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ABSTRACT. Let (X,1) be a topological space and let w(t) be the sct of all lower
scmi-continuous functions defined from X into the closed unit interval {0,1]. We
prove the following result in this paper:

If {(X;,7;):i€l} is a collcction of topological spaces, then w(ll 1) = lHw(t).
We introduce some fuzzy scparation axioms and then we study their hereditary

and productive propertics. We also study the relation between spaces having the
fixed point property and fuzzy connccted spaces.

1. Introduction

Zadeh (1965) introduced the notion of fuzzy set in X as a function A from X into
the closed unit interval [0,1]. Then a quasi-fuzzy topology on X was introduced by
Chang (1968) as a collection of fuzzy sets on X, stable for arbitrary suprema and
finite infima and containing the constant fuzzy sets 0 and 1. A fuzzy topology on X
as introduced by Lowen (1976) is a quasi fuzzy topology which moreover contains
all constant fuzzy sets. The concept of induced fuzzy topological spaces was
introduced by Weiss (1975). Since then many authors have continued the
investigation of such spaces and much attention has been given to the extension of
the separation notions to fuzzy topological spaces.

Let A, u be two fuzzy sets in'X, i.e. h,pe[0,1]*. We write X C piff A(x) = p(x)
for all xe X. By A = pwe mean that A C pand p C X; i.e., M(x) = u(x) for all xe X.
If {A : iel} is a collection of fuzzy sets in X, then we define '

(Uk) (%)
(M) (x)

sup {A(x) : iel}, xeX; and
inf  {h(x) : iel}, xeX.
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Let r denote the fuzzy set given by r(x) = r for all xe X, where 0 =r =1;1ie.r
denotes the “constant” fuzzy set at level r. The complement A’ of a fuzzy set A on X
is given by A'(x) = 1 — A(x), xe X. If A C X, then y, denotes the characteristic
function of A. A fuzzy set A is called crisp iff A(x) € {0,1} for all xe X. If (X,1) is an
ordinary topological space then two quasi-fuzzy topologies on X are associated
with 1, namely:

(i) the class of all lower semicontinuous functions between (X,t) and ([0,1],
t,) with 1, the usual topology on [0,1]. This fuzzy topology is denoted-by w(t).

(ii) the class of all characteristic functions of t-open sets in X. This
quasi-fuzzy topology is denoted by X]|rt.

The closure c1X (or &) and the interior int A (or A°) of a fuzzy set A in a (quasi) fuzzy
topological space (we write (q)fts for short) (x,) are defined by

A= N {uw €1 and A C n}

A =y {wperand p C uj.

In this paper we shall follow Wong (1974) for the definitions of : fuzzy point, a
basis and a subbasis for a (quasi) fuzzy topological space, the direct and the inverse
images of a fuzzy set, the product (quasi) fuzzy topology and fuzzy continuous
mapping. For instance, a fuzzy point p in a set X is a fuzzy set in X given by p(x) =
tfor x = x, (0 <t < 1)and p(x) = 0 for x # x,. x,€ X is called the support of p and
p(xp) = t the value (level) of p. However, we shall agree that a fuzzy crisp point q
in X is a fuzzy set in X given by q(x) = 1 for x = x4 and q(x) = 0 for x # x,. We
shall follow Srivastava, et al. (1981) for the definition of ‘belonging to’. Namely: A
fuzzy point p in X is said to belong to fuzzy set A in X (notation: pek) iff p(x,) <

AM(x,). Finally, two fuzzy points p and q are said to be distinct iff their supports are
distinct, ie., x, # Xq.

