On Obstructions to K^* (;Z/2)-Orientability

Tahsin Ghazal

Department of Mathematics, College of Science King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

ABSTRACT. The vanishing of the differentials of the Atiyah-Hirzebruch spectral sequence on the Thom class is the necessary and sufficient condition for O(n)-bundle to be orientable with respect to a cohomolog theory h^* . It is shown here that the third Stiefel-Whitney class is the first obstruction for an oriented spherical fibration to be orientable with respect to mod 2 K-theory K^* (;Z/2). By killing the third differential of the Atiyah-Hirzebruch spectral sequence, we will find the second obstruction for an oriented real vector bundle to be orientable with respect to K^* (;Z/2) by calculating the fifth differential in the Atiyah-Hirzebruch spectral sequence.

Given a multiplicative cohomolog theory with unit h^* , a finite dimensional CW-complex X, and an O(n)-bundle ξ over X, we consider the question of when ξ is orientable in the sense of Dold (1962) for h^* .

By this we mean if we consider the total space $(D(\xi), S(\xi))$ of the disc bundle associated to ξ , and if we consider the map $i_x: (D^n, S^{n-1}) \to (D(\xi), S(\xi))$ which is the inclusion of the fibre over $x \in X$, $i_x^*: h^n(D(\xi), S(\xi)) \to h^n(D^n, S^{n-1})$ is onto for each $x \in X$ (one x in each component suffices).

Our chief tool will be the Atiyah-Hirzebruch spectral sequence (AHSS). This is a spectral sequence with $E_2^{p,q}(X) \cong H^p(X; h^q(pt))$ and which converges to $h^{q+q}(X)$.

Consider the AHSS for $(D(\xi), S(\xi)) = (T(\xi), pt)$. Let n be the dimension of the fibre of $T(\xi)$. Then $E_2^{n-i,q}(T(\xi)) = 0$ for all i > 0, so $E_{\infty}^{n,0}(T(\xi)) \subseteq E_2^{n,0}(T(\xi))$, and $h^n(D(\xi), S(\xi)) \to E_{\infty}^{n,0}(T(\xi))$ is onto.

If we compute $h^n(D^n, S^{n-1})$, we find that the AHSS collapses, and one can see that the map $i_x^* : h^n(D(\xi), S(\xi)) \to h^n(D^n, S^{n-1})$ is

 $h^{n}(D(\xi), S(\xi)) \rightarrow E_{\infty}^{n,0} (T(\xi)) \subseteq E_{2}^{n,0} (T(\xi)) \xrightarrow{\delta x} E_{2}^{n,0} (D^{n}, S^{n-1}) \cong h^{n}(D^{n}, S^{n-1})$

Hence ξ is h^{*}-orientable if and only if \subseteq and δ_x are onto. δ_x is onto if and only if either $w_1(\xi|X_x) = 0$, where X_x is the component of X containing x, or h⁰(pt) is a Z/2-vector space.

If $w_1(\xi|X_x) = 0$, or $h^0(pt)$ is a Z/2-vector space, $E_2^{n,0}(T(\xi)) = H^n(D(\xi), S(\xi);$ $h^0(pt)) \cong Hom (Z, h^o(pt))$. Define the Thom class $\Delta_{\xi} \in E_2^{n,0}(T(\xi))$ to be the homomorphism $Z \to h^o(pt)$ taking $1 \in Z$ to the identity in $h^0(pt)$. Then \subseteq is onto if and only if all differentials vanish on Δ_{ξ} .

The map $\pi : D(\xi) \to X$ induces a pairing of the AHSS's $E_r^{*,*}(X) \otimes E_r^{*,*}(T(\xi)) \to E_r^{*,*}(T(\xi))$. Define $\Phi_2 : E_r^{*,*}(X) \to E_2^{*+n,*}(T(\xi))$ by $\Phi_2(\alpha) = \pi^*(\alpha) \times \Delta_{\xi}$. Since $w_1(\xi|X_x) = 0$ or $h^0(pt)$ is Z/2-vector space, the Thom isomorphism theorem for ordinary cohomology says Φ_2 is an isomorphism.

If $d_2(\Delta_{\xi}) = 0$, we can define $\Phi_3 : E_3^{*,*}(X) \to E_3^{*+n,*}(T(\xi))$ from Φ_2 since $d_2\Phi_2(\alpha) = \Phi_2d_2(\alpha) + (-1)^{deg(\alpha)} \pi^*(\alpha) \times d_2(\Delta_{\xi}) = \Phi_2d_2(\alpha)$. Since Φ_2 is an isomorphism, so is Φ_3 .

We can inductively construct $\Phi_r : E_r^{*,*}(X) \to E_r^{*+n,*}(T(\xi))$ provided $d_{r-i}(\Delta_{\xi}) = 0$ for i > 0. (Since $E_r^{n,0}(T(\xi)) \subseteq E_2^{n,0}(T(\xi))$, Δ_{ξ} actually sits in $E_r^{n,0}$ if d_{r-i} vanish on it).

Thus, when all the differentials vanish on Δ_{ξ} , we get a natural isomorphism of AHSS's $\Phi_r : E_r^{*,*}(X) \to E_r^{*+n,*}(T(\xi))$. This induces a Thom isomorphism $\Phi :$ $h^*(X) \to h^{*+n}(D(\xi), S(\xi))$, given by $\Phi(\alpha) = \pi^*(\alpha) \times \Delta_{\xi}$, where $\Delta_{\xi} \in h^n(D(\xi),$ $S(\xi))$ maps onto $\Delta_{\xi} \in E_{\infty}^{n,0}(T(\xi))$ by the natural map.

The purpose of this paper is to establish the first and the second obstructions of O(n)-bundles to be orientable with respect to mod 2 K-theory.

In §1 we recall the definition and some basic facts about the AHSS's for mod p K-theory, where p is a prime. In §2 we will see that the first obstruction to K^* (;Z/2)-orientability is the third Stiefel-Whitney class. The second obstruction for oriented real vector bundle is established in §3.

Let p be any integer and h^* be a cohomology theory. If X is a finite CW-complex with base point, we then define h^* (X; Z/p) as follows.

Let M_p denote the 'co-Moore' space $S^1 \cup_f e^2$, where $f: S^1 \to S^1$ is a base point preserving map of degree p; M_p is a space of type (Z/p,2). Now form the reduced product $X \wedge M_p$ (another finite CW-complex), and define h^n (X; Z/p) = \tilde{h}^{n+2} (X $\wedge M_p$), where \tilde{h} denotes reduced cohomology (Maunder 1967).

