A Flame Spectroscopic Study of the Stability of Dilute Solutions of Inorganic Salts

Abdulrahman S. Attiyat

Chemistry Department, Yarmouk University, Irbid - Jordan

ABSTRACT. Flame spectroscopy has been used to monitor net changes in concentration of dilute solution of thirty four elements at different concentrations in Pyrex, soft glass, and polyethylene containers for periods up to one year or more.

Dilute solutions are frequently unstable and may change in concentration over extended periods of time. The concentration changes are not only inconvenient because of the necessity of preparing fresh standard solutions, but are also potential serious sources of error in trace metal analysis.

Three types of processes are primarily responsible for concentration changes in dilute solutions. These are adsorption, leaching, and desorption (Minczewski 1967). Adsorption produces a loss of sample, whereas leaching of the vessel wall or desorption of a previously adsorbed sample produces an increase in concentration. These processes compete, and net change in concentration is determined by the extent to which each has occurred.

The adsorption process is the most thoroughly studied because of the ease with which it can be observed with radioactive tracers (Haissinky 1964). The extent of adsorption is dependent on the pH, the composition of the wall (soft glass, borosilicate glass, plastic, etc.), the temperature, the contact time, the solvent, and the composition of the solution (Mizuike 1965). Starik (1956) has written a comprehensive monograph on the adsorption of radioactive isotopes. The trace element composition of different containers and the leaching of trace elements in acid or basic solution have been described (Minczewski 1967, Mizuike 1965, Thiers 1957b, Eicholz *et al.* 1965, Thiers 1957a).

While adsorption losses are undoubtedly among the most important contributions to solution instability, net changes in concentration are of prime

Abdulrahman S. Attiyat

concern to the anlyst. Flame spectroscopy (emission and adsorption) offers a convenient means of monitoring net concentration changes in dilute solutions. The present study was undertaken to determine net changes in several inorganic solutions at different concentrations, in various containers, and for different periods of time up to one year or more.

Experimental

Stock solutions of approximately 100 ppm of the elements to be studied were prepared as previously described (Christain 1968) from reagent grade chemicals. Niobium pentoxide fused with potassium carbonate and then dissolved in water. The rare earth solutions were prepared from the oxides dissolved in hydrochloric or sulfuric acid. Hydrochloric, nitric, or sulfuric acid was used to prepare other solutions as required. The stock solutions were stored in ground glass stopped Pyrex volumetric flasks. The compositions of the stock solutions are given in Table 1.

All test solutions were prepared by direct dilution of the stock solutions with water. These represented typical solutions prepared in the laboratory. Avoidance of adding more acid to the dilute solutions eliminated possible contamination from the acids. Triply distilled water was deionized with a mixed bed ion exchange column and was used for preparation of all solutions.

Solutions were analyzed by flame emission and atomic absorption spectroscopy using an Instrumentation Laboratory Model 153 Atomic Absorption Spectrophotometer. Conditions for the atomic absorption (Christian and Feldman 1970) and flame emission (Christian and Feldman 1971a, Christain and Feldman 1971b) measurements were as previously described. All test solutions were compared against dilute solutions freshly prepared form the stock solutions for instrument calibration.

Results and Discussion

Dilute solutions of the metals were prepared by appropriate dilution of the stock solutions and were placed in new Corning Pyrex (Borosilicate glass), soft glass, and Kimble polyethylene bottles. The volume of each solution was 100 ml. The areas of the containers' surfaces exposed to the solutions were as follows; 95 cm² for the pyrex bottles, $101/\text{cm}^2$ for the soft glass bottles and 96 cm² for the polyethylene bottles. All solutions were stored at room temperature. The results of the studies are summarized in table 2. In general, the precision of measurements was of \pm 5% or better, and apparent changes of 5% or less are considered insignificant. Detection limits for the determinations have been

previously described (Christain 1968, Christian and Feldman 1970, Christian and Feldman 1971a). The data in the table indicate the net changes in solutions concentrations.

