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The Group of Automorphisms
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ABSTRACT. A chain ring is an associative ring with identity whose ideals form a
chain. We¢ determine (in certain cases) the group of automorphisms of finite chain
rings.

All rings considered in this paper are associative and have an identity. Chain rings
have been examined by a number of researchers. In particular Krull (1924)
examined commutative chain rings and discovered the coefficient subring of a
finite commmutative ring and Snapper (1952) Sharpened Krull’s results. Wirt
(1972) determined the structure of a finite chain ring as the quotient of a skew
polynomial ring (Ore polynomial ring) over a Galois ring by an ideal of special
form, generated by Eisenstein polynmial. Nechaev (1973) rediscovered almost the
same as Wirt structure of finite chain rings and he called them Galois-Eisenstein-
Ore rings because of the constructions involved. Fisher (1976) gave the structure
of a finite chain ring as the quotient of a skew power series ring over a certain
complete discrete commutative valuation domain by an ideal of special form
similar to the ideal involved in the construction given by Wirt. Arkhipov (1972)
classified certain commutative chain rings in to three classes and Rybkin (1981)
generalized Arkhipov results to the finite chain rings. It is easy to see that a finite
ring R is a chain ring if and only if the set J of all its zero divisors forms a principal
ideal. In such a case, J is the unique maximal ideal of R, |[R| = p™", |J| = p{™~"r,
where the characteristic of R is p", p being a prime, m is the index of nilpotency of
J(.e.J™= {0} and J" ' # {0}), | = n =< mand p"is the residue order of R (i.e.
R/J is a field of order p") (cf. Raghavendran 1969).
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Since J is nilpotent it makes sense to consider the greatest positive integer k
such that p is an element of J*. It turns out that this integer plays an important role
in the case of finite chain rings. Clark and Liang (1973) have determined the
number of isomorphism classes of finite commutative chain rings with (k, p) = 1.
This enumeration is generalized by the author for the finite chain rings which are
not necessarily commutative (Al-Khamees 1981).

In(Al-Khamees 1989a), the group of automorphisms of finite chain rings of
characteristic p is determined. In this paper, we determine the group of
automorphisms for the finite commutative chain rings with (k,p) = 1 and then
show how this can be used to settle the non-commutative case with (k,p) = 1. Asa
matter of fact we determine the group of automorphisms of finite chain rings in
terms of the group of automorphisms of certain finite commutative chain rings
under weaker condition that (k,p) = 1 (see remark 4). It is perhaps worth noting
that finite principal ideal rings are direct sums of finite chain rings.

Let R be a finite chain ring and p, n, m, r be integers associated to it as
described above. If n = m, then R = Z.[a], where Z,. is the ring of the integers
modulo p" and a an element of R of multiplicative order p'—1. In this case Aut R,
the automorphism group of R, is cyclic and is of order r. These rings are uniquely
determined by the triplet, p. n, r; denoted by GR (p",r) and are called Galois rings
(cf. Raghavendran 1969).

Let R be a finite chain ring and p, n, r, k, m be as described above. It is
already known (Clark 1972) that R has a coefficient subring S (i.e. R/J(R) is
isomorphic to S/pS) of the form GR(p",r); moreover any two coefficient subrings
of R are conjugate in R. Let J = Rn. Then we have the following facts due to
Clark and Drake (1973) and Wirt (1972). There exists a polynomial

k=1
f=x"—pu(l+ Y rx)
i=t

such that st is a root of f, where u is an element of < a > and r; are elements of S.

In fact, we can choose xt in such a way that there exists an automorphism o of S
such that

k=1

R = Y® Sx' (as S — modules)

i=0

and for each element r of S, «tr = r” ;. It is easy to see that R is isomorphic to
S[x, a)/(f, p"~'x"), where S[x, o] is the skew polynomial ring with respect to g, 1 <
t=<kandt=m —(n—1)k. It is known that if n > 1 then ¢* = idg, and that o is
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uniquely determined by R arnd S (Al-Khamees 1981). Therefore we call o the
associated automorphism of R with respect to S. Throughout this paper for a given
finite chain ring R, we denote by Ty the set of all triplets (S, o, 7t) which come
from the above description. Let k' be the order of 6. We observe that isomorphic
finite chain rings have the same set of integers p, n, r, k, k', m associated to them,
therefore we call these integers, p, n, r, k, k', m invariants of the finite chain ring
R. However it is to be noted that these invariants do not determine a finite chain
ring completely. Also, in the case of a finite commutative chain ring R the integer
k' = 1, and therefore we have only five integers p, n, r, k, m as invariants of R.

