from the oxides dissolved in hydrochloric 
or sulfuric acid. Hydrochloric, nitric, or sulfuric acid was used to prepare other 
solutions as required . The stock solutions were stored in ground glass stopped 
Pyrex volumetric flasks. The compositions of the stock solutions are given in Table 
1. 

All test solutions were prepared by direct dilution of the stock solutions with 
water. These represented typical solutions prepared in the laboratory. A voidance 
of adding more acid to the dilute solutions eliminated possible contamination from 
the acids. Triply distilled water was deionized with a mixed bed ion exchange 
column and was used for preparation of all solutions. 

Solutions were analyzed by flame emission and atomic absorption spectros­
copy using an Instrumentation Laboratory Model 153 Atomic Absorption 
Spectrophotometer. Conditions for the atomic absorption (Christian and Feld­
man 1970) and flame emission (Christian and 'Feldman 1971a, Christain and 
Feldman 1971b) measurements were as previously described. All test solutions 
were compared against dilute solutions freshly prepared form the stock solutions 
for instrument calibration. 

Results and Discussion 

Dilute solutions of the metals were prepared by appropriate dilution of the 
stock solutions and were placed in new Corning Pyrex (Borosilicate glass), soft 
glass, and Kimble polyethylene bottles. The volume of each solution was 100 ml. 
The areas of the containers' surfaces exposed to the solutions were as follows; 95 
cm2 for the pyrex bottles, 101Icm2 for the soft glass bottles and 96 cm2 for the 
polyethylene bottles. All solutions were stored at room temperature . The results 
of the studies are summarized in table 2 . In general, the precision of 
measurements was of ± 5% or better, and apparent changes of 5% or less are 
considered insignificant. Detection limits for the determinations have been 
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previously described (Christain 1968, Christian and Feldman 1970, Christian and 
Feldman 1971a). The data in the table indicate the net changes in solutions 
concentrations. 

Table I. Preparation of Stock Solutions (1000 parts per million) 

Element Source compound Reagent added pH of solution 

Ag AgNOJ HNOJ 1.70 

Al AICIJ·6H2O HCI 3.39 
Au AuCl HCI 2.50 
Ba BaCh·2H2O HCI 5.95 
Ca CaCI2 HCI 2.12 
Cd CdCI2·2!H2O HCl 2.50 
Co CoCI2Ce(NOJ)6 HN03 2.68 
Cr CrCIJ·6H2O HCI 2.45 

Cu Cu(NOJh-3H2O HCl+HNOJ 2 .10 
Dy DY20J HCI (200 mUI) -

Er Er20 J HCI (200 mUI) -
Fe FeNH.(SO.h·12H2O H 2S0 4 (80 mUI) -
Ga Ga metal HCI and HNOJ 0.40 
Gd Gd20 J HCI 0.30 
In In metal HCI 0.95 
La La20J HCI 1.05 
Li LiCI HCI 5.45 
Mn MnCI2 HCI+HN03 0.78 
Mo (NH.)6Mo702·4H20 4.70 
Na NaCl 6.75 
Nb Nb20 S K2COJ fusion 12.50 
Nd Nd20 J HCI (75 mUI) -
Ni NiCI2·6H2O HCI 5.85 
Pr Pr6011 HCI 0.10 
Pt H2PtCI6·6H2O 2.25 
Sm Sm20 J HCI (200 mUl) -
Sr SrCI2'6H 2O HCI 4.95 
Th Th.07 HCI (250 mVl) -
Tl T1(NOJh 4.90 
u U02(NOJh·6H2O HNOJ 3.30 
V V20 S HCI and HNOJ 0.30 
W Na2WO.·2H20 6.80 
Y Y 20 J HCL (30 mVl) and 

H 2SO. (25 mUI) 
-

Yb Yb20 J HCI (300 mill) -



Table 2. Stability of Dilute Solutions ~ 

Percent element remaining after stated storage period 

Element Concentration Container Days-% Days-% Days-% Days-% Days-% 

Ag 100 ppm Pyrex 441-100 

10 ppm Pyrex 441-81 

Soft glass 37-92 64-86 96-78 96-78 

Polyethylene 37-95 59-92 91-87 

I ppm Pyrex 419-6.5 

Soft glass 37-44 64-38 96-31 128-25 

Polyethylene 37-77 59-62 91-57 

AI 100 ppm Pyrex 454-100 

10 ppm Pyrex 420-100 

Soft glass 37-100 

I ppm Pyrex 420-70 

Polyethylene 37-92 95-84 91-77 

Au 100 ppm Pyrex 441-100 

Soft glass 37-105 

75 ppm Soft glass 37-94 64-94 

Polyethylene 37-100 

Sa 10 ppm Pyrex 443-85 

Soft glass 37-96 64-100 96-97 133-104 

Polyethylene 37-100 59-98 86-104 

5 ppm Soft glass 37-90 64-95 96-100 133-103 

Polyethylene 37-100 59-105 96-114 

2 ppm Pyrex 443-52 

Soft glass 37-75 64-70 96-68 133-70 

Polyethylene 37-82 59-86 96-80 
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Table 2.-(Contd.) 