Let p be a prime, and X a finite CW-complex, then there is a spectral sequence $\{(E_r^{s,t}(X); Z/p)\}$ $(r \ge 2, s \ge 0)$ with differentials $d_r: E_r^{s,t} \to E_r^{s+t,t-s+1}$ such that

(i)
$$E_2^{s,t} = H^s (X; K^t (S^0; Z/p))$$

(ii) $E_{\infty}^{s,t} = G_s K^{s+t} (X; Z/p)$

$$= K_{s}^{s+t}(X; Z/p) / K_{s+1}^{s+t}(X; Z/p)$$

Where $K_s^n(X; Z/p) = Ker[(K^n(X; Z/p) \rightarrow K^n(X^{s-1}; Z/p)]$

 X^{s-1} being the (s-1) – skeleton of X. Since K^t (S⁰; Z/p) = 0 or Z/p according to t being odd or even, and $E_r^{s,t} = 0$ whenever t is odd, then d_r vanishes for r even. Moreover d_r = 0 for $2 \le r \le 2p-2$, so that for $2 \le r \le 2p-1$ {($E_r(X)$; Z/p)} can be identified with H^s (X; Z/p), with this identifications d_{2p-1} is equal (up to a multiplication by a non-zero element of Z/p) to Milnor's stable cohomology operation Q₁ = P¹\beta-\betaP¹ (for p = 2 setting P¹ = Sq², $\beta = Sq^1$) (Atiyah and Hirzebruch 1961).

§2:

Let $\xi = (E, \pi, F, X)$ be a spherical fibration over a CW-complex X. Let $T(\xi)$ be the Thom space of ξ and Δ_{ξ} be the Thom class in ordinary cohomology. Let $\{(E_r(X); Z/2)\}$ be the AHSS of §1.

Lemma 2.1:

With ξ as above, the first obstruction to K^{*}(; Z/2) - orientability is $d_3(\Delta_{\xi}) = (w_1^3 + w_1 \cdot w_2 + w_3)$. Δ_{ξ} , where w_i the ith Stiefel-Whitney class.

Proof:

4

By Atiyah, Hirzebruch (1961), in $\{(E_r(T(\xi); \mathbb{Z}/2))\}$, d₃ is given by

$$\begin{split} d_3(\Delta_{\xi}) &= (Sq^2Sq^1 + Sq^3)(\Delta_{\xi}) \\ &= Sq^2Sq^1(\Delta_{\xi}) + w_3 \cdot \Delta_{\xi} \\ &= Sq^2(w_1 \cdot \Delta_{\xi}) + w_3 \cdot \Delta_{\xi} \\ &= Sq^1(w_1) Sq^1(\Delta_{\xi}) + w_1 Sq^2(\Delta_{\xi}) + w_3 \cdot \Delta_{\xi} \\ &= (w_1^3 + w_1w_2 + w_3) \cdot \Delta_{\xi} \end{split}$$

Where Sqⁱ is the mod 2 Steenrod operation (Epstein, Steenrod 1962).

Here we used the equalities Sq^0 = identity, $w_i(\xi) = \Phi_H^{-1} Sq^i(\Delta_{\xi})$; and the Cartan formula.

Corollary 2.2.:

If ξ is an oriented spherical fibration, then the third Stiefel-Whitney class $w_3(\xi)\in H^3(X; \mathbb{Z}/2)$ is the first obstruction.

Proof:

Immediate from the lemma, since $w_1(\xi) = 0$.

§3:

As in §1, in the AHSS {(E_r; Z/2)} all even differentials vanish and the first non-zero differential is d₃, so the next possibly non-vanishing differential is d₅. We will compute $d_5(\Delta_{\xi})$, and thus the second obstruction to K^{*} (; Z/2) - orientability, when ξ is an oriented real vector bundle and $d_3(\Delta_{\xi}) = 0$.

Let ξ be an oriented real vector bundle over $B(w_1 = 0)$ and $f: B \to BSO$ be its classifying map. Realize $w_3 \in H^3$ (BSO; Z/2) as a map $w_3: BSO \to K$ (Z/2, 3), we then have a principal fibration.

K (Z/2,2) \xrightarrow{i} X \xrightarrow{p} BSO $\xrightarrow{w_3}$ K (Z/2, 3) induced from w₃. Consider the following diagram

Since w₃ f is null homotopic and p is the fibre of w₃, we then have a lifting $\tilde{f} : B \to X$ such that $p \cdot \tilde{f} = f$. Also we have $d_5(\Delta_{\xi}) = \tilde{f}^* (d_5(\Delta_{\xi}))$, where $\tilde{\xi}$ is the bundle over X induced by p. So in order to compute $d_5(\Delta_{\xi})$, we need to calculate the cohomology mod 2 of the space X in the fibration $K(Z/2, 2) \xrightarrow{i} X \xrightarrow{P} BSO \xrightarrow{w_3} K (Z/2, 3)$, we do that by using the Serre spectral sequence.

Recall if $\xi = (E, \pi, F, B)$ is a fibre space over B with fibre F, and if B and F are arcwise connected and G is a ring, then there is a spectral sequence $\{(E_r, d_r)\}$ (Mosher and Tangora 1968) with the E_2 term is given by $E_2^{s,t} = H^s(B; H^t(F;G))$ converging to H^* (E;G), where H^t (F;G) is the local coefficients. If B and F are (s-1) and (t-1) - connected respectively, we then have the Serre exact sequence which terminates as follows:

$$\rightarrow H^{s+t} (F;G) \xrightarrow{\tau} H^{s+t-1} (B;G) \xrightarrow{\pi^*} H^{s+t-1} (E;G) \xrightarrow{i^*} H^{s+t-1} (F;G)$$

where i:F \rightarrow E, and τ is the cohomology transgression.

Theorem 3.1:

For $n \leq 5$, $H^n(X; \mathbb{Z}/2)$ is generated by w_2 , A_3 , \widetilde{w}_2^2 , \widetilde{w}_4 , \widetilde{w}_2 . A_3 and $Sq^2 A_3$. ($\widetilde{w}_{2i} = p^* w_{2i}$ and A_3 is as defined in the proof).

Proof:

$$H^*(BSO; Z/2) \cong Z/2 [w_2, w_3, w_2^2, w_4, ...]$$
 and

$$H^{(K(Z/2,2); Z/2)} \cong Z/2 [i_2, Sq^1i_2, ...]$$

The figure below is the diagram of the $E_3^{s,t}$ term of the spectral sequence of the fibration. $K(Z/2,2) \xrightarrow{p} BSO$ in the relevant dimensions.