Let R be a finite chain ring with invariants p, n, r, k, k', m with n > [ and R,
be thg centralizer of S in R. Then R, is a commutative chain subring of R, J(R,) =
R,7* and

ki1 B
Rl =i Z® ST[k] ’

i=0

where J(R;) is the Jacobson radical of R| and k, = k/k’. The integers p, n, r, k,
m,, where m; = [(m/k') + 1], are invariants of the commutative chain subring R,
in the sense explained above (Al-Khamees1981). Clearly, if Z(R) is the centre of
R, then

k ky=1
Z(R) = ¥® s + @,
i=0

where S, = Z. [b] is a Galois subring of S of the form GR(p", r'), r' = r/k’, b = a%,
e = p'—1/p"—1 and Q is either J(R)™™! or zero according as k' divides m—1 or
otherwise. As ¥ is an element of Z(R), if we write = = pux, then we get that, for
n>2ort>1,uisan element of < b > otherwise u is an element of < a >. Also,
if (k, p) = 1 then we can choose  in such a way that ©* = pu, that is, in this case
(Al-Khamees 1981) we can choose an associated (very pure) Eisenstein
polynomial of R over S of the form x*—pu. It is easy to establish that if a chain ring
is very pure over a particular coefficient subring then it is very pure over any other
coefficient subring. From the construction of the finite chain ring R given before as
the quotient of skew polynomial ring over its coefficient subring S with respect to
the associated automorphism o, one can deduce easily that the integers p, n, r, k,
m with triplet o, u, x determine completely the finite chain ring R. Therefore we
call the set of entities p, n, r, k, m, g, u, x the invariants of the finite chain ring R.
In the case of a commutative finite chain ring R these eight invariants reduce to
seven, as we observe that the associated automorphism o of R with respect to its
coefficient subring S is the identity automorphism. Also, in the case (k, p) = 1, the
invariants of the finite chain ring R reduce to six or seven according to whether the
ring is commutative or not.
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Unless otherwise stated all symbols introduced above will retain their
meanings throughout the paper. In addition, let R, be the finite chain ring with the
invariants p,n’, r, k, m’, g, u, x with n' > 2, where m' = (n'—1)k+t and let R’ =
Ro/(J(R2))™ ¥; we say that the ring R' is derived from the ring R. Also suppose
that Aut S = < t >, H;(R) = 1+J(R), H;' (R) = H;(R)/H,,,_(R), F = S/pS,, K
= S/pS, k; = Ik;, 1 = p™—1/p'—1, a° = aP', Autg R is the subgroup of Aut R fixing
S elementwise. If

K=
w =1+ Z rink'i

i=1

is an element of H;(R,), we define its norm N,(w) by
Ny (0) = ag(w) ... o (W),

where

Lemma 1

_ Let R be a finite chain ring. Then (R, 0, 0) is an element of Ty if and only
if 8 = Awm, where A is an element of < a > and w an element of H;(R)).

The proof uses a technique similar to the one in the proof of proposition (3)(i)
in (Al-Khamees 1981) and thus it is omitted here.
Lemma 2

Let R be a finite chain ring with invariants p, n, r, k, k', m with (k’, p) = 1 and
let M = {ag(w) ™' : w is an element of H,(R,)}. Then

Hi(R;) = M x H,(Z(R)).

Proof

Consider the homomorphism ¢ from H,(R,) to H,;(Z(R)) defined by ¢(w) =
Ngy(w). Then from lemma 1 in(Al-Khamees1989b), we have M = Ker ¢ and Im ¢
= H,(Z(R)). Also Ker ¢ N Im ¢ = {w:w is an element of H,(Z(R)) and w* =1},
which is clearly equal to the trivial subgroup. Thus H;(R;) = M x H;(Z(R)).
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Remark 1
Let R be a finite chain ring with invariants p, n, r, k, k', m withn > 1 and let ¢
be the least positive integer less than or equal to r such that

up - k:

is an element of < a >. Put
u; = ult-Ike
where | <i=<sands = r/(r,c), and define the mapping x from R to R as follows:

x (X ) = (8 o (wm),

where p = 1°. Then one can easily check that x is an automorphism of R, x'(7) =
u;t and the restriction of <y > to Sis < 1° >. We shall see later that the elements
of < t° > are the only automorphisms of S which can be extended to
automorphisms of R.