Element Concentration Container Days-% Days-% Days-% Days-% Days-% 

Ca I ppm Soft glass 37-99 64·99 96-95 lJ5-93 

Polyethylene 37-100 59-92 98-88 

0.1 ppm Pyrex 419-80 

Soft glass 37-87 64-95 96-90 lJ5·122 

Polyethylene 37-102 59-85 98-74 

Cd 100 ppm Pyrex 459-87 

Soft glass 42-64 64-66 96-62 135-66 

Polyethylene 32-100 54-99 93-100 

75 ppm Soft glass 42-70 64-75 96-74 135-86 

Polyethylene 32·96 54-98 93-101 

50 ppm Soft glass 42-48 64-50 96-55 lJ5-67 

Polyethylene 32-IOU 54-1 ()() 93-105 

Co 20 ppm Soft glass 42-100 65-100 96·101 lJ5-IOO 

Polyethylene 33-100 54-102 93-100 

10 ppm Soft glass 42-101 65-98 96·100 lJ5-102 

Polyethylene 33-101 54-102 93-100 

5 ppm Soft glass 42·94 65-95 96-95 135-102 

Polyethylene 33-99 54-103 93-100 

Cr 10 ppm Pyrex 445-99 

Soft glass 40-100 

Cu 5 ppm Pyrex 426·176 

Polyethylene 33-101 54-IOU 93·93 

1 ppm Soft glass 40-91 73-95 94-98 135-94 

Polyethylene 33-96 54-100 93·106 

0,5 ppm Pyrex 426-228 
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~Table 2.--{Contd.) 

Days-% Days-%Days-% Days-%Days-%Concentration ContainerElement 

Soft glass 40-95 73-88 94-90 135-94 

Polyethylene 33-100 54-100 54-99 93-105 

Oy 100 ppm Pyrex 477-75 

Soft glass 40-92 73-92 102-90 133-100 

Polyethylene 33-95 54-95 93-98 

Pyrex10 ppm 477-30 

Polyethylene 33-109 54-92 43-100 

Er 100 ppm Pyrex 1 year - 96 

Soft glass 40-101 

10 ppm Pyrex 1 year - 100 

1 ppm Pyrex 1 year - 100 

Fe 100 ppm Pyrex 431-100 

Soft glass 40-98 

Ga 100 ppm Pyrex 431-97 

Soft glass 45-100 74-99 98-100 133-100 

Polyethylene 29-100 43-99 88-98 

10 ppm Pyrex 431-95 

Soft glass 45-102 74-100 98-98 133-100 

Polyethylene 29-95 53-100 88-96 

Gd Pyrex100 ppm I year - 100 

Soft glass 45-100 

100 ppm PyrexIn 431-100 

Soft glass 45-101 

Pyrex10 ppm 431-106 

Soft glass 45-101 
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Table 2.-{Contd.) 

Element Concentration 

La 100 ppm 

10 ppm 

Li 10 ppm 

5 ppm 

0.5 ppm 

0.005 ppm 

100 ppm 

10 ppm 

I ppm 

Mo 

Mn 

10 ppm 

1 ppmNa 

Container 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Soft glass 

Polyethylene 

Soft glass 

Polyethylene 

Pyrex 

Pyrex 

Soft glass 

Pyrex 

Soft glass 

Pyrex 

Soft glass 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Days-% 

45-100 

29·100 

45·102 

29·101 

43·97 

29-100 

43-98 

29·100 

43·102 

29·100 

43·100 

43·103 

43·93 

44·90 

28-99 

44·111 

28-98 

Days-% 

74-100 

53·98 

74·95 

53-100 

72·101 

50·100 

72·98 

50·102 

72·103 

50·95 

72-94 

49· 107 

72-115 

49·100 

Days-% 

98·100 

88·103 

98-100 

88·100 

93·100 

87·100 

93-98 

87· 100 

93-98 

87·101 

93-76 

83-100 

93·122 

95·88 

Days-% 

133·101 

133-100 

130·100 

130·100 

130-70 

139·126 

Days-% 

1 year - 90 

1 year· 104 

454·103 

1 year . 91 


476-100 


476·103 


476·96 


1 year· 133 


456·132 
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Table 2.-{Contd.) 