Only terms of total degree of at most 5 needs to be considered for our purposes. Since $p:X \rightarrow BSO$ is induced from w_3 , we have

 $d_{3}(i_{2}) = \tau(i_{2}) = w_{3} ; d_{3}(Sq^{1}(i_{2})) = 0$ $d_{3}(i_{2}^{2}) = 0 ; d_{3}(i_{2} \cdot w_{2}) = w_{2} \cdot w_{3}$ $d_{3}(i_{2} \cdot Sq^{1}(i_{2})) = w_{3}Sq^{1}(i_{2}) ; d_{3}(Sq^{2}Sq^{1}i_{2}) = 0$ $d_{3}(i_{2} \cdot w_{3}) = w_{3}^{2} \text{ and } d_{3}(w_{2} \cdot Sq^{1}i_{2}) = 0$

leaving w₂, Sq¹*i*₂, w₂², w₄, w₂ Sq¹*i*₂ and Sq²Sq¹*i*₂ in E₄ = E₅, for d₄ of all these elements is zero:

 $d_5(i_2^2) = w_2w_3 + w_5$, but $d_3(i_2 \cdot w_2) = w_2 \cdot w_3$, so this means that $H^5(BSO; Z/2)$ is killed. Also we have

$$d_5(Sq^1i_2) = 0; d_5(w_2 \cdot Sq^1i_2) = 0; d_5(Sq^2Sq^1i_2) = 0$$

Also in dimension 8; $d_3(w_2 \cdot Sq^3Sq^1i_2) = 0$. Thus, the following elements of total degree ≤ 5 survive to E_{∞} of this spectral sequence.

w₂, Sq¹*i*₂, w₂², w₄, w₂ · Sq¹*i*₂, Sq²Sq¹*i*₂ and the element w₂ · Sq³ Sq¹*i*₂ in dimension 8. The groups E_{st} for which s+t=n form a composition series for Hⁿ(X; Z/2). Therefore, for $n \le 5$ we can write a basis for Hⁿ(X; Z/2). Denote the elements of these basis by, \tilde{w}_2 , A₃, \tilde{w}_2^2 , \tilde{w}_2 . A₃, and Sq²A₃. Since

$$d_r: E_r^{s,0} \rightarrow E_r^{s+r,-r+1} = 0$$
 for $r \ge 2$

 $H(E_r^{s,0}) =$ quotient module of $E_2^{s,0}$, therefore we get an epimorphism $E_2^{s,0} =$ H^s (BSO; Z/2) $\rightarrow E_{\infty}^{s,0} \rightarrow H^s(X; Z/2)$ which is just p*, since \widetilde{w}_{2i} comes from the

base; so $\widetilde{w}_2 = p^* w_2$, $\widetilde{w}_4 = p^* w_4$, $\widetilde{w}_2^2 = p^* w_2^2$,

In the fibre space $K(Z/2,2) \xrightarrow{i} X \xrightarrow{P} BSO$, we have $w_2 \in H^2$ (BSO; Z/2) and $i_2 \in H^2$ (K(Z/2,2);Z/2) is transgressive, *i.e.*, $\beta_1 w_2 = Sq^1 w_2 = w_3 = \tau(i_2)$. Thus, applying the Bockstein lemma (Mosher and Tangora 1968, pp. 106) to the above fibration we have $i^*\beta_2 p^* w_2$ is defined, where β_1 and β_2 are the Bockstein differentials, and $i^*\beta_2 p^* w_2 = i^*\beta_2 \widetilde{w}_2 = \beta_1 i_2 = Sq^1 i_2 = i^*A_3$, but $i^*: H^3(X;Z/2) \rightarrow$ $H^3(K(Z/2,2); Z/2)$ is a monomorphism. Hence, $A_3 = \beta_2 \widetilde{w}_2$.

Now we return to the computation of $d_5(\Delta_{\hat{\epsilon}})$.

Lemma 3.2:

In the AHSS $\{E_r(X); Z/2\}$ of the space X.

(i) $d_3(\widetilde{w}_2, \beta_2\widetilde{w}_2) \neq 0$ and (ii) $d_3(Sq^2\beta_2\widetilde{w}_2) = 0$.

Proof:
(i)
$$d_3(\widetilde{w}_2 \cdot \beta_2 \widetilde{w}_2) = \widetilde{w}_2 d_3(\beta_2 \widetilde{w}_2) + \beta_2 \widetilde{w}_2 d_3(\widetilde{w}_2)$$

 $= \widetilde{w}_2 d_3(\beta_2 \widetilde{w}_2), \text{ because } d_3(\widetilde{w}_2) = d_3(p^* w_2) = 0$
 $= \widetilde{w}_2 [Sq^3\beta_2 \widetilde{w}_2 + Sq^2Sq^1\beta_2 \widetilde{w}_2]$
 $= \widetilde{w}_2 [Sq^3\beta_2 \widetilde{w}_2 + Sq^2\beta_1\beta_2 \widetilde{w}_2]$

Since, $\beta_1\beta_2 = 0$; so $d_3(\widetilde{w}_2 \cdot \beta_2 \widetilde{w}_2) = \widetilde{w}_2 Sq^3\beta_2 \widetilde{w}_2 \neq 0$. (ii) $d_3(Sq^2\beta_2 \widetilde{w}_2) = (Sq^3Sq^2Sq^1) (Sq^2\beta_2 \widetilde{w}_2)$ $= Sq^3Sq^2\beta_2 \widetilde{w}_2 + Sq^2Sq^1Sq^2\beta_2 \widetilde{w}_2$

Using Adem relation, $Sq^3Sq^2 = 0$ and $Sq^2Sq^3 = Sq^5 + Sq^4Sq^1$ $d_3(Sq^2\beta_2\widetilde{w}_2) = Sq^2 Sq^3\beta_2\widetilde{w}_2 = (Sq^5 + Sq^4Sq^1)(\beta_2\widetilde{w}_2)$ $= Sq^5\beta_2\widetilde{w}_2 + Sq^4Sq^1\beta_2\widetilde{w}_2 = 0.$

Lemma 3.3:

In $\{(E_r(X); Z/2)\}$ and $\{(E_r(T(\xi); Z/2))\}$ we have

(i)
$$E_5^{5,0}(X) = \text{Ker } d_3 = Z/2 \cdot \{Sq^2\beta_2\widetilde{w}_2\}$$

(ii)
$$E_5^{5,0}(T(\overline{\xi})) = Z/2. \{\Delta_{\overline{\xi}}Sq^2\beta_2\widetilde{w}_2\}$$

Proof:

(i) Im $d_3 \subset H^5(X; \mathbb{Z}/2)$ and $d_3(\widetilde{w}_2) = 0$; so Im $d_3 = 0$; so by lemma (3.2) Kerd₃ = Sq² $\beta_2 \widetilde{w}_2$.

(ii) $d_3(\Delta_{\overline{\xi}}) = 0$ and $d_3(\Delta_{\overline{\xi}} \cdot x) = \Delta_{\overline{\xi}} d_3(x)$.

Let $B = K(Z/4,1)^{(4)}$ and $A \subset B$ be the 4-skeleton and the 2-skeleton of K(Z/4,1) respectively.