Table 1. Preparation of Stock Solutions (1000 parts per million)

Element	Source compound	Reagent added	pH of solution
Ag	AgNO ₃	HNO ₃	1.70
Al	AlCl ₃ ·6H ₂ O	HCl	3.39
Au	AuCl	HCl	2.50
Ba	BaCl ₂ ·2H ₂ O	HCI	5.95
Ca	CaCl ₂	HCI	2.12
Cd	CdCl ₂ ·2 ¹ / ₂ H ₂ O	HCI	2.50
Co	$CoCl_2Ce(NO_3)_6$	HNO ₃	2.68
Cr	CrCl ₃ ·6H ₂ O	HCI	2.45
Cu	Cu(NO ₃) ₂ ·3H ₂ O	HCI+HNO ₃	2.10
Dy	Dy ₂ O ₃	HCl (200 ml/l)	-
Er	Er ₂ O ₃	HCl (200 ml/l)	-
Fe	FeNH ₄ (SO ₄) ₂ ·12H ₂ O	H_2SO_4 (80 ml/l)	-
Ga	Ga metal	HCl and HNO ₃	0.40
Gd	Gd_2O_3	HCI	0.30
In	In metal	HCI	0.95
La	La ₂ O ₃	HCI	1.05
Li	LiCl	HCI	5.45
Mn	MnCl ₂	HCI+HNO ₃	0.78
Mo	(NH ₄) ₆ Mo ₇ O ₂ ·4H ₂ O		4.70
Na	NaCl		6.75
Nb	Nb ₂ O ₅	K ₂ CO ₃ fusion	12.50
Nd	Nd_2O_3	HCl (75 ml/l)	-
Ni	NiCl ₂ ·6H ₂ O	HCI	5.85
Pr	Pr ₆ O ₁₁	HCI	0.10
Pt	H ₂ PtCl ₆ ·6H ₂ O		2.25
Sm	Sm_2O_3	HCl (200 ml/l)	
Sr	SrCl ₂ ·6H ₂ O	HCl	4.95
ТЪ	Tb₄O ₇	HCl (250 ml/l)	-
Tl	Tl(NO ₃) ₃		4.90
U	$UO_2(NO_3)_2 \cdot 6H_2O$	HNO ₃	3.30
v	V_2O_5	HCl and HNO ₃	0.30
w	Na ₂ WO ₄ ·2H ₂ O		6.80
Y	Y_2O_3	HCL (30 ml/l) and	-
Yb	Yb ₂ O ₃	H_2SO_4 (25 ml/l) HCl (300 ml/l)	-

Table 2. Stability of Dilute Solutions

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
			,				
Ag	100 ppm	Pyrex					441-100
	10 ppm	Pyrex					441-81
		Soft glass	37-92	64-86	96-78	96-78	
		Polyethylene	37-95	59-92	91-87		
	1 ppm	Pyrex					419-6.5
		Soft glass	37-44	64-38	96-31	128-25	
		Polyethylene	37-77	59-62	91-57		
Al	100 ppm	Pyrex					454-100
	10 ppm	Pyrex					420-100
		Soft glass	37-100				
	1 ppm	Pyrex					420-70
	0008004	Polyethylene	37-92	95-84	91-77		
Au	100 ppm	Ругех					441-100
		Soft glass	37-105				
	75 ppm	Soft glass	37-94	64-94			
	080.02	Polyethylene	37-100				
Ba	10 ppm	Ругех					443-85
		Soft glass	37-96	64-100	96-97	133-104	
		Polyethylene	37-100	59-98	86-104		
	5 ppm	Soft glass	37-90	64-95	96-100	133-103	
		Polyethylene	37-100	59-105	96-114		
	2 ppm	Ругех					443-52
	127 - 14	Soft glass	37-75	64-70	96-68	133-70	
		Polyethylene	37-82	59-86	96-80		

Percent element remaining after stated storage period

Table 2.--(Contd.)