Element Concentration 

Nb 100 ppm 

Nd 100 ppm 

Ni 100 ppm 

10 ppm 

Pr 120 ppm 

Pt 100 ppm 

Sm 100 ppm 

19 ppm 

Sr 10 ppm 

1 ppm 

Tb 100 ppm 

Container 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Soft glass 

Polyethylene 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Oays·% 

44-100 

28-98 

44-100 

44-100 

28-100 

44-100 

28-99 

44-100 

44-100 

44-100 

44-100 

28-100 

44-104 

28-95 

43-105 

23-100 

43-116 

28-92 

43-97 

Oays-% 

72-100 

49-98 

71-100 

49-100 

71-100 

49-94 

71-99 

49-98 

71-100 

49-102 

71-100 

49-100 

71-97 

49-99 

71-95 

49-96 

71-96 

Oays-% 

93-98 

95-100 

92-100 

96-100 

92-95 

96-97 

92-100 

96-106 

92-100 

96-99 

92-100 

96-90 

92-99 

96-98 

92-101 

96-84 

92-100 

Oays-% 

139-100 

139-101 

139-100 

139-102 

139-101 

139-103 

139-96 

139-115 

139-100 

N 
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1 year - 100 
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Table 2.-(Contd.) 

Element 

TI 

U 

V 

W 

Y 

Yb 

Concentration 

100 ppm 

10 ppm 

100 ppm 

10 ppm 

100 ppm 

10 ppm 

100 ppm 

100 ppm 

10 ppm 

I ppm 

Container 

Polyethylene 

Pyrex 

Soft glass 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Polyethylene 

Soft glass 

Polyethylene 

Soft glass 

Polyethylene 

Pyrex 

Soft glass 

Pyrex 

Soft glass 

Days-% 

28-100 

43-100 

43-90 

28-100 

43-100 

43-100 

28-100 

43-95 

28-100 

43-84 

28-100 

43-100 

28-96 

43-100 

28-100 

43-100 

43-103 

Days-% 

49-105 

78-100 

49-103 

71-95 

49-100 

71-97 

49-101 

71-85 

49-100 

71-96 

49-100 

71-100 

49-100 

Days-% 

96-100 

92-102 

96-100 

91-108 

96-100 

92-99 

96-103 

92-89 

96-105 

92-100 

96-92 

92-100 

96-100 

Days-% 

139-100 

139-100 

139-103 

139-100 

139-103 

Days-% 

407-100 

407-73 
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Solutions of the following elements (ppm) were found to be stable for one 
year or more in Pyrex containers: Cr(lO,) Er(l), Fe(100), Ga(lO), Gd(100), 
In(10), La(10), Li(0.005), Nd(100), Pr(120), Sm(lO), Sr(1), Tb(l00), Yb(1). 
These were the lowest concentrations studied and may not represent the lowest 
stable concentrations. There appeared to have been perhaps a slight loss of Li 
(9%) and Tb (7%) at these concentrations. Note that even very dilute solutions of 
Li are stable for long periods. The following elements (ppm) were studied for 
shorter periods of time and their solutions were stable in soft glass containers for 
135-139 days: Co(5), Nb(lOO), Ni(lO), Pt(I00), U(lO), and Y(100). 

No substantial changes were found for any of the above listed elements in any 
of the three containers for the concentrations and times studied, except for Sr 
where some loss appeared in polyethylene. Water hardness and extraneous ions 
affect Sr adsorption (Eicholz et al. 1965). In general, no serious changes were 
observed for the rare earths in any of the containers except for Dy after one year in 
Pyrex where losses were high; a slight loss of Tb mentioned above. Serious errors 
from chromium desorption are possible when a dichromate-sulfuric acid cleaning 
solution is used to clean the vessels (Butler and Johnston 1954) . La has been 
reported to be absorbed from neutral solution onto plastic and to a less extent on 
Pyrex (Eicholz et at. 1965). Eighty percent of a lO ppm Ni solution has been 
reported to be lost in soft glass containers in 75 days (Thiers 1957a), in contrast to 
the present results. 

The following elements (ppm) showed no change for one year or more in 
Pyrex containers, although losses were observed at lower concentrations and/or 
with other containers: Ag(100) , AI(lO), Au(100), Mn(l), Sr(l) V(lO). Ag at lO 
ppm and Al at 1 ppm were not stable in any of the containers. The Ag adsorption 
losses were expected . NH3 is reported to be best at stabilizing Ag solutions 
(Pronin et al. 1973); the stability in HN03 solutions depends to a large degree on 
the Ag(I) and HN03 concentrations. Mn and V exhibited instability in soft glass, 
as did Sr in soft glass and polyethylene. Thiers (1957a) reported 90% loss of Mn 
on soft glass in 75 days, but in the present study this concentration was stable for 
43 days. A solution of 20-500 ppm reportedly exhibits good stability in 2-6 M HCI 
for a period of 30 days. Hydrolysis or the formation of new Au complexes are 
reported to have no effect in atomic absorption measurements since all Au 
compounds are fully dissociated in ~he flame (Pronin et al. 1973). The addition of 
10% HN03 has no effect and so aqua regia can be used in Au determination. 

Although Ba and Cu were unstable in Pyrex for long periods of time (> 1 yr), 
they were stable for shorter periods in soft glass and polyethylene: concentrations 
of less than 5 ppm Ba showed losses in all containers, however. W (100 ppm) was 
stable in soft glass for 139 days, but not in polyethylene. Cd was stable only in 
polyethylene. 