1.1 Definition

Let f:(X,r;) — (Y,[2) be a function from a fts (X,r;) to a fts (Y,[2). The
function f is a fuzzy continuous iff the inverse image of every r,-open fuzzy setin'Y
is r;-open or, equivalently, iff the inverse image of every r,-closed fuzzy setin Y is
ri-closed. The function f is fuzzy open (fuzzy closed) iff the direct image of every
(r;-open) (r,-closed) fuzzy set in X is 1,-open (r2-closed). The function f is fuzzy
homeomorphism iff f is bijective, continuous and open.
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1.2 Definition

Let (X,r) be a fts and A C X. Then the family ra = {A|A:\er}is a fuzzy
topology on A, where A|A = ANy, is the restriction of A to A. Then (A,r4) is
called the fuzzy subspace of the fts X with underlying set A.

It is easy to see that a fuzzy set u in A is fuzzy closed in A iff there exists a
fuzzy closed set A in X such that p = A|A.

1.3 Definition

A fuzzy topological property P is called hereditary (weakly hereditary,
hereditary with respect to open subspaces), iff each subspace (closed subspace,
open subspace) of a fts with property P also has property P.

1.4  Definition

Let {(Xq Ta) : ®€ A} be a family of non-empty fuzzy topological spaces. Let X
= Tl X be the usual product of X,’s and P, be the projection from X to X,. The
fuzzy topology generated by ¥y = {Pg'(Ay) : Aue€ls» ®€A} as subbasis is
called the product fuzzy topology in X. Clearly if A is a basic element in
the product topology, then there exist o), oy, ..., €A such that

)\.(X) = min {)\-a;(xa,) = 1,2, ...,n} for each x = (xa)aea € X.

The fuzzy product topology of (Xq, [«). ®€/\, will be denoted by (IMX,, M 14). If A,
is a fuzzy set in X, and x = (X )een € X then we define

(Mhy) (x) = inf {A(xX4) @ ¥ € A}.

It is clear that the collection of all fuzzy sets of the form ITA,; where A, €  for each
ae A and for all but finitely many coordinates A, = 1,; forms a base for the fuzzy
product topology..

Now we prove the following elementary results as we shall use them in the
sequel.

1.5 Lemma

Let f: (X,r1) — (Y,r2) be a function and p a fuzzy set in Y. Then

(' 7'(A) = 7' (u7(A)) where A C [0,1].
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Proof
Straightforward.

1.6 Theorem

Let (X,t;) and (Y,1,) be two topological spaces. Then f : (X,1;) = (Y,15) is
continuous if and only if f : (X,w(t;)) — (Y,w(ty)) is fuzzy continuous.

Proof
(=) Let pew(ty) and a €[0,1]. Then (f~'(w)~! (a,1] = f'(u"'(a,1]) et
because f : (X,t) — (Y,1) is continuous and u~!(a,1] er,.

(«) Let U € 1. Then %y € w(t,) and hence

71 U) = 71 () 'EAD = (Fxo) 7 3.1] ey
1.7 Theorem

Let (X,1y) and (Y,T,) be two topological spaces. Then f : (X,1,) — (Y,1,) is
continuous if and only if f : (X,X]|t;) — (Y,Y]r,) is fuzzy continuous,

Proof
Straightforward.

1.8 Theorem

Let (X,7) be a topological space and A C X. Then w(ta) = w(t)a. provided
that A € t.

Proof

Let Ae w(ta). Then A : (A,t4) — [0,1] is a lower semicontinuous function.
Define p : (X,1) — [0,1] by u(x) = A(x) if xe A and w(x) = 0 if xe X-A . Then p~!
(a,1)] =A""'(a,1] € Ta C tfor all a € [0,1]. Therefore p € w(t). Notice that Ae w(T)a
because A = p N x 4. Consequently, we have proved that w(ts) C w(t) 4. To prove
the other inclusion, let Ae w(t)a. Then there exists ue w(t) such that X = p N ya.
Notice that if x ¢ A, then A(x) = 0. So we may regard A as a function from (A,t,)
into [0,1]. Notice that for any a € [0,1] we have A™! (a,1] = ™' (a,1)] N A € 4.
Consequently Ae w(ta).

