Effect of Solvent on the Product Formation in the Reaction of Hydrazines with β-Aroyl- α-[4(1,3-Disubstituted-2-Pyrazolin-5-One)] Propionic Acids

M. El-Mobayed ${ }^{1}$, G.H. Sayed ${ }^{2}$, A.G. El-Shekeil ${ }^{3}$ and E. Abdel Ghani ${ }^{1}$
${ }^{1}$ Chemistry Department, Zagazig University, Zagazig, Egypt, ${ }^{2}$ Chemistry Department, Faculty of Science, Ain-Shams University, Abbasia, Cairo, Egypt
${ }^{3}$ Chemistry Department, Sana'a University, Sana'a Yemen Republic

Abstract

The reaction of β-aroyl- α-[4(1,3-disubstituted-2-pyrazolin-5-one)] propionic acids $\underline{1}$ with hydrazines in acetic acid afforded the unexpected 6-aryl-pyridazin3 -ones- -3 instcad of the expected 4-pyrazolinonyl pyridazinones through the fission of the 1,3-disubstituted-2-pyrazolin-5-one. A probable mechanism has been proposed. Reactions of 6-aryl-pyridazin-3-ones with dimethylsulfate, diethylsulfate, ethyl bromoacetate, phosphorus oxychloride and phosphorus pentasulfide have also been described.

It was stated (Sayed et al. 1984) that the reaction of equimolar amounts of β-aroyl- α-[4(1,3-disubstituted-2-pyrazolin-5-one)] propionic acids with hydrazines hydrate in ethanol gave the 4-pyrazolinonyl pyridazinone derivatives. The object of the present work is to replace ethanol as a solvent, with acetic acid, in order to study the influence of the solvent on the type of reaction products.

Thus, the reaction of $1 \underline{a}$ and $1 \underline{b}$ with hydrazine hydrate in acetic acid gave the 6 -aryl-pyridazin-3-ones $3 \underline{a}$ and $3 \underline{b}$ respectively (Scheme 1), instead of the expected 4-pyrazolinonyl pyridazinones 2 (Scheme 2). The 6-aryl-pyridazin-3ones 3 were produced presumably according to the following mechanism (Scheme 2). The structures of compounds $\underline{3}$ were supported by the following facts:

1. By similarity of melting points with the same compounds prepared alternatively by the reaction of the corresponding β-aroylacrylic acids 5a,b
with hydrazine hydrate in ethanol (Baddar et al. 1965 and Rupert et al. 1976a and b).
2. The PMR (acetone $\left.-d_{6} \delta\right)$ spectrum of 3 a showed signals at $12.1(1 \mathrm{H}, \mathrm{s}$ broad, NH$)$, 7.9-6.8 $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}+\quad \mathrm{CH}=\mathrm{CH}-) \quad$ and $\left.3.84, \mathrm{~s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right)$, and that of $3 \underline{b}$ showed signals at $12.4(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, 7.6-6.3 $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}+-\mathrm{CH}=\mathrm{CH}-)$ and at $2.3\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right)$.
3. The mass spectrum of $3 \underline{a}$ showed a molecular ion peak at $\mathrm{m} / \mathrm{e}=202$ (100%). Pyridazone 3a fragments initially by loss of carbon monoxide followed by loss of $\mathrm{N}_{2}, \mathrm{H}^{\bullet}$, then CH_{2}, to give charged ions at $\mathrm{m} / \mathrm{e}=174$ $(5.3 \%), 146(4 \%), 145(30.6 \%)$ and $131(8.6 \%)$, whilst the loss of 15 mass units from the parent ion corresponds to the loss of CH_{3} with subsequent formation of the charged ion at $\mathrm{m} / \mathrm{e}=187$ (5.3\%) (Scheme 3). The mass spectrum of $3 \underline{b}$ showed a molecular ion peak at $\mathrm{m} / \mathrm{e}=200(100 \%)$, then followed the same pathway of fragmentation (loss of $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{H}^{\bullet}$ and $\left.\mathrm{CH}_{3}\right)$ to give the corresponding charged ions at $\mathrm{m} / \mathrm{e}=172(22 \%), 144$ (4%), $143(17.3 \%), 128(24.6 \%), 185(8 \%)$.
4. The IR spectra $\left(\nu_{\operatorname{tax}} \mathrm{cm}^{-1}\right)$ of $\underline{3}$ showed $v \mathrm{C}=\mathrm{O}$ at $1630-1620, v \mathrm{C}=\mathrm{N}$ at 1585-1570 and $v \mathrm{NH}$ at 3380-3200.

