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ABSTI-{I\CL A chain ring is an associative ring with it..kmily whose.; iucals form a 

chain . We uClcrminc (in CCflain cases) the group of .lutomorphisrns of finit e chain 

rings. 

All rings considered in this paper are associative and have an identity . Chain rings 
have been examined by a number of researchers. In particular Krull (1924) 
examined commutative chain rings and discovered the coefficient subring of a 
finite commmutative ring and Snapper (1952) Sharpened Krull's results. Win 
(1972) determined the structure of a finite chain ring as the quotient of a skew 
polynomial ring (Ore polynomial ring) over a Galois ring by an ideal of special 
form , generated by Eisenstein polynmial. Nechaev (1973) rediscovered almost the 
same as Wirt structure of finite chain rings and he called them Galois-Eisenstein­
Ore rings because of the constructions involved. Fisher (1976) gave the structure 
of a finite chain ring as the quotient of a skew power series ring over a certain 
complete discrete commutative valuation domain by an ideal of special form 
similar to the ideal involved in the construction given by Wirt . Arkhipov (1972) 
classified certain commutative chain rings in to three classes and Rybkin (1981) 
generalized Arkhipov results to the finite chain rings. It is easy to see that a finite 
ring R is a chain ring if and only if the set J of all its zero divisors forms a principal 
ideal. In such a case, J is the unique maximal ideal of R, IRI = p"", IJI = p(I11-I)r, 
where the characteristic of R is pn, p being a prime, m is the index of nilpotency of 
J (i .e . Jm = . {O} and ],,,-1 *' {O}), I ~ n ~ m and pr is the residue order of R (i.e. 
RJJ is a field of order pr) (cf. Raghavendran 1969). 
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Since J is nilpotent it makes sense to consider the greatest positive integer k 
such that p is an element of J k . It turns out that this integer plays an important role 
in the case of finite chain rings. Clark and Liang (1973) have determined the 
number of isomorphism classes of finite commutative chain rings with (k, p) = 1. 
This enumeration is generalized by the author for the finite chain rings which are 
not necessarily commutative (AI-Khamees 1981). 

In(AI-Khamees 1989a) , the group of automorphisms of finite chain rings of 
characteristic p is determined. In this paper, we determine the group of 
automorphisms for the finite commutative chain rings with (k,p) = I and then 
show how this can be used to settle the non-commutative case with (k,p) = I. As a 
matter of fact we determine the group of automorphisms of finite chain rings in 
terms of the group of automorphisms of certain finite commutative chain rings 
under weaker condition that (k,p) = I (see remark 4). It is perhaps worth noting 
that finite principal ideal rings are direct sums of finite chain rings . 

Let R be a finite chain ring and p, n, m, r be integers associated to it as 
described above. If n = m, then R = Zp"[a], where Zp" is the ring of the integers 
modulo pn and a an element of R of multiplicative order pr-I. In this case Aut R, 
the automorphism group of R, is cyclic and is of order r. These rings are uniquely 
determined by the triplet, p. n , r; denoted by G R (pn ,r) and are called Galois rings 
(cf. Raghavendran 1969). 

Let R be a finite chain ring and p, n, r , k, m be as described above. It is 
already known (Clark 1972) that R has a coefficient subring S (i.e. R/J(R) is 
isomorphic to SipS) of the form GR(pn,r); moreover arty two coefficient subrings 
of R are conjugate in R. Let J = RJt . Then we have the following facts due to 
Clark and Drake (1973) and Wirt (1972) . There exists a polynomial 

k - J 

f = Xk - pu (I + ~ rixi) 
i=! 

such that Jt is a root of f, where u is an element of < a > and ri are elements of S. 
In fact, we can choose Jt in such a way that there exists an automorphism 0 of S 
such that 

k-J 

R ~('f) SJti (as S - modules) 
i=() 

and for each element r of S, Jtr = r" Jt . It is easy to see that R is isomorphic to 
S[x, o]/(f, pn-Ixl) , where S[x, 0] is the skew polynomial ring with respect to 0, I ~ 
t ~ k and t = m -(n-I)k. It is known that if n > 1 then Ok = id Ro and that 0 is 
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uniquely determined by Rand S (Al-Khamees 1981). Therefore we call 0 the 
associated automorphism of R with respect to S . Throughout this paper for a given 
finite chain ring R, we denote by T R the set of all triplets (S, 0 , n) which come 
from the above description. Let k' be the order of o. We observe that isomorphic 
finite chain rings have the same set of integers p, n, r, k , k', m associated to them, 
therefore we call these integers , p, n, r , k , k', m invariants of the finite chain ring 
R . However it is to be noted that these invariants do not determine a finite chain 
ring completely. Also , in the case of a finite commutative chain ring R the integer 
k' = I, and therefore we have only five integers p , n , r, k, m as invariants of R. 