Lemma 3.4:

With B and A as above, there is an oriented vector bundle over S(B), the suspension of B, which is not orientable for KO and K-theories.

Proof:

Let u and \overline{u} be the generators of H¹(B; Z/2) and H¹(A; Z/2). The following diagram represents AHSS,

	0	1	2	3	4				
0	Z	0	Z/4	0	Z/4	0	0	0	0
-1	Z/2	Z/2	Z/2	Z/2	Z/2	0	0	0	0
-2	Z/2	Z/2	Z/2	Z/2	Z/2	0	0	0	0
-3	0	0	0	0	0	0	0	0	0
-4	Z	0	Z/4	0	Z/4	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	,								
t									

					-		
~					~		
TTS	(D	VOI	(VO*/	'n)	ċ.
н-	18	KUT	I DOINT I I		KUT	в	L
	(~,		(pome))	-	110 (~	,

We need to find $[B:SO] = \widetilde{K}O^{-1}$ (B). Now

$$H^{1}(B; \mathbb{Z}/2) \xrightarrow{d_{3}} H^{4}(B; \mathbb{Z})$$

$$Sq^{2} \searrow \nearrow \delta$$

$$H^{3}(B; \mathbb{Z}/2)$$

 $d_3 = \delta Sq^2$, but $Sq^2(u) = 0$; so $d_3(u) = 0$. Hence (no other differentials).

 $E_3^{1,-2} = E_{\infty}^{1,-2} = Z/2$, and no other bits of total degree -1. So, $[B;SO] = KO^{-1}$ (B) = Z/2 and restriction to A is an isomorphism

 $E_3^{1,-2} = E_{\infty}^{1,-2} = Z/2$, and no other bits of total degree -1. So, $[B;SO] = KO^{-1}$ (B) = Z/2 and restriction to A is an isomorphism

Call generators of [A;SO]; $\overline{\alpha}$, of [B; SO]; α , define bundles

$$\begin{array}{ccc} E_{\overline{\alpha}} & \longrightarrow & E_{\alpha} \\ \downarrow & & \downarrow \\ S(A) & \longrightarrow & S(B) \end{array}$$

$$\begin{split} &E_{\alpha}=(C^{+}B\times R^{n})\,U_{\alpha}(C^{-}B\times R^{n}),\,S(B)=C^{+}B\cup C^{-}B,\,\text{where }C^{+}B=[0,\frac{1}{2}]\\ &\times B/_{\{0\}\times B},\,C^{-}B=[\frac{1}{2},\,1]\times B/_{\{1\}\times B},\,B=C^{+}B\cap C^{-}B.\,\,\text{We have }[A;SO]=Z/2\\ &\text{corresponding to the class }\bar{u}\text{ in }H^{1}(A;\,Z/2),\,\text{so }w_{2}\left(E_{\bar{\alpha}}\right)=\sigma\left(\bar{u}\right)\neq0\text{ in }H^{2}(S(A);\\ &Z/2),\,\sigma\text{ is the suspension isomorphism. Let v and }\bar{v}\text{ be the generators of }H^{2}\left(B;Z\right)\\ &\text{and }H^{2}(A;\,Z)\text{ respectively.} \end{split}$$

Write $H^{*}(B; Z) = Z[v]/_{(4v,v^3)}$ and the exact sequence associated with

$$0 \longrightarrow Z \xrightarrow{\mathbf{x}^2} Z \xrightarrow{\mathbf{\rho}_2} Z/2 \longrightarrow 0$$

 $\delta(u) = 2v; \ \delta(\overline{u}) = 2\overline{v}, \text{ so } \delta(w_2(E_{\overline{\alpha}})) = \delta(\sigma(\overline{u})) = \sigma(2\overline{v}) \neq 0.$ So $E_{\overline{\alpha}}$ is not orientable for KO or K-theories, and hence E_{α} is not.

By the lemma

$$w_3(E_{\alpha}) = Sq^1 (w_2(E_{\alpha})) = Sq^1 (\sigma(u)) = \rho_2\delta(\sigma(u)) = \rho_2(\sigma(2v)) = 0$$

so $d_3(\Delta_{E\alpha}) = 0$, $d_3(\Delta_{E\overline{\alpha}}) = 0$. In case of $E_{\overline{\alpha}}$, d_3 is enough, so $E_{\overline{\alpha}}$ is orientable for K* (; Z/2). So the question is whether E_{α} is orientable for K*(; Z/2) or not.

 $\alpha \in [B; SO]$ induces a map, denoted again by α ,

$$(B \times D^{n}; B \times S^{n-1}) \xrightarrow{\alpha} (B \times D^{n}; B \times S^{n-1})$$

Theorem 3.5:

 E_{α} is orientable for K^{*} and K^{*} (;Z/2) if and only if $\alpha^{*}(\gamma_{n}) = \gamma_{n}$, where γ_{n} corresponds to 1 \otimes u in K^{*}(B) \otimes K^{*}(Dⁿ, Sⁿ⁻¹), u is the generator of K^{*}(Dⁿ, Sⁿ⁻¹).

Proof:

Put $M = (D^n, S^{n-1})$, the theorem follows from the commutativity of the following diagram in which the rows are the Mayer-Vietoris exact sequences

Now $K^*(B \times D^n; B \times S^{n-1}) = \gamma_n \cdot K^*(B)$, so $\alpha^*(\gamma_n) = \gamma_n \cdot g_\alpha$, $g_\alpha \in K^o(B)$ actually $\epsilon \ 1 + \widetilde{K}^o(B)$. By lemma (3.4) and theorem (3.5) $g_\alpha \neq 1$. Let $\rho_2(g_\alpha) =$ the g_α for K-theory mod 2, say \widetilde{g}_α . So E_α is $K^*(; Z/2)$ - orientable if and only if $\widetilde{g}_\alpha = 1$. Naturality gives $i^*(g_\alpha) = g_{\overline{\alpha}}$ for $i : A \to B$. For $g_{\overline{\alpha}}$ and $\widetilde{g}_{\overline{\alpha}}$ by lemma (3.4) we have

(i) $\tilde{g}_{\bar{\alpha}} \neq 1$ because $E_{\bar{\alpha}}$ is not orientable for K^* ,

(ii) $\tilde{g}_{\bar{\alpha}} = 1$ because $E_{\bar{\alpha}}$ is K^* (; Z/2) - orientable.

Lemma 3.6:

 E_{α} is not orientable for K^* (; Z/2).