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
Са	1 ppm	Soft glass	37-99	64-99	96-95	135-93	
		Polyethylene	37-100	59-92	98-88		
	0.1 ppm	Pyrex					419-80
		Soft glass	37-87	64-95	96-90	135-122	
		Polyethylene	37-102	59-85	98-74	19942 IS Differentia	
Cd	100 ppm	Pyrex			43 9600 - 36 E204		459-87
		Soft glass	42-64	64-66	96-62	135-66	
		Polyethylene	32-100	54-99	93-100		
	75 ppm	Soft glass	42-70	64-75	96-74	135-86	
		Polyethylene	32-96	54-98	93-101	CONSTRUCTION OF CONSTRUCTION	
	50 ppm	Soft glass	42-48	64-50	96-55	135-67	
		Polyethylene	32-100	54-100	93-105		
Co	20 ppm	Soft glass	42-100	65-100	96-101	135-100	
	C. Contract	Polyethylenc	33-100	54-102	93-100		
	10 ppm	Soft glass	42-101	65-98	96-100	135-102	
		Polyethylene	33-101	54-102	93-100		
	5 ppm	Soft glass	42-94	65-95	96-95	135-102	
		Polyethylene	33-99	54-103	93-100		
Сг	10 ppm	Ругех				445-99	
		Soft glass	40-100				
Cu	5 ppm	Pyrex					426-176
		Polyethylene	33-101	54-100	93-93		
	1 ppm	Soft glass	40-91	73-95	94-98	135-94	
		Polyethylene	33-96	54-100	93-106		
	0.5 ppm	Ругех					426-228

Table	2	(Contd.)	;
-------	---	----------	---

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
		Soft glass	40-95	73-88	94-90	135-94	
		Polyethylene	33-100	54-100	54-99	93-105	
Dy	100 ppm	Pyrex					477-75
		Soft glass	40-92	73-92	102-90	133-100	
		Polyethylene	33-95	54-95	93-98		
	10 ppm	Pyrex					477-30
	4,141.5	Polyethylene	33-109	54-92	43-100		
Er	100 ppm	Pyrex					1 year - 96
	ROMAK	Soft glass	40-101				
	10 ppm	Pyrex					1 year - 100
	1 ppm	Pyrex					1 year - 100
Fe	100 ppm	Pyrex					431-100
		Soft glass	40-98				
Ga	100 ppm	Pyrex					431-97
		Soft glass	45-100	74-99	98-100	133-100	
		Polyethylene	29-100	43-99	88-98		
	10 ppm	Pyrex					431-95
		Soft glass	45-102	74-100	98-98	133-100	
		Polyethylene	29-95	53-100	88-96		
Gd	100 ppm	Pyrex					1 year - 100
		Soft glass	45-100				
In	100 ppm	Pyrex					431-100
		Soft glass	45-101				
	10 ppm	Pyrex					431-106
		Soft glass	45-101				

22

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
La	100 ppm	Pyrex					1 year - 90
		Soft glass	45-100	74-100	98-100	133-101	
		Polyethylene	29-100	53-98	88-103		
	10 ppm	Pyrex					1 year - 104
		Soft glass	45-102	74-95	98-100	133-100	
		Polyethylene	29-101	53-100	88-100		
Li	10 ppm	Pyrex					454-103
		Soft glass	43-97	72-101	93-100	130-100	
		Polyethylene	29-100	50-100	87-100		
	5 ppm	Soft glass	43-98	72-98	93-98	130-100	
		Polyethylene	29-100	50-102	87-100		
	0.5 ppm	Soft glass	43-102	72-103	93-98		
		Polyethylene	29-100	50-95	87-101		
	0.005 ppm	Pyrex					1 year - 91
Mn	100 ppm	Pyrex					476-100
		Soft glass	43-100				
	10 ppm	Pyrex					476-103
		Soft glass	43-103				
	1 ppm	Pyrex					476-96
		Soft glass	43-93				
Мо	10 ppm	Pyrex					1 year - 133
		Soft glass	44-90	72-94	93-76	130-70	
		Polyethylene	28-99	49-107	83-100		
Na	1 ppm	Pyrex					456-132
		Soft glass	44-111	72-115	93-122	139-126	
		Polyethylene	28-98	49-100	95-88		

Table 2.--(Contd.)