Proposition |

Let R be a finite chain ring with the invariants p, n, r, k, m, o, u with (k,p) = |
and n > 1. Then ¢ is an automorphism of R if and only if ¢ is determined by

¢ (X ) =y (X 1Y Quor)) y',

where y is an element of H|(R), p = v, | < i<, A an element of the subgroup A
of < a > of order (k,, p'—1) and w an element of H,,_, (Z(R)).

Proof

Let ¢ be an automorphism of R, then ¢(S) is a coefficient subring of R.
Hence there exists a unit y, in R such that ¢(S) = y,Sy,”'. Let ¢ be the
composition of the conjugation by y,”' and ¢; then 1 restricted to S is an
automorphism p of S and (S, Y(),0) an element of Tg. Thus by lemma 1, y(x) =
utrw, where p is an element of < a > and T an element of H,;(R;). Thus

PU” = 6 = (@(1)* = (WEm)* = p(No(W) ' (Na(E)*'u
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We can assume that y; = By, p = M, and £ = {,w, where 3 is an element of
< a >, y,an element of H;(R), A, an element of A, u, an element of < a >, {, an
element of M and w an element of H;(Z(R)). Suppose A = &, (B~") B\, G =
yaa(y; ') and y = y,ys3, where y; is an element of H;(R,). From equality (1), we
deduce that

kiks

(Ng(n))*' = uPu™' which implies that p, =u’u

Thus p = v and p, = u; for some 1 < i < s. Also from equality (1), we have
p (Ny(w))* = p. However o being an element of H,(Z(R)), we have pw* = p and
consequently w is an element of H,_, (Z(R)) as (k,p) = 1.

Notation

Let R be the finite chain ring with the invariants p, n, r, k, m, ¢, u, x withn >
1 and R’ be the finite chain ring derived from R. Also assume A be the subgroup of
< a > of order (k,, p'—1) and s be as defined in remark 1. Put T = R [x]/(x'—«),
where o = nt* and k' is the order of 0. It is easy to see that T is the commutative
chain ring with the invariants p, n, r, k,, m,, u, x where m, = Im,. Suppose T" is
the finite chain ring derived from T. For ®w an element of H;(R,), ¢ an
automorphism of R and Q an ideal of R, let ' = ®w (H,,—(R)) and ¢ be the
induced automorphism of R/Q2. Also for a unity in R and ¢ an element of H,(R,),
let v, denote the conjugation by y and ¢ be the mapping from R to R defined as
follows:

o (X ) = 3 1y (T

Let N be the subgroup of Inn(R) which contains all the automorphisms 1, where
i is an element of < a >. Obviously N = < 1, > and hence it is isomorphic to

< a! >

Proposition 2

Let R be the finite commutative chain ring with the invariants, p,n, r, k, m, u
with (k,p) = 1 and n > 2. Then

Aut R' = (A xg < x >)/ < x>

where if A an element of A, then 6(x)(A) = x().
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Proof

Clearly R' is a commutative chain ring with the invariants p, n—1, r, m—k, u.
Let S’ be the coefficient subring of R'. From the last proposition an automorphism
¢ of R' is determined by

¢ (8 ) = ¥ & (hou ),

where p = 1'°, 1 < i < s, and A is an element of A. Obviously Auty R’ is the
subgroup of Aut R' which contains all the automorphisms ¢,, where A is an
element of A. It is easy to check that x° is an element of Auts R'. Also if ¢ is an
element of < x > and of Autg R’, then ¢ fixing S’ elementwise. But the only
elements of < x > fixing S’ elementwise are in < x* >. Therefore Autg R' N <y >
= < x* >. Let us form the semidirect product Autg R' X5 <y > with 8(x)(¢y) =
dyny- It is easy to verify that the correspondence f from Autg R' Xy <y > to Aut
R’ determined by f($a,x) = ¢ux, is a surjective homomorphism and Ker f is
isomorphic to < x* >. Now if we identify Autg R’ with A and Ker f with < * >,
we get the required result.