Proof:

 $K^*(A) = Z.1 \oplus Z/4. \overline{\eta}; \overline{\eta}^2 = 0$ because its induced from $A \to S^2$. $K^*(B)$ is a quotient of $Z[\eta]$ because $K^*(K(Z/4, 1))$ is up to completion (Hodgkin and Anderson 1968), so $K^*(B) = Z \cdot 1 \oplus Z/4. \eta \oplus Z/4. \eta^2$, and $\widetilde{K}^{\circ}(A) = Z/4. \overline{\eta}; \widetilde{K}^{\circ}(B) = Z/4. \eta + Z/4. \eta^2$. So $g_{\overline{\alpha}} = 1 + \lambda \overline{\eta}, \lambda \in Z/4$. Since $\lambda \neq 0$ and $\lambda \equiv 0 \mod 2$, we must have $\lambda \equiv 2 \mod 4$. So, $g_{\overline{\alpha}} = 1 + 2\overline{\eta}$

Now, $g_{\alpha} = 1 + \lambda' \eta + \mu' \eta^2$, but $i^*(\eta^2) = \overline{\eta}^2$ so $i^*(g_{\alpha}) = g_{\overline{\alpha}} = 1 + \lambda' \overline{\eta}$. So $\lambda' = 2$ and $g_{\alpha} = 1 + 2\eta + \mu' \eta^2$

To determine μ' we use Adams operations ψ^k (Adams 1962). $\psi^k(g_\alpha) = g_\alpha$, because $\psi^k(\gamma_n) = k^n \gamma_n$, so

$$\begin{split} \psi^{k}(\alpha^{*}(\gamma_{n})) &= \alpha^{*}k^{n}\gamma_{n} = k^{n} \alpha^{*}(\gamma_{n}) \\ &= k^{n} g_{\alpha} \cdot \gamma_{n} = g_{\alpha}\psi^{k}(\gamma_{n}) \\ &= \psi^{k} (g_{\alpha} \cdot \gamma_{n}) = \psi^{k}(g_{\alpha})\psi^{k}(\gamma_{n}) \end{split}$$

Now $1 + \eta$ is a line bundle, by definition, so $(1 + \eta)^4 = 1$, hence reducing mod 4, $\eta^4 = 2\eta^2$. But if $\eta^3 = \lambda_1 \eta + \lambda_2 \eta^2$, $\eta^4 = \lambda_1 \eta^2 + \lambda_2 \eta^3 = \lambda_1 \lambda_2 \eta + (\lambda_1 + \lambda_2^2) \eta^2$. Hence $\lambda_1 \lambda_2 = 0$, $\lambda_1 + \lambda_2^2 = 2$. This gives $\lambda_1 = 2$, $\lambda_2 = 0$ or 2. $\eta^5 = \eta^4$. $\eta = 2\eta^3 = 0$.

So
$$\psi^3(1 + \eta) = (1 + \eta)^3 = 1 + 3\eta + 3\eta^2 + \eta^3$$

= 1 + 3\eta + 3\eta^2 + 2\eta + $\lambda_2 \eta^2 = 1 + \eta + (3 + \lambda_2)\eta^2$

$$\begin{aligned} \psi^{3}(\eta) &= \eta + (3 + \lambda_{2})\eta^{2} \\ \psi^{3}(\eta^{2}) &= \psi^{3}(\eta)\cdot\psi^{3}(\eta) = (\eta + (3 + \lambda_{2})\eta^{2})^{2} \\ &= \eta^{2} + 2(3 + \lambda_{2})\eta^{3} + (3 + \lambda_{2})^{2} \eta^{4} \\ &= 3\eta^{2} (2\eta^{3} = 0; \text{ any odd multiple of } \eta^{4} \text{ is } 2\eta^{2}) \end{aligned}$$

Hence,

$$\Psi^{3}(1 + 2\eta + \mu'\eta^{2}) = 1 + 2\eta + (2(3 + \lambda_{2}) + 3\mu') \eta^{2}$$

but $2\lambda_2 = 0$ so λ_2 does not matter. But

$$g_{\alpha} = 1 + 2\eta + \mu'\eta^2$$
 and $\psi^k(g_{\alpha}) = g_{\alpha}$; so
 $\psi^3(1 + 2\eta + \mu'\eta^2) = 1 + 2\eta + 2\eta^2 + 3\mu' \eta^2 = 1 + 2\eta + \mu'\eta^2$

Hence, $\mu' = 2 + 3\mu'$ or $2\mu' \equiv 2 \mod 4$ Hence μ 'is odd. Hence $g_{\alpha} = 1 + 2\eta + \mu'\eta^2$, μ' odd and $\widetilde{g}_{\alpha} \in 1 + \widetilde{K}^{o}(B;Z/2)$ is

$$1 + \rho_2(1 + 2\eta + \mu'\eta^2) = 1 + \rho_2(\eta^2); \ \rho_2(\eta^2) \neq 0$$

This implies, by theorem (3.5) that E_{α} is not orientable for $K^*(;\mathbb{Z}/2)$.

Corollary 3.7:

$$d_5(\Delta_{\mathbf{E}\alpha}) \neq 0.$$

Proof:

Since $d_3(\Delta_{E_{\alpha}}) = 0$ and dimension S(B) = 5; so by lemma (3.6) we must have $d_5(\Delta_{E_{\alpha}}) \neq 0$.

Proposition 3.8:

In the Atiyah-Hirzebruch spectral sequence $\{(E_r(T(\xi);Z2))\}$ of $T(\xi)$

 $d_5(\Delta_{\xi}) = \Delta_{\xi} \cdot Sq^2\beta_2\widetilde{w}_2.$

Proof:

By theorem (3.2) and lemma (3.3),

$$d_5(\Delta_{\xi}) = \lambda \operatorname{Sq}^2 \beta_2 \widetilde{w}_2 \cdot \Delta_{\xi}, \lambda = 0 \text{ or } 1; \text{ so if}$$

 $d_3(\Delta_{\xi}) = 0$ then $d_5(\Delta_{\xi}) = \lambda Sq^2\beta_2 \widetilde{w} \cdot \Delta_{\xi}$ for any bundle ξ , by naturality. To prove $\lambda \neq 0$, its enough to consider an example and prove $\lambda \neq 0$ there; so by Corollary (3.7) $\lambda \neq 0$ in $d_5(\Delta_{\xi})$ and hence for any bundle with $d_3(\Delta_{\xi}) = 0$.

References

Adams, J.F. (1962) Vector fields on spheres. Annals of Maths. 75: 603-632.

Atiyah, M.F., and Hirzebruch, F. (1961) Analytic cycles in complex manifold. Topology 1: 25-45.