23

Table 2(Contd.)	Fable	2(Co	ntd.)
-----------------	--------------	------	-------

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
Nb	100 ppm	Soft glass	44-100	72-100	93-98	139-100	
	23 - 1463	Polyethylene	28-98	49-98	95-100		
Nd	100 ppm	Ругех					1 year - 100
		Soft glass	44-100				14
Ni	100 ppm	Soft glass	44-100	71-100	92-100	139-101	
		Polyethylene	28-100	49-100	96-100		
	10 ppm	Soft glass	44-100	71-100	92-95	139-100	
		Polyethylene	28-99	49-94	96-97		
Pr	120 ppm	Ругех					432-100
		Soft glass	44-100				
Pt	100 ppm	Soft glass	44-100	71-99	92-100	139-102	
		Polyethylene	44-100	49-98	96-106		
Sm	100 ppm	Pyrex					1 year - 96
		Soft glass	44-100	71-100	92-100	139-101	
		Polyethylene	28-100	49-102	96-99		
	10 ppm	Ругех					1 уеаг - 96
		Soft glass	44-104	71-100	92-100	139-103	
		Polyethylene	28-95	49-100	96-90		
Sr	10 ppm	Ругех					445-104
		Soft glass	43-105	71-97	92-99	139-96	
		Polyethylene	23-100	49-99	96-98		
	1 ppm	Ругех					455-103
		Soft glass	43-116	71-95	92-101	139-115	
		Polyethylene	28-92	49-96	96-84		
Тb	100 ppm	Ругех					467-93
		Soft glass	43-97	71-96	92-100	139-100	

Table 2.--(Contd.)

Element	Concentration	Container	Days-%	Days-%	Days-%	Days-%	Days-%
		Polyethylene	28-100	49-105	96-100		
TI	100 ppm	Ругех					407-100
		Soft glass	43-100				
	10 ppm	Ругех					407-73
		Soft glass	43-90	78-100	92-102	139-100	
		Polyethylene	28-100	49-103	96-100		
υ	100 ppm	Ругех					466-100
		Soft glass	43-100				
	10 ppm	Soft glass	43-100	71-95	91-108	139-100	
		Polyethylene	28-100	49-100	96-100		
v	100 ppm	Ругех					407-92
		Soft glass	43-95	71-97	92-99	139-103	
		Polyethylene	28-100	49-101	96-103		
	10 ppm	Pyrex					407-100
		Soft glass	43-84	71-85	92-89		
		Polyethylene	28-100	49-100	96-105		
w	100 ppm	Soft glass	43-100	71-96	92-100	139-100	
		Polyethylene	28-96	49-100	96-92		
Y	100 ppm	Soft glass	43-100	71-100	92-100	139-103	
		Polyethylene	28-100	49-100	96-100		
Yb	10 ppm	Pyrex					1 year - 100
		Soft glass	43-100				
	1 ppm	Ругех					1 year - 100
		Soft glass	43-103				

25

Abdulrahman S. Attiyat

Solutions of the following elements (ppm) were found to be stable for one year or more in Pyrex containers: Cr(10,) Er(1), Fe(100), Ga(10), Gd(100), In(10), La(10), Li(0.005), Nd(100), Pr(120), Sm(10), Sr(1), Tb(100), Yb(1). These were the lowest concentrations studied and may not represent the lowest stable concentrations. There appeared to have been perhaps a slight loss of Li (9%) and Tb (7%) at these concentrations. Note that even very dilute solutions of Li are stable for long periods. The following elements (ppm) were studied for shorter periods of time and their solutions were stable in soft glass containers for 135-139 days: Co(5), Nb(100), Ni(10), Pt(100), U(10), and Y(100).