Let R be a finite chain ring with invariants p , n, r , k, k', m with n > I and R, 
be the centralizer of Sin R. Then R, is a commutative chain subring of R, J(R,) = 
R,n k' and 

k,-'
R, L~ Snk ';, 

i=O 

where J(RI) is the Jacobson radical of R, and k, = klk'. The integers p, n , r, k" 
m" where m, = [(m/k') + 1], are invariants of the commutative chain subring R, 
in the sense explained above(AI-KhameesI981). Clearly, if Z(R) is the centre of 
R, then 

"1- 1 

Z(R) L~ Son k'; + Q, 
i=t1 

where So = Zp" [b1is a Galois subring of S of the form G R(pn, r'), r' = r/k', b = a~ , 

e = p' _l/pr"_1 and Q is either J(R)m-' or zero according as k' divides m-I or 
otherwise. As n k is an element of Z(R), if we write n k = pux , then we get that, for 
n > 2 or t > I , u is an element of < b > otherwise u is an element of < a > . Also , 
if (k, p) = I then we can choose n in such a way that n k = pu, that is, in this case 
(AI-Khamees 1981) we can choose an associated (very pure) Eisenstein 
polynomial of Rover S of the form xk_pu. It is easy to establish that if a chain ring 
is very pure over a particular coefficit!nt subring then it is very pure over any other 
coefficient subring. From the construction of the finite chain ring R given before as 
the quotient of skew polynomial ring over its coefficient subring S with respect to 
the associated automorphism 0, one can deduce easily that the integers p, n, r , k, 
m with triplet 0, u, x determine completely the finite chain ring R. Therefore we 
call the set of entities p, n , r, k, m, 0, u , x the invariants of the finite chain ring R. 
In the case of a commutative finite chain ring R these eight invariants reduce to 
seven, as we observe that the associated automorphism 0 of R with respect to its 
coefficient subring S is the identity automorphism. Also, in the case (k, p) = I, the 
invariants of the finite chain ring R reduce to six or seven according to whether the 
ring is commutative or not. 
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Unless otherwise stated all symbols introduced above will retain their 
meanings throughout the paper. In addition, let R2 be the finite chain ring with the 
invariants p,n', r , k , m', 0, u, x with n' > 2, where m' = (n'-l)k+t and let R' = 
R2/(J(R2))m'-k; we say that the ring R' is derived from the ring R, Also suppose 
that Aut S = < 1: >, Hi(R) = l+Ji(R) , Hi ' (R) = H i(R)/Hm _ ,(R), F = SJpSo, K 
= SipS , k2 = Ik" I = pfk '_lIpf_l, aO = apr, Auts R is the subgroup of Aut R fixing 
S elementwise , If 

"'] - 1 

W 1 + L rink 'i 
i=l 

is an element of H,(R,) , we define its norm No(w) by 

where 

k]-I 

1 + L ri nk'i 
i=1 

Lemma 1 

Let R be a finite chain ring . Then (Ro, e, 0) is an element ofTR if and only 
if e = Awn , where A is an element of < a > and w an element of H,(R,). 

The proof uses a technique similar to the one in the proof of proposition (3)(i) 
in (Al-Khamees 1981) and thus it is omitted here. 