- **Dold, A.** (1962) Relation between ordinary and extraordinary cohomology., Notes, *Aarhus Colloquium on Algebraic Topology*, Aarhus.
- Epstein, D.B.A. and Steenrod, N.E. (1962) Cohomology operations., Annals of Mathematics Studies50: Princeton University Press.
- Hodgkin, L.H., and Anderson, D.W. (1968) The K-theory of Eilenberg-MacLane Complex., Topology 7: 317-329.
- Maunder, C.R.F. (1967) Stable operations in mod p K-theory., Proc. Cambridge Philos. Soc. 63: 631-646.
- Mosher, R.E. and Tangora, M.C. (1968) Cohomology operations and applications in homotopy theory., Harper's series in Modern Mathematics. Harper and Row.
- Serre, J.P. (1951) Homologie singulière des espaces fibrés., Annals of Maths. 54(2): 425-505.

(Received 06/05/1988; in revised form 16/04/1990)

عوائق التوجيه في نظرية _ (Z/2;)*K

تحسين غزال

قسم الرياضيات ـ كلية العلوم ـ جامعة الملك سعود ص.ب: ٢٤٥٥ ـ الرياض ١١٤٥١ ـ المملكة العربية السعودية

لتكن *h نظرية كوهومولوجي عامة ضربية، وليكن X فضاء ـ CW منته، وأخيراً لتكن ٤ حزمة ـ (n) O على X. إن ما ندرسه في هذا البحث هو السؤال التالي :

«متى تكون ٤ قابلة للتوجيه بالنسبة للنظرية *h، وذلك ضمن المعنى الذي وضعه دولد (١٩٦٢) ».

وللوصول إلى هذا الهدف اتبعنا المراحل التالية :

- لقد بينا أولاً أن الشرط الـ لازم والكافي لكي تكون ٤ قابلة للتـوجيه بـالنسبة للنظرية *h هو أن تتلاشى تفاضلات متتابعة عطية ـ هـيرزبروخ الـطيفية عـلى
 صف توم .
- _ أوجدنا بعدها العائق الأول والثاني بالنسبة للنظرية (Z/2;) *K، وكان ذلك وفق التسلسل التالي:
- h* (X; Z/p) العامَّة (X; Z/p)
 h* (X; Z/p) منته و q عدد صحيح .
- ٢ أثبتنا في ٢ أن صف ستيفل ويتني الثالث هو العائق الأول لتوجيه حزمة
 ٢ أثبتنا في ٢ أن صف ستيفل ويتني الثالث هو العائق الأول لتوجيه حزمة
- ٣ أوجدنا في ٢ العائق الثاني لتوجيه الحزمة المتجهة الحقيقية الموجَّهة في
 نظرية (Z/2;) ٢٠، وذلك بحساب التفاضل الخامس لمتتابعة عطية هيرزبروخ الطيفية.

A Flame Spectroscopic Study of the Stability of Dilute Solutions of Inorganic Salts

Abdulrahman S. Attiyat

Chemistry Department, Yarmouk University, Irbid - Jordan

ABSTRACT. Flame spectroscopy has been used to monitor net changes in concentration of dilute solution of thirty four elements at different concentrations in Pyrex, soft glass, and polyethylene containers for periods up to one year or more.

Dilute solutions are frequently unstable and may change in concentration over extended periods of time. The concentration changes are not only inconvenient because of the necessity of preparing fresh standard solutions, but are also potential serious sources of error in trace metal analysis.

Three types of processes are primarily responsible for concentration changes in dilute solutions. These are adsorption, leaching, and desorption (Minczewski 1967). Adsorption produces a loss of sample, whereas leaching of the vessel wall or desorption of a previously adsorbed sample produces an increase in concentration. These processes compete, and net change in concentration is determined by the extent to which each has occurred.

The adsorption process is the most thoroughly studied because of the ease with which it can be observed with radioactive tracers (Haissinky 1964). The extent of adsorption is dependent on the pH, the composition of the wall (soft glass, borosilicate glass, plastic, etc.), the temperature, the contact time, the solvent, and the composition of the solution (Mizuike 1965). Starik (1956) has written a comprehensive monograph on the adsorption of radioactive isotopes. The trace element composition of different containers and the leaching of trace elements in acid or basic solution have been described (Minczewski 1967, Mizuike 1965, Thiers 1957b, Eicholz *et al.* 1965, Thiers 1957a).

While adsorption losses are undoubtedly among the most important contributions to solution instability, net changes in concentration are of prime

Abdulrahman S. Attiyat

concern to the anlyst. Flame spectroscopy (emission and adsorption) offers a convenient means of monitoring net concentration changes in dilute solutions. The present study was undertaken to determine net changes in several inorganic solutions at different concentrations, in various containers, and for different periods of time up to one year or more.

Experimental

Stock solutions of approximately 100 ppm of the elements to be studied were prepared as previously described (Christain 1968) from reagent grade chemicals. Niobium pentoxide fused with potassium carbonate and then dissolved in water. The rare earth solutions were prepared from the oxides dissolved in hydrochloric or sulfuric acid. Hydrochloric, nitric, or sulfuric acid was used to prepare other solutions as required. The stock solutions were stored in ground glass stopped Pyrex volumetric flasks. The compositions of the stock solutions are given in Table 1.

All test solutions were prepared by direct dilution of the stock solutions with water. These represented typical solutions prepared in the laboratory. Avoidance of adding more acid to the dilute solutions eliminated possible contamination from the acids. Triply distilled water was deionized with a mixed bed ion exchange column and was used for preparation of all solutions.

Solutions were analyzed by flame emission and atomic absorption spectroscopy using an Instrumentation Laboratory Model 153 Atomic Absorption Spectrophotometer. Conditions for the atomic absorption (Christian and Feldman 1970) and flame emission (Christian and Feldman 1971a, Christain and Feldman 1971b) measurements were as previously described. All test solutions were compared against dilute solutions freshly prepared form the stock solutions for instrument calibration.

Results and Discussion

Dilute solutions of the metals were prepared by appropriate dilution of the stock solutions and were placed in new Corning Pyrex (Borosilicate glass), soft glass, and Kimble polyethylene bottles. The volume of each solution was 100 ml. The areas of the containers' surfaces exposed to the solutions were as follows; 95 cm² for the pyrex bottles, $101/\text{cm}^2$ for the soft glass bottles and 96 cm² for the polyethylene bottles. All solutions were stored at room temperature. The results of the studies are summarized in table 2. In general, the precision of measurements was of \pm 5% or better, and apparent changes of 5% or less are considered insignificant. Detection limits for the determinations have been

previously described (Christain 1968, Christian and Feldman 1970, Christian and Feldman 1971a). The data in the table indicate the net changes in solutions concentrations.