No substantial changes were found for any of the above listed elements in any of the three containers for the concentrations and times studied, except for Sr where some loss appeared in polyethylene. Water hardness and extraneous ions affect Sr adsorption (Eicholz *et al.* 1965). In general, no serious changes were observed for the rare earths in any of the containers except for Dy after one year in Pyrex where losses were high; a slight loss of Tb mentioned above. Serious errors from chromium desorption are possible when a dichromate-sulfuric acid cleaning solution is used to clean the vessels (Butler and Johnston 1954). La has been reported to be absorbed from neutral solution onto plastic and to a less extent on Pyrex (Eicholz *et at.* 1965). Eighty percent of a 10 ppm Ni solution has been reported to be lost in soft glass containers in 75 days (Thiers 1957a), in contrast to the present results.

The following elements (ppm) showed no change for one year or more in Pyrex containers, although losses were observed at lower concentrations and/or with other containers: Ag(100), Al(10), Au(100), Mn(1), Sr(1) V(10). Ag at 10 ppm and Al at 1 ppm were not stable in any of the containers. The Ag adsorption losses were expected. NH₃ is reported to be best at stabilizing Ag solutions (Pronin *et al.* 1973); the stability in HNO₃ solutions depends to a large degree on the Ag(I) and HNO₃ concentrations. Mn and V exhibited instability in soft glass, as did Sr in soft glass and polyethylene. Thiers (1957a) reported 90% loss of Mn on soft glass in 75 days, but in the present study this concentration was stable for 43 days. A solution of 20-500 ppm reportedly exhibits good stability in 2-6 M HCl for a period of 30 days. Hydrolysis or the formation of new Au complexes are reported to have no effect in atomic absorption measurements since all Au compounds are fully dissociated in the flame (Pronin *et al.* 1973). The addition of 10% HNO₃ has no effect and so aqua regia can be used in Au determination.

Although Ba and Cu were unstable in Pyrex for long periods of time (> 1 yr), they were stable for shorter periods in soft glass and polyethylene: concentrations of less than 5 ppm Ba showed losses in all containers, however. W (100 ppm) was stable in soft glass for 139 days, but not in polyethylene. Cd was stable only in polyethylene.

A Flame Spectroscopic Study of the ...

Both Ca and Na were unstable in all the containers at low concentrations. Ca exhibited losses, except in soft glass, at greater than 90 days, while Na exhibited increases, except in polyethylene. The Na content of borosilicate glass is about 30,000 ppm (Thiers 1957a) while it is reported to be between 0.3 and 10 ppm in polyethylene (Mizuike 1965, Thiers 1957a). Cu was fairly stable in soft glass and polyethylene, although 56% of 25 ppm Cu has been reported to be adsorbed on to glass walls after 1 mo. (Gavrishin 1968). The high concentrations of Cu found for prolongd storage in Pyrex containers was surprising and it is possible contamination occurred.

Electrolytes such as NaCl and Na_2SO_4 should reportedly be used for stabilization of Pt (IV) standard solutions (Pronin *et al.* 1973). In the present study, 100 ppm Pt as H₂PtCl₆ dissolved in water was stable for several months in either Pyrex or soft glass containers.

Investigations have been made on the stability of solutions of several elements that were not included in this study. Valuable information can be found for the stability of solutions of As (Cheam and Agemian 1980a), Se (Cheam and Agemian 1980b, May and Kane 1984), and Ir, Os, and Ru (Gladney and Apt 1976). Numerous studies have been made on the stability of Hg solutions (Feldman 1973, Rosain and Wai 1973, Rook and Moody 1974, Moody *et al.* 1976, Newton and Ellis 1974, Avotin and Jenne 1975, Heiden and Aikens 1977, Christmann and Ingle 1976, Sanemasa *et al.* 1976, Nakayama *et al.* 1977, Ambe and Suwabe 1977, Carden 1978, Sakamoto and Kamada 1983, Zaletova 1980).