2. Fuzzy Separation Axioms

Several authors have introduced different definitions of separation properties
for fuzzy topologies (see, e.g. Hutton (1975) and (1977), Hutton and Reilly
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(1980), Ming and Ming (1980a) and Srivastava, et al. (1981)). The Hausdorff
axiom has had a hard life in fuzzy set theory since many authors have proposed
different definitions (e.g. Ming and Ming (1980a), Sarkar (1981) and Wong
(1974)).

2.1 Definition
A (quasi) fuzzy topological space (X,r) is said to be

(1) Ty iff for any two distinct fuzzy points p,q in X, there exists an open fuzzy
set u such that (pep and u N q = 0) or (qep and p N p = 0).

(2) Ty, iff for any two distinct fuzzy points p, q in X, there exists an open
fuzzy set p such that pep C q' or qep C p’.

(3) T, iff for any two distinct fuzzy points p, q in X, there exist open fuzzy sets
w; and p, such that pe p,, uyy N q = 0, ge up and p, N p = 0.

4) T,,, iff for any two distinct fuzzy points p, q in X, there exist open fuzzy
sets w; and p, such that pe w; € q' and qe u, C p'.

2.2 Definition
A (quasi) fuzzy topological space (X,r) is said to be

(1) T,iff for any two distinct fuzzy points p,q in X, there exist open fuzzy sets
p, and u, such that pe wy, qe wp and p; N p, = 0.

(2) T,, iff for any two distinct fuzzy points p,q in X, there exist open fuzzy
sets w; and w, such that pe p;, qe w, and p; C pj.

(3) Ty, iff for any two distinct fuzzy points p,q in X, there exist open fuzzy
sets u; and p, such that pe u;, qe w, and u; N w, = 0.

(4) Ty, iff for any two distinct fuzzy pomts p,q in X, there exist open fuzzy
sets u; and w, such that pe p,, qe wp and p, N p;.

We proved in Fora (1989) (see Theorem 2.3) that our Ty,,, T, concepts coincide
with the F Ty, F T, concepts, respectively, of Ghanim, Kerre and Mashhour
(1984). However, our T, concept is different from the F T, concept of the same
preceding paper..
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2.3 Definition
A (quasi) fuzzy topological space (X,r) is said to be

(1) T, iff all fuzzy points and fuzzy crisp “points” are closed in X.

(2) T, iff all fuzzy crisp “points” are closed in X.

2.4 Theorem

Let f : (X,11) — (Y.[2) be a bijective fuzzy continuous map. If (Y,r3) is a
T;-space then (X,r;) is a Ti-space, ie {0,1,2,24,¢,5,00,1w,20,23w}.

Proof

Let p,q be two distinct fuzzy points in X. Then x,, x, are two distinct elements
in X. Therefore f(xp), f(x,) are two distinct elements in Y. Now, let p,, q, be two
fuzzy points in Y determined by p,(f(x,)) = p(x;,) and q,(f(x,)) = q(x,)- Then p,,
q, are two distinct fuzzy points in the T; - space Y. Thus there exist [,-open sets
X, A, satisfying the appropriate definition of Y being a T;-space. Since f is fuzzy
continuous, therefore f~'(\j) € 1j fori = 1,2. Now, it is clear that f~'(A,), f~'(X,)
are p;-open sets satisfying the appropriate definition of X being a T;-space.

2.5 Corollary

“Being a T;-space” is a fuzzy topological property for each ie
{0,1,2,24,c,5,0w,1w,2w,24w}.

2.6 Definition
A (quasi) fuzzy topological space (X,r) is said to be

(1) regular iff for every fuzzy point p in X and every closed fuzzy set A in X
such that peA’, there exist open fuzzy sets pu, and pysuch that pe u;, A C py and p, N
uy = 0.

(2) w-regular iff for every fuzzy point p in X and every closed fuzzy set A in X
such that p € A’, there exist open fuzzy sets u; and u, such that pep,, A C p, and p,
C ua.