Table 1. Preparation of Stock Solutions (1000 parts per million)

Element	Source compound	Reagent added	pH of solution
Ag	AgNO ₃	HNO ₃	1.70
Al	AlCl ₃ ·6H ₂ O	HCl	3.39
Au	AuCl	HCl	2.50
Ba	BaCl ₂ ·2H ₂ O	HCI	5.95
Ca	CaCl ₂	HCI	2.12
Cd	CdCl ₂ ·2 ¹ / ₂ H ₂ O	HCI	2.50
Co	$CoCl_2Ce(NO_3)_6$	HNO ₃	2.68
Cr	CrCl ₃ ·6H ₂ O	HCI	2.45
Cu	Cu(NO ₃) ₂ ·3H ₂ O	HCI+HNO ₃	2.10
Dy	Dy ₂ O ₃	HCl (200 ml/l)	-
Er	Er ₂ O ₃	HCl (200 ml/l)	-
Fe	FeNH ₄ (SO ₄) ₂ ·12H ₂ O	H_2SO_4 (80 ml/l)	-
Ga	Ga metal	HCl and HNO ₃	0.40
Gd	Gd_2O_3	HCI	0.30
In	In metal	HCI	0.95
La	La ₂ O ₃	HCI	1.05
Li	LiCl	HCI	5.45
Mn	MnCl ₂	HCI+HNO ₃	0.78
Mo	(NH ₄) ₆ Mo ₇ O ₂ ·4H ₂ O		4.70
Na	NaCl		6.75
Nb	Nb ₂ O ₅	K ₂ CO ₃ fusion	12.50
Nd	Nd_2O_3	HCl (75 ml/l)	-
Ni	NiCl ₂ ·6H ₂ O	HCI	5.85
Pr	Pr ₆ O ₁₁	HCI	0.10
Pt	H ₂ PtCl ₆ ·6H ₂ O		2.25
Sm	Sm_2O_3	HCl (200 ml/l)	
Sr	SrCl ₂ ·6H ₂ O	HCl	4.95
ТЪ	Tb₄O ₇	HCl (250 ml/l)	-
Tl	Tl(NO ₃) ₃		4.90
U	$UO_2(NO_3)_2 \cdot 6H_2O$	HNO ₃	3.30
v	V_2O_5	HCl and HNO ₃	0.30
w	Na ₂ WO ₄ ·2H ₂ O		6.80
Y	Y_2O_3	HCL (30 ml/l) and	-
Yb	Yb ₂ O ₃	H_2SO_4 (25 ml/l) HCl (300 ml/l)	-

Table 2. Stability of Dilute Solutions

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
			,				
Ag	100 ppm	Pyrex					441-100
	10 ppm	Pyrex					441-81
		Soft glass	37-92	64-86	96-78	96-78	
		Polyethylene	37-95	59-92	91-87		
	1 ppm	Pyrex					419-6.5
		Soft glass	37-44	64-38	96-31	128-25	
		Polyethylene	37-77	59-62	91-57		
Al	100 ppm	Pyrex					454-100
	10 ppm	Pyrex					420-100
		Soft glass	37-100				
	1 ppm	Pyrex					420-70
	0008004	Polyethylene	37-92	95-84	91-77		
Au	100 ppm	Ругех					441-100
		Soft glass	37-105				
	75 ppm	Soft glass	37-94	64-94			
	080.02	Polyethylene	37-100				
Ba	10 ppm	Ругех					443-85
		Soft glass	37-96	64-100	96-97	133-104	
		Polyethylene	37-100	59-98	86-104		
	5 ppm	Soft glass	37-90	64-95	96-100	133-103	
		Polyethylene	37-100	59-105	96-114		
	2 ppm	Ругех					443-52
	127 - 14	Soft glass	37-75	64-70	96-68	133-70	
		Polyethylene	37-82	59-86	96-80		

Percent element remaining after stated storage period

Table 2.--(Contd.)

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
Са	1 ppm	Soft glass	37-99	64-99	96-95	135-93	
		Polyethylene	37-100	59-92	98-88		
	0.1 ppm	Pyrex					419-80
		Soft glass	37-87	64-95	96-90	135-122	
		Polyethylene	37-102	59-85	98-74	19942 IS Differentia	
Cd	100 ppm	Pyrex			43 9600 - 36 E204		459-87
		Soft glass	42-64	64-66	96-62	135-66	
		Polyethylene	32-100	54-99	93-100		
	75 ppm	Soft glass	42-70	64-75	96-74	135-86	
		Polyethylene	32-96	54-98	93-101	CONSTRUCTION OF CONSTRUCTION	
	50 ppm	Soft glass	42-48	64-50	96-55	135-67	
		Polyethylene	32-100	54-100	93-105		
Co	20 ppm	Soft glass	42-100	65-100	96-101	135-100	
	C. Contract	Polyethylenc	33-100	54-102	93-100		
	10 ppm	Soft glass	42-101	65-98	96-100	135-102	
		Polyethylene	33-101	54-102	93-100		
	5 ppm	Soft glass	42-94	65-95	96-95	135-102	
		Polyethylene	33-99	54-103	93-100		
Сг	10 ppm	Ругех				445-99	
		Soft glass	40-100				
Cu	5 ppm	Pyrex					426-176
		Polyethylene	33-101	54-100	93-93		
	1 ppm	Soft glass	40-91	73-95	94-98	135-94	
		Polyethylene	33-96	54-100	93-106		
	0.5 ppm	Ругех					426-228

Table	2	(Contd.)	;
-------	---	----------	---

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
		Soft glass	40-95	73-88	94-90	135-94	
		Polyethylene	33-100	54-100	54-99	93-105	
Dy	100 ppm	Pyrex					477-75
		Soft glass	40-92	73-92	102-90	133-100	
		Polyethylene	33-95	54-95	93-98		
	10 ppm	Pyrex					477-30
	4,141.5	Polyethylene	33-109	54-92	43-100		
Er	100 ppm	Pyrex					1 year - 96
	ROMAK	Soft glass	40-101				
	10 ppm	Pyrex					1 year - 100
	1 ppm	Pyrex					1 year - 100
Fe	100 ppm	Pyrex					431-100
		Soft glass	40-98				
Ga	100 ppm	Pyrex					431-97
		Soft glass	45-100	74-99	98-100	133-100	
		Polyethylene	29-100	43-99	88-98		
	10 ppm	Pyrex					431-95
		Soft glass	45-102	74-100	98-98	133-100	
		Polyethylene	29-95	53-100	88-96		
Gd	100 ppm	Pyrex					1 year - 100
		Soft glass	45-100				
In	100 ppm	Pyrex					431-100
		Soft glass	45-101				
	10 ppm	Pyrex					431-106
		Soft glass	45-101				