Moody and Lindstrom (1977, 1978) have investigated the selection and cleaning of plastic containers for use in trace analysis. Twelve different plastics were examined for the quantities of impurities present in the various plastics as well as the quantities of impurities leached from the plastic by said cleaning. Polyethylene and Teflon containers gave the best results in the impurity studies. The optimum cleaning procedure is leaching with 1:1 HCl-H₂O for a week, rinsing with H₂O, leaching with 1:1 HNO₃-H₂O for another week, rinsing, and filling with high-purity H₂O. Loss of H₂O from polypropylene and Teflon FEP containers was less than 0.1%/year. An additional moisture barrier was used with conventional polyethylene containers.

Das *et al.* (1980) have attempted to quantify the influence of wall adsorption in trace analysis, defining the retention in terms of three dimensionless parameters: surface capacity/total amount of solution, concentration of adsorbable species/total concentration, and ratio of adsorption parameters (from radiotracer measurements).

Abdulrahman S. Attiyat

References

- Ambe, M. and Suwabe, K. (1977) The Preparation of standard solutions of mercury at the ppb level., Anal. Chim. Acta, 92: 55-60. (C.A. 88: 163281 y).
- Avotin, P., and Jenne, E.A. (1975) Time Stability of dissolved mercury II in water samples, chemical stabilization, J. Envirn. Qual., 4(4): 515-519.
- Bochkova, L.P., Ryhova, E.A. and Kazanova, N.N. (1984) Stability of hydrochloric acid solution of gold (III) during storage, *Zh. Anal. Khim.*, 93: 1521-1523.
- Butler, E.B., and Johnston, W.H. (1954) Determination of traces of Pulladium, Science, 120: 571-580.
- Carden, J.L. (1978) A close look at the interaction between dilute solutions of mercury and borosilicate glass surfaces especially as they relate to the stability of dilute mercury standard solutions., Jt Conf. Sens. Evniron. Pollut. Conf. Proc. 117-120.
- Cheam, V., and Agemain, H. (1980a) Preservation of inorganic arsenic species of microgram levels in water samples, Analyst 105: 737-743.
- Cheam, V., and Agemain, H. (1980b) Spectrophotometric determination of trace amounts of Thallium (III) and Gold (III) by Quantitative oxidation of 3-carboxymethylthio-1, 5-diphenyl formazan, Anal. Chim. Acta, 113(2): 237-245.
- Christmann, D.R., and Ingle, J.D. (1976) Problems with sub-ppb Mercury determinations: Preservation of Standards and Preservation of water mist interferences, Anal. Chim. Acta, 86(1): 53-62.
- Christain, G.D. (1968) Flame emission spectroscopy of aqueous and nonaqueous solutions in the Nitrous Oxide-Acetylene flame. Anal. Lett., 1: 845-860.
- Christian, G.D., and Feldman, F.J. (1970) Atomic Absorption Spectroscopy. Applications in Agriculture, Biology, and Medicine, Wiley-Interscience, New York.
- Christian, G.D., and Feldman, F.J. (1971a) Optimum parameters for flame emission spectroscopy with Nitrous-oxide-Acetylene Flame, Anal. Chem. 43: 611-613.
- Christain, G.D., and Feldman, F.J. (1971b) Atomic absorption determination of cobalt in different solutions, Appl. Spectrosc., 25: 660-668.
- Das, H.A. Faanhof, A., Gouman, J.M., and Ooms, P.C.A. (1980) Quantitative aspects of the adsorption of metal ions from aqueous solutions to container surfaces, J. Radio Anal. Chem. 59(1): 55-62.
- Eicholz, G.G., Nagel, A.E., and Hughes, R.B. (1965) Adsorption of ions in dilute aqueous solutions on glass and plastic surfaces, *Anal. Chem.* 37: 663-668.
- Feldman, C. (1973) Characterization of amorphous silicon films., Trace Subst. Environ. Health, 7: 395-397.
- Gavrishin, A.I. (1968) Mathematical interpretation of results of geochemical prospectings, *Gidrogeol.* Sb. 5 (111): 67-73.
- Gladney, E.S., and Apt, K.E. (1976) Loss of Iridium, Osmium and Ruthenium from aqueous solutions during storage, Anal. Chim. Acta, 85(2): 393-397.
- Haissinky, M. (1964) Nuclear Chemistry and its Applications, Addison-Wesley, Reading MS.
- Heiden, R.W., and Aikens, D.A. (1977) Composition differences in commercial polyethylene Bottles and their relation to the stability of stored part-per-billion Mercury (II) solutions, *Anal. Chem.* 4(4): 668-670.
- May, T.W., and Kane, D.A. (1984) Matrix dependant instability of Selenium (IV) stored in Teflon Containers, Anal. Chim. Acta. 161: 387-391.
- Minczewski, J. (1967) Preconcentration in Trace Analysis in Trace Characterization, Chemical and Physical, Meinke, W.W. and Scribner, B.F., (eds.), National Bureau of Standards Monography, 100, Washington, D.C.