Lemma 2 

Let R be a finite chain ring with invariants p , n , r, k, k', m with (k', p) = 1 and 
let M = {<xo(w) w-' : w is an element of H,(R,)} . Then 

Proof 

Consider the homomorphism <I> from H,(R,) to H,(Z(R)) defined by <I>(w) = 
No(w). Then from lemma 1 in(AI-KhameesI989b), we have M = Ker <I> and 1m <I> 

= H,(Z(R)). Also Ker <I> n 1m <I> = {w :w is an element of H l(Z(R)) and wk'=I} , 
which is clearly equal to the trivial subgroup. Thus H,(R 1) = M x H,(Z(R)). 
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Remark I 

Let R be a finite chain ring with invariants p, n, r, k, k', m with n > \ and let c 
be the least positive integer less than or equal to r such that 

is an element of < a >. Put 

where I ~ i ~ sand s = r/(r,c) , and define the mapping X from R to R as follows : 

where p = .c. Then one can easily check that X is an automorphism of R, Xi(Jt) = 

UiJt and the restriction of < X > to Sis < .c >. We shall see later that the elements 
of < .c > are the only automorphisms of S which can be extended to 
automorphisms of R. 

Proposition I 

Let R be a finite chain ring with the invariants p, n, r , k, m, 0, u with (k,p) = 

and n > \ . Then <I> is an automorphism of R if and only if <I> is determined by 

where y is an element of H, (R), p = .ic, I ~ i ~ s, A an element of the subgroup A 
of < a > of order (k2 , pr-I) and ()) an element of H m - k (Z(R». 

Proof 

Let <I> be an automorphism of R , then <I>(S) is a coefficient subring of R. 
Hence there exists a unit y, in R such that <I>(S) = y,Sy,-' . Let'\)! be the 
composition of the conjugation by y,-' and <1>; then'\)! restricted to S is an 
automorphism p of Sand (S, '\)!(Jt) ,0) an element of T R. Thus by lemma \, '\)!(Jt) = 

!ltJt, where 1..1. is an element of < a > and t an element of H,(R,) . Thus 

... .. (I) 
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We can assume that YI = 13Y2, I-l = AII-lI and 1;, = 1;,IW, where 13 is an element of 
< a >, Y2 an element of HI(R), Al an element of A, I-li an element of < a >, 1;,1 an 
element of M and w an element of HI(Z(R», Suppose A = exo (13- 1) 13AI> 1;,1 = 
YJex(Y3- L

) and Y = Y2Y3, where Y3 is an element of HI(R I). From equality (1) , we 
deduce that 

uf'u- I which implies that I-l l k,k2 

Thus P = 'ti c and I-li = Ui for some 1 ~ i ~ s. Also from equality (1) , we have 
p (Na(w»k = p . However w being an element of HI(Z(R» , we have pw k = p and 
consequently w is an element of H m- k (Z(R» as (k ,p) = 1. 

Notation 

Let R be the finite chain ring with the invariants p, n, r, k , m, 0, u, x with n > 
1 and R' be the finite chain ring derived from R . Also assume A be the subgroup of 
< a > of order (k2' p'-1) and s be as defined in remark 1. Put T = RI[X]/(Xl-ex), 
where ex = Jtk' and k' is the order of o. It is easy to see that T is the commutative 
chain ring with the invariants p, n, r, k2, m2 , u, x where m2 = Iml' Suppose T' is 
the finite chain ring derived from T . For w an element of HI(R I), <p an 
automorphism of Rand Q an ideal of R, let w' = w (Hm_I(R» and <p' be the 
induced automorphism of R/Q. Also for a unit yin Rand 1;, an element of H I(R 1), 

let '4'y denote the conjugation by Y and <Pl;, be the mapping from R to R defined as 
follows: 

Let N be the subgroup of Inn(R) which contains all the automorphisms '4'1-" where 

I-l is an element of < a >. Obviously N = < '4'a > and hence it is isomorphic to 


apf< ., > 

Proposition 2 

Let R be the finite commutative chain ring with the invariants , p, n, r, k, m, u 
with (k,p) = 1 and n > 2. Then 

Aut R' == (A Xe < X » / < XS > 

where if A an element of A, then 8(X)(A) = X(A). 
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Proof 

Clearly R' is a commutative chain ring with the invariants p , n -1, r , m - k, u. 
Let S' be the coefficient subring of R'. From the last proposition an automorphism 
<\> of R' is determined by 

where p = "C
ic 

, 1 0% i 0% s , and f... is an element of A . Obviously Auts R' is the 
subgroup of Aut R' which contains all the automorphisms <\>)", where f... is an 
element of A. It is easy to check that XS is an element of Auts R' . Also if <\> is an 
element of < X > and of Auts R', then <\> fixing S' elementwise. But the only 
elements of < X > fixing S' elementwise are in < X' > . Therefore Auts R' n < X > 
= < X' >. Let us form the semidirect product Auts R' X fl < X > with 8(X)(<\>),,) = 
<\>x( )") ' It is easy to verify that the correspondence f from Auts R' xtj < X > to Aut 
R' determined by f( <\>)" ,X) = <\>)"X, is a surjective homomorphism and Ker f is 
isomorphic to < X' >. Now if we identify Auts R' with A and Ker f with < XS > , 
we get the required result. 