When the reaction of $1 \underline{a}$ and $1 \underline{b}$ was carried out with phenylhydrazine under the same conditions $3 \underline{c}$ and $3 \underline{d}$ respectively, were obtained, according to the same above mentioned mechanism. The IR spectra of 3 c and 3 d showed $v \mathrm{C}=\mathrm{O}$ at 1635-1630 and $v \mathrm{C}=\mathrm{N}$ at 1590-1585.

Compounds $3 \underline{a}$ and $3 \underline{b}$ were subjected to further studies. Thus, reaction with dimethylsulfate, diethylsulfate or ethyl bromoacetate gave the N -substituted products $3 \mathrm{e}-\underline{\mathrm{i}}$. The IR spectra of $3 \underline{\mathrm{e}}$ - $\underline{\mathrm{i}}$ showed $v \mathrm{C}=\mathrm{O}$ at $1665-1630$ and $v \mathrm{C}=\mathrm{N}$ at 1605-1585; an additional band at 1720 for $3 \underline{i}$ being attributable to $\nu \mathrm{C}=\mathrm{O}$ (carboxylic ester). The PMR (acetone- d_{6}) of 3 g showed signals at 7.9-6.8 $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}+-\mathrm{CH}=\mathrm{CH}-), 4.1\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{3} \underline{\mathrm{C}}_{2} \underline{\mathrm{C}}^{2}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OC}_{3} \underline{\mathrm{H}}_{3}\right)$ and $1.3\left(3 \mathrm{H}, \mathrm{t}, \mathrm{C}_{3} \mathrm{CH}_{2}\right)$. The mass spectrum of 3 e showed a molecular ion peak at $\mathrm{m} / \mathrm{e}=216(15.8 \%)$; the parent ion lost CH_{2} to give the charged ion with mass 202 (100%) which followed the same pathway of fragmentation as 3a to give the same charged ions at $\mathrm{m} / \mathrm{e}=187(5.3 \%), 174(5.3 \%), 146(5.3 \%), 145(30.6 \%)$, $131(8.0 \%$) (Scheme 3). Similarly, the mass spectrum of 3 g showed a peak at m/e $=230(100 \%)$, of the molecular ion which lost $\mathrm{C}_{2} \mathrm{H}_{4}$ to give again the charged ion of $\mathrm{m} / \mathrm{e}=202(64.6)$ with the typical fragment pattern of $\mathrm{m} / \mathrm{e}=187(7.3 \%)$, $174(3.3 \%), 146(6.0 \%), 145(42.6 \%)$ and $131(3.3 \%)$.

Treatment of $3 \underline{a}$ and $3 \underline{b}$ with POCl_{3} gave the chloro derivatives $6 \underline{a}$ and $6 \underline{b}$, respectively. The $I R$ spectra of $\underline{6}$ were devoid of $v C=O$ and showed $v C=N$ at 1610-1590.

(Scheme 1)

Furthermore reaction of $3 \underline{a}$ and $3 \underline{b}$ with phosphorus pentasulfide in dry xylene gave the corresponding thiones $7 \underline{a}$ and $7 \underline{b}$. The IR spectra of 7 showed $v N-C=S$ at 1480-1475, $v C=S$ at $1390, \nu C=N$ at $1600-1580$ and $v N H$ at 3430-3410. The PMR (acetone $-\mathrm{d}_{6}$) of $7 \underline{\mathrm{a}}$ revealed signals at $12.1(1 \mathrm{H}, \mathrm{s}$ (broad), NH), 7.9-6.8 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}+-\mathrm{CH}=\mathrm{CH}$) and $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OC}_{3}\right)$. The mass spectrum of $7 \underline{\text { a }}$ showed a molecular ion peak at $\mathrm{m} / \mathrm{e}=218(14.6 \%)$.

Experimental

All melting points are uncorrected, IR spectra (KBr discs) were recorded on a Unicam SP 1200 spectrophotometer, PMR spectra on a Jeol FX 100 Fourier transform instrument using tetramethyl silane as internal standard. Mass spectra were obtained with an AEI MS 902 mass spectrometer operated at 70 eV electron energy, 6 KV accelerating voltage and ion source temperature of $120-150^{\circ} \mathrm{C}$ using the direct insertion probe.

Reaction of $1 \underline{a}$ and $1 \underline{b}$ with hydrazines; formation of $3 \underline{a}-\underline{d}$
A solution of $1 \underline{a}$ and $1 \underline{b}(0.01 \mathrm{~mol})$ and hydrazine hydrate or phenylhydrazine $(0.015 \mathrm{~mol})$ in acetic acid (30 ml) was refluxed for 5 hrs , concentrated and cooled. The separated solid was filtered and fractionally crystallized from benzene to give $3 \underline{a}-\mathbf{d}$, and the residue was crystallized from ethanol to give 4 , which is identified by m.p. determination.