- Mizuike, A. (1965) Separation and Preconcentrations, in *Trace Analysis.* G.H. Morison, (ed.), Interscience Publishers, New York.
- Moody, J.R., Paulseu, P.J., Rains, T.C., and Rook, H.L. (1976) National Bureau of Standards Special Publication 422, Accuracy in Trace Analysis; Sampling, Sample Handling and Analysis, Proceeding of the 7th IMR Symposium, Oct. 7-11, 1974, Gaithersburg, MD.
- Moody, J.R., and Lindstrom, R.M. (1977) Selection and cleaning of plastic containers for storage of trace element samples, *Anal. Chem.* **49**(14): 2264-2267.
- Moody, J.R., and Lindstrom, R.M. (1978) The cleaning analysis and selection of containers for trace element samples, NBC Spec. Publ. (U.S.), 501: 19-32.
- Nakayama, T., Ikeda, A., and Yoshikawa, E. (1977) Mercury loss from solutions during storage, Shin Nippon Denki Giho, 12: 24-29.
- Newton, D.W., and Ellis, R. (1974) Loss of mercury from solutions, J. Environ. Qual., 3(1): 20-23.
- Pronin, A.V., Galanova, A.P., Kudrayavina, A.K., Shastine, Z.N., Apolistikli, V.N., and Usol'esvea, M.V. (1973) Stability of standard solutions of Gold, Silver and Platinium used in Atomic-Absorption analysis, *Zh Anal Khim.*, 28: 2328-32.
- Rook, H.L., and Moody, J.R. (1974) Stabilization and determination of nanogram quantities of mercron, Proc. Int. Conf. Nucl. Methods Environ. Res., 2: 44-53.
- Rosain, R.M., and Wai, C.M. (1973) Rate of loss of Mercury from aqueous solutions when stored in various containers, Anal. Chim. Acta, 65(2): 274-284.
- Sakamoto, H., and Kamada, M. (1983) Loss of trace amounts of mercury fromwater samples during storage, Kagoshima Daigaku Rigakubu Kiyo Sugaku, Butsurigaku Kagaku, 16: 97-106.
- Sanemasa, I., Deguchi, T., Urata, K., Tomooka, J., and Nagai, H. (1976) Loss and recovery of mercury from sea water during storage, Anal. Chim. Acta, 87(2): 474-481.
- Starik, I. (1956) Principles of Radiochemistry, U.S.A.E. C., AEC-Tr-6314 Tid-4500, 27th ed.
- Thiers, R.E. (1957a) Contamination in Trace Element Analysis and its control, in Methods of Biochemical Analysis, Volume V Glick D., (ed.), Interscience Publishers, New York.
- Thiers, R.E. (1957b) Separation, Concentration, and Contamination in *Trace Analysis* Yoe, J.H. and Koch, H.J., Jr., (eds.), John Wiley and Sons, Inc., New York.
- Zaletova, N.I. (1980) Comparative stability of titrating solutions of silver nitrate and mercury (II) nitrate and perchlorate, Deposited Doc. VINITI: 1854-80. (C.A. 95: 34719 t).