(3) T, iff (X,r) is regular and T..

(4) Ts, iff (X,r) is w-regular and T..
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We proved in Fora (1987) that our w-regularity is equivalent to Hutton and
Reilly’s fuzzy regularity concept introduced in Hutton and Reilly (1980).

2.7 Definition
A (quasi) fuzzy topological space (X,[) is said to be

(1) normal iff for every pair of closed fuzzy sets Ay, A, such that \; C A}, there
exist open fuzzy sets wu ,u, such that A; C py, A2 C py and p; N wy € 0.

(2) w-normal iff for every pair of closed fuzzy sets A;, A, such that A, C A5,
there exist open fuzzy sets pu;, up such that Ay C p; C py C As.

(3) T, iff (X,r) is normal and T,
(4) Ty, iff (X,) is w-normal and Ti.
We proved in Fora (1987) (see Theorem 3.13) that our w-normality is equivalent

to the normality concept introduced in Hutton (1975).

2.8 Definition (Hutton 1975)

The fuzzy unit interval [0,1] (L) is the set of all monotonic decreasing
functions A : R — [0,1] satisfying

(1) Mv)
(2) A1)

1 for t<0 ,teR,

0 for t>1 ,teR;

after the identification of A:R — [0,1] and p:R — [0,1] iff A(t—) = u(t—) and A(t+)
= u(t+) for every te R (where A(t—) = inf {A(s): s < t} and A(t+) = SUP {A(s) : s
> t}).

We define a fuzzy topology on [0,1] (L) by taking as a subbase { L,, R, : te R}
where we define

L(\) = (Mt=))’ and R(}) = At+).

This topology is called the usual fuzzy topology for [0,1] (L). It is easy to notice
that B = {R, N L, : a,be R} is indeed a base for the usual fuzzy topology on the
fuzzy unit interval [0,1] (L).
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2.9 Definition
A (quasi) fuzzy topological space (X,r) is called

(1) completely regular iff for every open fuzzy set A and every fuzzy point p in
X such that pe, there exists a fuzzy continuous function f : (X,) — [0,1] (L) such
that for every xe X : p(x) = f(x) (1-) = f(x) (0+) = A(x).

(2) functionally Hausdorff (abbreviated Ty, ) iff for any two distinct fuzzy
points p and g in X, there exists a fuzzy continuous function f : (X,r) — [0,1] (L)
such that for every xe X : p(x) = f(x)(1-) = f(x)(0+) = q'(x).

(3) Ty, iff (X,1) is completely regular and T.

We proved in Fora (1989) that our concept of being a completely regular fuzzy
topological space is equivalent to the definition given in Hutton (1977).

2.10 Theorem

(a) “Being a T;-space” is a fuzzy topological property for all ie {3, 4, f.h, 3w,
3iw, 4w}.

(b) The followings are fuzzy topological properties: regularity, normality,
w-regularity, w-normality, complete regularity.

Proof

(a) (i = 4w): Let f:(X,1;) — (Y,[2) be a fuzzy homeomorphism from a fuzzy
topological space X onto a T,,,-space Y. Let &, A, be two closed sets in X such that
X1 C A3. Then f()}), f(X,) are closed sets in Y and moreover, we have f(A;) C f(),)’
(easy calculations). Since Y is w-normal, there exit p;, u, open sets in Y such that
f(A)) C i, f(A2) C wy and py C ). It is easy to check that &, C 7' (), A, C 7' (o)
and f7'(u,) C (f'(u2))’. The proof is completed by noticing that f~'(p,), f~'(u2)
are open sets in X.

The proof of the other cases is similar to the above case.

The following result is easy to prove.

2.11 Theorem

(i) “Being a T;-space” is a hereditary property for ie {0, 1, 2, 24, 3, c, s,
Ow,lw,2w, 2iw, 3w, 34w, f.h}.
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(ii) Regularity, w- regularity and complete regularity are all hereditary
properties.