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
La	100 ppm	Pyrex					1 year - 90
		Soft glass	45-100	74-100	98-100	133-101	
		Polyethylene	29-100	53-98	88-103		
	10 ppm	Pyrex					1 year - 104
		Soft glass	45-102	74-95	98-100	133-100	
		Polyethylene	29-101	53-100	88-100		
Li	10 ppm	Pyrex					454-103
		Soft glass	43-97	72-101	93-100	130-100	
		Polyethylene	29-100	50-100	87-100		
	5 ppm	Soft glass	43-98	72-98	93-98	130-100	
		Polyethylene	29-100	50-102	87-100		
	0.5 ppm	Soft glass	43-102	72-103	93-98		
		Polyethylene	29-100	50-95	87-101		
	0.005 ppm	Pyrex					1 year - 91
Mn	100 ppm	Pyrex					476-100
		Soft glass	43-100				
	10 ppm	Pyrex					476-103
		Soft glass	43-103				
	1 ppm	Pyrex					476-96
		Soft glass	43-93				
Мо	10 ppm	Pyrex					1 year - 133
		Soft glass	44-90	72-94	93-76	130-70	
		Polyethylene	28-99	49-107	83-100		
Na	1 ppm	Pyrex					456-132
		Soft glass	44-111	72-115	93-122	139-126	
		Polyethylene	28-98	49-100	95-88		

Table 2.--(Contd.)

Table 2(Contd.)	Fable	2(Co	ntd.)
-----------------	--------------	------	-------

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
Nb	100 ppm	Soft glass	44-100	72-100	93-98	139-100	
	23 - 1463	Polyethylene	28-98	49-98	95-100		
Nd	100 ppm	Ругех					1 year - 100
		Soft glass	44-100				14
Ni	100 ppm	Soft glass	44-100	71-100	92-100	139-101	
		Polyethylene	28-100	49-100	96-100		
	10 ppm	Soft glass	44-100	71-100	92-95	139-100	
		Polyethylene	28-99	49-94	96-97		
Pr	120 ppm	Ругех					432-100
		Soft glass	44-100				
Pt	100 ppm	Soft glass	44-100	71-99	92-100	139-102	
		Polyethylene	44-100	49-98	96-106		
Sm	100 ppm	Pyrex					1 year - 96
		Soft glass	44-100	71-100	92-100	139-101	
		Polyethylene	28-100	49-102	96-99		
	10 ppm	Ругех					1 уеаг - 96
		Soft glass	44-104	71-100	92-100	139-103	
		Polyethylene	28-95	49-100	96-90		
Sr	10 ppm	Ругех					445-104
		Soft glass	43-105	71-97	92-99	139-96	
		Polyethylene	23-100	49-99	96-98		
	1 ppm	Ругех					455-103
		Soft glass	43-116	71-95	92-101	139-115	
		Polyethylene	28-92	49-96	96-84		
Тb	100 ppm	Ругех					467-93
		Soft glass	43-97	71-96	92-100	139-100	

Table 2.--(Contd.)

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
		Polyethylene	28-100	49-105	96-100		
TI	100 ppm	Ругех					407-100
		Soft glass	43-100				
	10 ppm	Ругех					407-73
		Soft glass	43-90	78-100	92-102	139-100	
		Polyethylene	28-100	49-103	96-100		
υ	100 ppm	Ругех					466-100
		Soft glass	43-100				
	10 ppm	Soft glass	43-100	71-95	91-108	139-100	
		Polyethylene	28-100	49-100	96-100		
v	100 ppm	Ругех					407-92
		Soft glass	43-95	71-97	92-99	139-103	
		Polyethylene	28-100	49-101	96-103		
	10 ppm	Pyrex					407-100
		Soft glass	43-84	71-85	92-89		
		Polyethylene	28-100	49-100	96-105		
w	100 ppm	Soft glass	43-100	71-96	92-100	139-100	
		Polyethylene	28-96	49-100	96-92		
Y	100 ppm	Soft glass	43-100	71-100	92-100	139-103	
		Polyethylene	28-100	49-100	96-100		
Yb	10 ppm	Pyrex					1 year - 100
		Soft glass	43-100				
	1 ppm	Ругех					1 year - 100
		Soft glass	43-103				

Abdulrahman S. Attiyat

Solutions of the following elements (ppm) were found to be stable for one year or more in Pyrex containers: Cr(10,) Er(1), Fe(100), Ga(10), Gd(100), In(10), La(10), Li(0.005), Nd(100), Pr(120), Sm(10), Sr(1), Tb(100), Yb(1). These were the lowest concentrations studied and may not represent the lowest stable concentrations. There appeared to have been perhaps a slight loss of Li (9%) and Tb (7%) at these concentrations. Note that even very dilute solutions of Li are stable for long periods. The following elements (ppm) were studied for shorter periods of time and their solutions were stable in soft glass containers for 135-139 days: Co(5), Nb(100), Ni(10), Pt(100), U(10), and Y(100).

No substantial changes were found for any of the above listed elements in any of the three containers for the concentrations and times studied, except for Sr where some loss appeared in polyethylene. Water hardness and extraneous ions affect Sr adsorption (Eicholz *et al.* 1965). In general, no serious changes were observed for the rare earths in any of the containers except for Dy after one year in Pyrex where losses were high; a slight loss of Tb mentioned above. Serious errors from chromium desorption are possible when a dichromate-sulfuric acid cleaning solution is used to clean the vessels (Butler and Johnston 1954). La has been reported to be absorbed from neutral solution onto plastic and to a less extent on Pyrex (Eicholz *et at.* 1965). Eighty percent of a 10 ppm Ni solution has been reported to be lost in soft glass containers in 75 days (Thiers 1957a), in contrast to the present results.

The following elements (ppm) showed no change for one year or more in Pyrex containers, although losses were observed at lower concentrations and/or with other containers: Ag(100), Al(10), Au(100), Mn(1), Sr(1) V(10). Ag at 10 ppm and Al at 1 ppm were not stable in any of the containers. The Ag adsorption losses were expected. NH₃ is reported to be best at stabilizing Ag solutions (Pronin *et al.* 1973); the stability in HNO₃ solutions depends to a large degree on the Ag(I) and HNO₃ concentrations. Mn and V exhibited instability in soft glass, as did Sr in soft glass and polyethylene. Thiers (1957a) reported 90% loss of Mn on soft glass in 75 days, but in the present study this concentration was stable for 43 days. A solution of 20-500 ppm reportedly exhibits good stability in 2-6 M HCl for a period of 30 days. Hydrolysis or the formation of new Au complexes are reported to have no effect in atomic absorption measurements since all Au compounds are fully dissociated in the flame (Pronin *et al.* 1973). The addition of 10% HNO₃ has no effect and so aqua regia can be used in Au determination.

Although Ba and Cu were unstable in Pyrex for long periods of time (> 1 yr), they were stable for shorter periods in soft glass and polyethylene: concentrations of less than 5 ppm Ba showed losses in all containers, however. W (100 ppm) was stable in soft glass for 139 days, but not in polyethylene. Cd was stable only in polyethylene.