(Received 30/04/1988; in revised form 17/12/1989) إستعمال أجهزة طيف الإنبعاث وطيف الإمتصاص الذري لدراسة درجة ثبات المحاليل المخففة للأملاح غير العضوية

يتضمن هـذا البحث اجـراء تحليـل كيميـائي بـواسـطة طيف الإمتصـاص الـذري، وبواسـطة طيف إنبعاث اللهب لمحـاليل مختلفـة التركيـز، تحتـوي عـلي مركبات كيميائية لأربع وثلاثين عنصراً، وذلك لمعرفة التغير الحاصل في تـراكيزهـا بعد خزنها لمدة سنة أو أكثر، في أوعية زجاج البايركس وزجاج الصوديوم (الـزجاج اللين)، وأوعية البلاستيك (البوليثين).

فقد تم تحضير محاليل التخزين للعناصر التي درست بتركيز تقريبي مقداره ••• جزء من مليون وذلك بإذابة مركباتها في الماء أو الأحماض مثـل حـامض الهيدروكلوريك وحامض الكبريتيك وحامض النيتريك.

خزنت المحاليل في دوارق حجمية من الـزجاج وأُغلقت بـأغطيـة زجاجيـة محكمة . تم تحضير محاليل القياس من محاليـل التخزين بـواسطة التخفيف المبـاشر بالماء . لم يضف لها أي أحماض تجنباً لتلويثها بشوائب هذه الأحماض .

تم تحليل هذه المحاليل بـواسطة أجهـزة طيف الإنبعاث وطيف الإمتصـاص الذري وباستعمال اللهب في الحالتين.

جميع محاليل التحليل المحضرة من محاليل التخزين قورنت نتائجها مع نتائج محاليل جديدة ومحضرة حديثاً. كـذلك استعملت هـذه المحاليـل الجديـدة لضبط الأجهزة المستعملة. وضعت محاليل التحليل المحضرة من محاليل التخزين في قوارير من زجاج البايركس والزجاج اللين ومن البوليثين، وخزنت في درجة حرارة الغرفة لمدد مختلفة ثم تمت عملية التحليل لمعرفة ما طرأ عليها من تغيير. وقد وُضحت نتائج التحليل في الجدول رقم (٢) من الدراسة. جميع التغيرات في التركيز والتي تقل عن ٥٪ أُهملت، واعتبرت فقط التغيرات التي تزيد على هذه القيمة. كانت درجة الضبط في القياسات أقل من ± ٥٪.

وجد أن محاليل العناصر التالية المحفوظة في أوعية من زجاج البايركس تتمتع بثبات لمدة تـزيد عـلى السنة، وهي : الكروم والحديـد والجـاليـوم والجـادلينيـوم واليوربيوم والأنديوم واللانثانيوم والليثيوم والنيوديميوم والبرازيوديميـوم والسهاريـوم والسترانشيوم والتيربيوم واليتربيوم، وذلك على مدى من التركيـز يختلف من عنصر إلى آخر، وكذلـك كانت النتيجـة في بقية أنـواع الأوعية المستعملة وللمـدة نفسها ما عدا السترنشيوم الذي عانى بعض النقص عندما خزن في أوعية البوليثين.

وقد تم في هذه الدراسة إثبات درجة ثبـات بقية العنـاصر في أوعية التخـزين المختلفة ولمدد مختلفة حددت جميعها في متن الدراسة.