(iii) “Being a Tj-space” is weakly hereditary for je {4,4w}.

(iv) Normality and w-normality are weakly hereditary properties.

2.12 Definition (Lowen 1978)

A property P; of a fts is said to be a good extension of the property P in
classical topology iff whenever the fts is topologically gnerated, say by (X,t), then
(X,»(t)) has property P; iff (x,t) has property P.

The following results obtained in Fora (1987) show that we have succeeded in
defining good extensions of separation axioms.

2.13 Theorem (Fora 1987)

Let (X,t) be a topological space. Then the following statements are
equivalent:
(i) (X,1) is a T;-space,
(i) (x,0(t)) is a Tj-space,
(i) (X,w(t)) is a T;,-space,
where i € {0,1,2,24}.

2.14 Theorem (Fora 1987)

Let (X,T) be a topological space, pe {regular, normal} and qe {completely
regular, f.h}. Then we have

(i) (X,t) is a p spae iff (X,w(t)) is a wp space.
(i) (X,t) is a q spae iff (X,w(t)) is a q space.

3. Fuzzy Product Spaces
Let us present our first result in this section.

3.1 Theorem

Let {(X;,7;):ie 1} be a collection of nonempty topological spaces. Let T T;
denote the tychonoff product topology on ITX;. Then we have w(ITt) = IMw(T).
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Proof.

To prove Mw(t;) C w(Tlt;), let A be a basic open set in [Tw(t;). Then there exist
iy,iz, ..., in € I and there exists Aic (t;), i € I, such that A = TTA;, where }; = 1; for all
iel— {i,ip, ..., i,}. Foreach te [0,1], it can be easily proved that (TTA\;))™' (t,1] =
NMU;, where U; = X; foralli el — {i}, iy, ..., 1,} and U; = Xj_' (t,1] for all je {i,,i,,

.., in}. Since Aje w(t;) for all je 1, therefore U,e 1; for j € I. Moreover, one can
easily observe that TT U, TIt;. Hence TIA; € w(TTT)).

To prove the other inclusion, i.e. w(ITt;) C Tw(t;), let ew (T11;). Take p any
fuzzy point in ITX; such that peX. Let x = (X;);c; be the support of p. Then p(x) <
A(x). Let r = $(p(x) + AM(x)). Then p(x) < r < A(x), i.e. xeA™'(r,1] and A7 '(r,1] €
ITt;. Hence there exist iy,ip, ..., iy € 1 and there exists Uj¢ T;, i€ [, such that xe IT U;
C A7'(r,1) and U; = X; for allie 1—{iy,iz, ..., in}. Define &; = rxy, for each i€ {i,i,,
.., in} and A; = 1 for all je I— {i,is,...,i5}. Then TIAj is a basic open set in MTw(t;)
and moreover we have pe IT\; C A. Hence, according to Theorem 3.2 of Wong
(1974), re Tlo(t;).

3.2 Theorem

Let (Xi,1;) be a fuzzy nonempty space for each ie 1. Then (TT X;, T ;) is a
Tow-space if and only if each (X,1;), ie [, is a T,-space.

Proof

(<) Let p,q be two distinct fuzzy points in [TX; with supports x = (X;)ie; and y
= (yi)ie1 respectively. Since x # y, there exists je I such that x; # y;. Take py, q to
be fuzzy points in X; such that py(x;) = p(x) and qy(y;) = q(y). Then p,,q, are two
distinct fuzzy points in the Ty,-space (X;,[;). Thus there exists A; € 1; such that p, €
Aj C q)or gy € A C po- In the case pye A; C qp, we get po(x;) < Aj(xj); so p(x) <
Ai(x;) = (TTA)(x), where A, = 1, for alli € I-{j}. Hence p € TIA; C q’. In the second
case, i.e. qp € Aj C p), we get a similar situation.