Remark 2 

Let eij denote the matrix with the identity of K in the (i ,j)-position and zeros 
elsewhere . The group Gk+t- I(K) of all I-triangular matrices 

I + L bij eij, 
j<i 

where bij are elements of K, is a sylow p-subgroup of GLk+I_I(K) (d. Weir 1955). 
Let E(k,t;K) be the subgroup of Gk +I_I(K) which contains all the matrics [aij], 
where aij is zero for all 2 0% i 0% t, and 

a e . 1 ar.j -1, 
c+f= i or k+i 

that is [aij] are determined by the first column. Obviously E(k ,t ;K) is of order 
p(k - J)r. 

Theorem 1 

Let R be the finite commutative chain ring with the invariants p , n, r, k , m, u 
with (k,p) = 1 and n > 1. Then 

Aut R == H(R) x e Aut R' , 
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where H(R) = H'm-k(R) if n > 2 and H(R) = E(k,t;K) otherwise. Also if w' is an 
element H'm-k(R) and [ajj] an element of E(k,t;K), then 

where p is the restriction of X to Ro. 

Proof 

Let G be the subgroup of Aut R which contains all the automorphisms <P<o' 
where w is an element of Hm-k(R). It is easy to check that Aut R is isomorphic to 
G x s Aut R, where 8(<PA X) = <p",(w) and '\jJ = <PAX. It is clear that if n > 2, then G is 
isomorphic to H'm-k(R) . Also if n = 2, then it is easy to see that the mapping g 
from G to E(k,t;K) given by g(<pw) = [ajj], where if 

m-I 

w ~ ac.1 af.j-l
i = 1 e+f= i or k+i 

is an isomorphism from G to E(k,t;K). Now by identifying G with H(R), it is easy 
to deduce that 8 can be expressed as mentioned in the statement of the theorem. 

Theorem 2 

Let R be the chain ring with the invariants p, n, r, k, m , 0, u with (k ,p) = 1 
and n > 1. Then 

Aut R «(lnn(R)/N)xs, H(Z(R») Aut T , X S2 

where 
H(Z(R» H:n,-k, (Z(R» for n > 2 and H(Z(R» 

otherwise. 

Proof 

From proposition 1, an automorphism <p of R is determined by 

where y is an element of HJ(R), 1 ~ i ~ s, J... is an element of A and w an element 
of H m- k (Z(R». Let G be the subgroup of Aut R which contains all the 
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automorphisms '\jJy<P"" G I the subgroup of G which contains all the automorphisms 
'\jJy, G 2 the subgroup which contains all the automorphisms <P... , and G 3 the 
subgroup of Aut R which contains all the automorphisms <p"i. Then it is easy to 
see that 

G 

and G is isomorphic to Inn(R)/N. Using an argument similar to that in the proof of 
theorem I, one can deduce easily that G 2 is isomorphic to H(Z(R)). Finally from 
proposition I, G I must be equal to Aut T. 

Remark 3 

It may be worth noting that 8 1 and 82 mentioned in the statement of the last 
theorem can be determined easily , and that H(Z(R)) is isomorphic to 
Aut Z(R)/ Aut (Z(R))', where (Z(R))' is the finite chain ring derived from Z(R). 

Remark 4 

Let R be a chain ring with the invariants p, n, r , k, m, 0, u, x with (k',p) = I, 
where k' is the order of o. If Y is the unique element in HI(R I) such that y = X 

1/k
· 

and k:"l = (kl' pf-I) ; then one can prove that 

Aut R == (Inn(R)/N)Xe, (Aut Y/Aut X') x e, Aut T, 

where Y is the commutative chain ring with the invariants p, n, r', kl' ml , u, Y (it 
has the same invariants as Z(R) except that y replaces x) , X is the commutative 
chain ring with the invariants p, n , r', k;"l, m h u and X' is the finite chain ring 
derived from X. 
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