Reaction of 5a and 5bw with hydrazines; formation of 3a and 3d

A solution of $5 \underline{a}$ or $5 \underline{b}(0.01 \mathrm{~mol})$ and hydrazine hydrate (0.015 mol$)$ in ethanol (20 ml) was refluxed for 5 h , concentrated, cooled, and the solid separated was filtered and crystallized from benzene to give $3 \underline{a}$ and $3 \underline{b}$, respectively.

Reaction of $3 \underline{a}$ and $3 \underline{b}$ with dimethylsulfate, diethylsulfate and ethyl bromoacetate; formation of $3 \underline{e}-\underline{i}$

A mixture of $3 \underline{a}$ or $3 \underline{b}(0.01 \mathrm{~mol})$, anhydrous potassium carbonate $(0.03 \mathrm{~mol})$, dimethylsulfate, diethylsulfate or ethyl bromoacetate (0.03 mol) and dry acetone (50 ml) was refluxed for 20 h . After removing of the excess of the solvent, the products were crystallized from the proper solvent to give compounds $3 \underline{e}-\underline{i}$ (Table 1).

Reaction of $3 \underline{a}$ and $3 \underline{b}$ with POCl_{3}; formation of $6 \underline{a}$ and $6 \underline{b}$
A mixture of $3 \underline{a}$ and $3 \underline{b}(0.01 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(10 \mathrm{ml})$ was gently refluxed for 30 min , cooled, treated with crushed ice, and the precipitated solid filtered and crystallized from a suitable solvent to give $6 \underline{a}$ and $6 \underline{b}$ respectively.

Table 1. Physical Data of various compounds prepared

Compd.	M.p. ${ }^{\circ} \mathrm{C}$	Solvent yield \%	Mol. formula (M.Wt.)	Analysis \% Found/Calcd.		
				C	H	N
3a	187	benzene 35	$\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (202) \end{gathered}$	$\begin{aligned} & 65.40 \\ & 65.34 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 4.99 \end{aligned}$	$\begin{aligned} & 13.70 \\ & 13.86 \end{aligned}$
3b	141	$\begin{gathered} \text { benzene } \\ 33 \end{gathered}$	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \\ (200) \end{gathered}$	$\begin{aligned} & 72.20 \\ & 71.98 \end{aligned}$	$\begin{aligned} & 6.10 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 14.10 \\ & 14.00 \end{aligned}$
3 c	129	benzene 29	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (278) \end{gathered}$	$\begin{aligned} & 73.50 \\ & 73.36 \end{aligned}$	$\begin{aligned} & 5.10 \\ & 5.07 \end{aligned}$	$\begin{aligned} & 10.20 \\ & 10.07 \end{aligned}$
3d	130	benzene 30	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \\ (276) \end{gathered}$	$\begin{aligned} & 78.30 \\ & 78.23 \end{aligned}$	$\begin{aligned} & 5.80 \\ & 5.84 \end{aligned}$	$\begin{aligned} & 10.30 \\ & 10.14 \end{aligned}$
3 e	100	$\begin{gathered} \text { (Pet. ether } 80-100 \text {) } \\ 20 \end{gathered}$	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (216) \end{gathered}$	$\begin{aligned} & 66.80 \\ & 66.66 \end{aligned}$	$\begin{aligned} & 5.60 \\ & 5.57 \end{aligned}$	$\begin{aligned} & 13.10 \\ & 12.96 \end{aligned}$
35	67	$\begin{gathered} \text { n-hexane } \\ 37 \end{gathered}$	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} \\ (214) \end{gathered}$	$\begin{aligned} & 72.80 \\ & 72.87 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.59 \end{aligned}$	$\begin{aligned} & 13.20 \\ & 13.08 \end{aligned}$
3 g	73	$\begin{gathered} \text { (Pet. ether } 40-60 \text {) } \\ 29 \end{gathered}$	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (230) \end{gathered}$	$\begin{aligned} & 67.90 \\ & 67.82 \end{aligned}$	$\begin{aligned} & 6.20 \\ & 6.13 \end{aligned}$	$\begin{aligned} & 12.20 \\ & 12.17 \end{aligned}$
3h	122	$\begin{gathered} \text { (Pet. ether } 80-100) \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \\ (228) \end{gathered}$	$\begin{aligned} & 73.60 \\ & 73.65 \end{aligned}$	$\begin{aligned} & 7.20 \\ & 7.06 \end{aligned}$	$\begin{aligned} & 12.30 \\ & 12.28 \end{aligned}$
3 i	104	$\begin{gathered} \text { (Pet. ether } 40-60) \\ 30 \end{gathered}$	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \\ (288) \end{gathered}$	$\begin{aligned} & 62.60 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 5.60 \\ & 5.55 \end{aligned}$	$\begin{aligned} & 9.80 \\ & 9.72 \end{aligned}$
$6 \underline{ }$	168	$\begin{gathered} \text { benzene } \\ 60 \end{gathered}$	$\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O} \\ (220.5) \end{gathered}$	$\begin{aligned} & 59.80 \\ & 59.86 \end{aligned}$	$\begin{aligned} & 4.10 \\ & 4.11 \end{aligned}$	$\begin{aligned} & 12.80 \\ & 12.69 \end{aligned}$
$6 \underline{1}$	135	(Pet. ether $\begin{gathered} 40-60+\text { benz.) } \\ 63 \end{gathered}$	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{2}$ (218.5)	$\begin{gathered} 66.10 \\ 65.90 \end{gathered}$	$\begin{aligned} & 5.20 \\ & 5.03 \end{aligned}$	$\begin{aligned} & 12.60 \\ & 12.81 \end{aligned}$
$7 \underline{1}$	189	ethanol 39	$\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS} \\ (218) \end{gathered}$	$\begin{aligned} & 60.40 \\ & 60.55 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 4.62 \end{aligned}$	$\begin{aligned} & 12.70 \\ & 12.84 \end{aligned}$
7b	162	ethanol 35	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S} \\ (216) \end{gathered}$	$\begin{aligned} & 66.60 \\ & 66.66 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 5.59 \end{aligned}$	$\begin{aligned} & 12.80 \\ & 12.96 \end{aligned}$