(—) Let (TIX;, TI;) be a Ty,,-space and let j € 1. To prove (Xj, 1;) a Ty,-space,
let py,qo be two distinct fuzzy points in X; with supports x;,, and x;q respectively.
Since X; # ¢, there exists x;e€ X; for each i € 1-{j}. Define x;, = x;, =x; foreachie
I-{j} and put x, = (X;p)ie1 and x; = (Xiy)ic1- Let p, q be two fuzzy points in T X; such
that (p(x,) = po(x;p) and g(x) = gy(xjq). Then p, q are distinct fuzzy points in the
Tow-space (ITX;, TT 1;). Thus; using Theorem 3.2 of Wong (1974), there exists a
basic open set A in (TT X;, Tl;) such that pe A C q" or g € A C p’. Hence there exist
ij,iz, ..., i €] and there exists A; € 13, i € 1, such that &; = 1; for all i € I-{i,,i2,...,is}
and A = TIA,. It is easy to observe that p, € A; C q) or gy € Aj C p).

Actually, the above technique can be used to prove the following result.
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3.3 Theorem

Let {(X;, ;) : i € I} be a collection of nonempty fuzzy spaces. Then

(i) (X, Mr;) is a Tj-space if and only if each (X, ;) is a T;-space; where je
{0,1,2,2%, 3,0, 1w,2w, 2iw, 3w,3tw,s.c}.

(ii) (TTX;, Mr;) is regular (w-regular) if and only if each (X, 17), i€ I, is regular
(w- regular).

The following result shows that even the property of being completely regular
is still fuzzy productive.

3.4 Theorem

Let {(Xj, 1i) : i e I} be a collection of nonempty fuzzy spaces. Then (TTX;, TTf;)
is a completely regular space if and only if each (X, 1;) i€ I, is a completely regular
space.

Proof

(«) Let p be a fuzzy point in TIX; with support t = (t;);; and let u be a fuzzy
closed set in (T1X;, TI;) such that pep’, i.e. p(t) < w/(t). Let r = 3 (p(t) + p'(t)).
Then p(t) < r < p/(t). Since p € p’ and u’ e TIf;, therefore; by Theorem 3.2 of
Wong (1974), there exist iy,i,,...,i, €l and there exist w;e r; for all iel such that pe
Mw; C ', where u; = 1, for each i € I-{i,,iy,...i,}. Let p; be a fuzzy point in X; with
pi(t)) = p(t). Since pe TT ;, therefore p;(t;) = p(t) < min {w(t)) 1 i = iy,iz,....00) =
u;(t;) foreach j € {i;,is,...,i,}. Hence p; € u; for all j € {i;,i,,...,i,}. Since (X, 1) is a
completely regular space, there exists a fuzzy continuous function f;:(X;, ;) —
[0,1](L) such that p;(x;) = f;(x;)(1—) = f;(x;)(0+) = u;(x;) for all x; € X, where j €
{iy,ip,...,in}. Now, define f:(TIX;, TI5;) — [0,1](L) by f((x))icr) = min {fj(x;) : j €
{i1,iz,...,in} }. Notice that f is a well defined fuzzy continuous function satisfying
the condition that for every x = (x;)ic; € T1X; we have p(x) = f(x)(1-) = f(x)(0+) =
n(x).

(—) Let (1T X;, IT 1;) be a completely regular space and let j € I. To prove
(Xj,1j) a completely regular space, let py be a fuzzy point in X; with support t;. Let
A€ 1j be such that pge A;. Since X; # ¢, there exists t; € X; for each i € I-{j}. Take p
to be the fuzzy point in X, such that p(t) = po(t;), where t = (t,);e;. Let A = TTA;
where A, = 1, for all i € I-{j}. Then X € IT ; and p € A. Since (T1X;, TIf;) is a
completely regular space, therefore there exists a fuzzy continuous function f:(T1
X, 1) = [0,1](L) such that for every x = (x;);ic; € T1X;, we have p(x) = f(x)(1—)
= f(x)(0+) = A(x). Now, define g:(Xj, 1;) — [0,1](L) by g(x;) = f((X;)ic1), where x;
= t; forielI-{j}. Then g is a fuzzy continuous function satisfying the condition that
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for any x; € X; we have po(x;) = g(x)(1-) = g(x;)(0+) = A(x)).