Remark 2
Let ¢;; denote the matrix with the identity of K in the (i,j) —position and zeros

elsewhere. The group Gy, (K) of all 1-triangular matrices

I+ ) byey,

j<i

where b;; are elements of K, is a sylow p-subgroup of GL,_(K) (cf. Weir 1955).
Let E(k,t;K) be the subgroup of Gy4,—(K) which contains all the matrics [a;],
where a;; is zero for all 2 = i < t, and

a; = ¥ e arj—1,

e+f=i or k+i
that is [a;] are determined by the first column. Obviously E(k,t;K) is of order
(k—=1)r
p .

Theorem 1

Let R be the finite commutative chain ring with the invariants p, n, r, k, m, u
with (k,p) = 1 and n > 1. Then

Aut R = H(R) X4 Aut R/,




24 Y. Al-Khamees

where H(R) = H',_«(R) if n > 2 and H(R) = E(k,t;K) otherwise. Also if ' is an
element H'y,_«(R) and [a;] an element of E(k,t;K), then

B(d0)(@) = ¢ (@) and 8(x)([ag]) = [N af],

where p is the restriction of % to R,.

Proof

Let G be the subgroup of Aut R which contains all the automorphisms ¢,,,
where o is an element of H,,_(R). It is easy to check that Aut R is isomorphic to
G X Aut R, where 0(d, 1) = Py(w) and Y = ¢px. Itis clear that if n > 2, then G is
isomorphic to H';,_(R). Also if n = 2, then it is easy to see that the mapping g
from G to E(k,t;K) given by g(¢.,) = [a;j], where if

m—1
— i =
© =1+ ) a,, o then a; = Y A, Arj-)
i=1 e+f=i or k+i

is an isomorphism from G to E(k,t;K). Now by identifying G with H(R), it is easy
to deduce that 0 can be expressed as mentioned in the statement of the theorem.

Theorem 2

Let R be the chain ring with the invariants p, n, r, k, m, o, u with (k,p) = 1
and n > 1. Then

Aut R = ((Inn(R)/N)xg H(Z(R))) %o, Aut T,
where

H(Z(R)) = Hu,—x, (Z(R)) for n > 2 and H(Z(R)) = E(k;,t;;F)
otherwise.

Proof

From proposition 1, an automorphism ¢ of R is determined by

¢ (X rj7'5j) =y 5 u o m)) y !,

where y is an element of H;(R), 1 <i=<s, Ais an element of A and ® an element
of Hn_x (Z(R)). Let G be the subgroup of Aut R which contains all the
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automorphisms Y ,¢.,, G, the subgroup of G which contains all the automorphisms
Yy, G the subgroup which contains all the automorphisms ¢,,, and Gj the
subgroup of Aut R which contains all the automorphisms ¢,x'. Then it is easy to
see that

G = G, X4,G;, Aut R = G Xy, Gy

and G is isomorphic to Inn(R)/N. Using an argument similar to that in the proof of
theorem 1, one can deduce easily that G, is isomorphic to H(Z(R)). Finally from
proposition 1, G, must be equal to Aut T

Remark 3

It may be worth noting that 8, and 6, mentioned in the statement of the last
theorem can be determined easily, and that H(Z(R)) is isomorphic to
Aut Z(R)/ Aut (Z(R))', where (Z(R))' is the finite chain ring derived from Z(R).

Remark 4

Let R be a chain ring with the invariants p, n, r, k, m, ¢, u, x with (k',p) = 1,
where k' is the order of o. If y is the unique element in H,(R,) such that y = x"*
and ki = (k,, p*~1); then one can prove that

Aut R = (Inn(R)/N)X4 (Aut Y/Aut X') X4 Aut T,

where Y is the commutative chain ring with the invariants p, n, r', k;, m, u, y (it
has the same invariants as Z(R) except that y replaces x), X is the commutative
chain ring with the invariants p, n, r', k3, m;, u and X' is the finite chain ring
derived from X.
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