Action of $P_{2} S_{5}$ on $3 \underline{a}$ and $3 \underline{b}$; formation of $7 \underline{a}$ and $7 \underline{b}$
A solution of $3 \underline{a}$ or $3 \underline{b}(0.01 \mathrm{~mol}), \mathrm{P}_{2} \mathrm{~S}_{5}(0.02 \mathrm{~mol})$ and dry xylene $(50 \mathrm{ml})$ was boiled under reflux for 6 h . The reaction mixture was filtered while hot and then concentrated. The product which separated on cooling, was crystallized from a suitable solvent to give the thione derivative $7 \underline{a}$ and $7 \underline{b}$, respectively.

Acknowledgement

The authors are grateful to Prof. Dr. A. Rieker, Institute für Organische Chemie der Universität Tüßingen, West Germany, for facilitating the measurements of accurate masses and PMR.

References

Baddar, F.G., El-Habashi, A. and Fateen, A.K. (1965) Pyridazincs, part 11'. The action of Grignard reagents on 6-aryl-2,3,4,5-tetrahydro- and -2,3-dihydropyridazin-3-ones, J. Chem. Soc. 3: 3342.

Rupert S., Engelbert, K., Rudolf, W. and Peter, R.R. (1976a) Phenylpyridazones, Ger. Offen. 2,435.244, Chem. Abstr. 84: p. 150649 s .
Rupert, S., Engelbert, K., Rudolf, W. and Peter, R.R. (1976b) Phenylpyridazones, p. 330-195, Chem. Abstr. 85: p. 1431128p.
Sayed, G.H., Ismail, A.A. and Hashem, Z. (1984) Studies on some β-aroyl- -4(1,3-disubstituted-2-pyrazolin-5-onc) propionic acids, Egypt J. Chem. 27(6): 757.
(Reccived 26/10/1988:
in revised form 15/05/1989)

تأثير المذيب على ناتج تفاعل الميدر ازينات
 مع أحماض بيتا ارويل الفا أَماض البروبيونيك

$$
\begin{aligned}
& \text { ثقّسم الككيمياء ـ بجامعة صنعاء ـ صنعاء ـ البِمهورية الِيمنية }
\end{aligned}
$$

 7 - اريل - بيريدازين -

 10 وحدة عن المركب الأصلي نتيجة فقد بجموعة ميثيل .

ن ـ ايئيل وكذلك التفاعل مع ايثيل برومو الـلات .

كلوريد الفوسفور ليعطى مشتق الكلورو .

الفوسفور ليعطي الثيون المقابل .

الـمراء وفوق البنفسجية وطيف الرنين النووي المغناطيسي وطيف الكتلة .