The above theorem suggests the following result.

3.5 Theorem

Let {(X;, ;) : i€l} be a collection of nonempty fuzzy spaces. Then (I1X;, Ir;) is
functionally Hausdroff if and only if each (Xj,;) is functionally Hausdorff, iel.

Observe that the theorem is not true for the w-normal spaces. In fact, we have
only one direction is true. To illustrate this fact, we have the following result.

3.6 Theorem

(a) Let {(X, 1;) : iel} be a collection of nonempty fuzzy spaces. If (TIX;, Ir;)
is w-normal (Ty,), then each (X,,;), i€l, is w-normal (T4,).

(b) There exists an w-normal (Ty,) space (X,1) for which (X X X, 1 X 1) is
not w-normal (not T,,).

Proof

(b) Let S denote the Soprgenfrey Line. Then w(S) is w-normal (Ta4,)
according to Fora (1987). Using Theorem 3.2, we have o(S)xw(S) = w(SxS) which
is not w-normal (not Ty,) according to Fora (1987).

It is a remarkable notice that if X, = X, = {x},7; = {O,rz=r=1}and 1, =
{1,r:0 = r =3}, then X; x X, = {(x,x)} and 1, X T, = {r:0 = r = 1}. This means
that the product f.t.s. X, X X, is indeed a Tj,-space for all ie {0,1,2,23, 3,33,4}.
Notice that the q.f.t.s (X;,T1) is not even a T-space. For this reason we observe
that constant functions are important in defining fuzzy topological spaces for the
purpose of separation axioms. For more details we refer the reader to consult
Ming and Ming (1980b), and Lowen and Wuyts (1988).

4. Fuzzy Connectedness and The Fixed Point Property

We start this section with the following definition.

4.1 Definition

A (fuzzy) topological space (X,r) is said to have the fixed point property
(f.p.p for short) iff every (fuzzy) continuous function f:(X,r) — (X,1) has a fixed
point (i.e. a point xeX for which f(x) = x).
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Using Theorem 1.6 and Theorem 1.7, we get the following result.

4.2 Theorem

Let (X,t) be a topological space. Then we have

(i) (X,t) has the f.p.p. if and only if (X,w(t)) has the f.p.p.
(ii) (X,T) has the f.p.p. if and only if (X,X|t) has the f.p.p.

In usual topological spaces, it is an easy exercise showing that a space having the
f.p.p. must be connected and a T-space. In fuzzy topological spaces, we shall give
an example of a fuzzy space have the f.p.p. and yet it is neither connected nor a
Ty,,-space.

4.3  Definition

A fts (X,r) is called connected iff it has no clopen sets other than the constant
fuzzy sets.

4.4 Example

There exists a fuzzy space (X,f) which has the f.p.p. and yet it is neither
connected nor a T,-space.

Proof
Let X = {0,1},1 = {A\, A, r:0 = r = 1} where A(0) = 3 and A(1) = 1. To prove

(X,r) has the f.p.p., we must show that the function f:X — X; given by f(0) = 1
and f(1) = 0; is not fuzzy continuous. Indeed, f~'(A)(0) = A(f(0)) = A(1) = &.

Hence f~'(X) ¢ 1. This shows that (X,r) has indeed the f.p.p. It is clear that
(X,r) is not connected because A is a clopen set in X. Moreover, for the fuzzy
points p, q in X; given by p(0) = 0.9 and q(1) = 0.9; there does not exist u € [ such
that p e w C q" or q e p C p’. Hence (X,) is not a Tg,-space.
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